Handout on Answer Set Programming

Yuliya Lierler
Univresity of Nebraska, Omaha

Tell me and I forget. Show me and I remember. Involve me
and I understand. (Chinese proverb)

The Moore method is a deductive manner of instruction used
in advanced mathematics courses. It is named after Robert Lee
Moore, a famous topologist who first used a stronger version of
the method at the University of Pennsylvania when he began
teaching there in 1911.

The way the course is conducted varies from instructor to
instructor, but the content of the course is usually presented in
whole or in part by the students themselves. Instead of using a
textbook, the students are given a list of definitions and theo-
rems which they are to prove and present in class, leading them
through the subject material. The Moore method typically lim-
its the amount of material that a class is able to cover, but its
advocates claim that it induces a depth of understanding that
listening to lectures cannot give.

(http://en.wikipedia.org/wiki/Moore_method)

doing mathematical proofs is high art, like playing the

violin. You have to practice for years before you make significant
progress, and a lot depends on your innate abilities. But in
the process you will improve your ability to distinguish between
correct and incorrect mathematical arguments and to appreciate
clever proofs. This is much easier than inventing proofs, just like
it’s easier to appreciate good music than to play an instrument.
(Vladimir Lifschitz, personal communication, Oct 10, 2013)

Introduction

Answer set programming (ASP) is a form of declarative programming ori-
ented towards difficult combinatorial search problems. It belongs to the
group of so called constraint programming languages. ASP has been applied
to a variety of applications including plan generation and product configura-
tion problems in artificial intelligence and graph-theoretic problems arising
in VLSI design and in historical linguistics [1].

Syntactically, ASP programs look like logic programs in Prolog, but
the computational mechanisms used in ASP are different: they are based
on the ideas stemming from the development of satisfiability solvers for
propositional logic.

We discuss the concept of an answer set in Section 1. Section 2 is devoted
to the methodology of answer set programming as well as the use of software
systems for computing answer sets. A graph coloring problem is utilized to
illustrate the use of answer set programming in practice. Section 3 presents
a solution to n-queens problem. In all mentioned sections you are given
problems to solve. This handout is self-contained: you are given all the
definitions and links that are required in constructing solutions.

In the text italics is primarily used to identify concepts that are being
defined. Some definitions are identified by the word Definition.

1 Traditional Programs and their Answer Sets

1.1 Syntax
A traditional rule is an expression of the form

Ao+ A1,..., Ay, not Ay, ..., not A, (1)
where n > m > 0 and Ay,..., A, are propositional atoms (propositional

symbols). The atom Ay is called the head of the rule, and the list
Aq, ..o Ay, not At ..., not Ay,

is its body. If the body is empty (n = 0) then the rule is called a fact and
identified with its head Ay.
A traditional program is a finite set of traditional rules. For instance,

p.
2
T4 D,q. ()

and
p < not q. (3)
q < not r.
are traditional programs.
A traditional rule (1) is positive if m = n, that is to say, if it has the
form

A()(—Al,...,Am. (4)

A traditional program is positive if each of its rules is positive. For instance,
program (2) is positive, and (3) is not.

1.2 The Answer Set of a Positive Program

We will first define the concept of an answer set for positive traditional
programs. To begin, we introduce auxiliary definitions.

Definition 1. A set X of atoms satisfies a positive traditional rule (4) when
Ay € X whenever {Ay,...,Apn} C X.

For instance, any positive traditional rule (4) is satisfied by a singleton
set {A4p}.

To interpret Definition 1 recall the truth table of implication in propo-
sitional logic:

p la |p—og
true true true
true | false | false
false | true | true
false | false | true

One can intuitively read it in English as follows condition p — ¢ holds
if ¢ holds whenever p holds. Expression Ag € X plays a role of ¢ whereas
{A41,..., A} C X plays a role of p in the definition of a set of atoms satis-
fying a rule.

Problem 1. (2pt) Given a set X of atoms and a positive traditional rule (4)

‘ Does X satisfies rule (4)?

{41,...,Ap} C X and Ap€ X |Yes
{Al,,Am}gX and A0¢X
{A1,.. ., Ap} € X and Ap€ X | Yes
{A1,..., A} € X and Ap ¢ X

Definition 2. A set X of atoms satisfies a positive traditional program 11
if X satisfies every rule (4) in II.

For instance, any positive traditional program is satisfied by the set
composed of the heads Ag of all its rules (4).

Problem 2. (3pt)

X Does X satisfies program (2)?
0 No
{p} |Yes

{a}
{r}
{ra}
{pr}
{ar}

{par}

Proposition 1. For any positive traditional program 11, the intersection of
all sets satisfying 11 satisfies I1 also.

Proof. By contradiction. Suppose that this is not the case. Let X denote
the intersection of all sets satisfying II. By definition (of program’s satisfia-
bility), there exists a rule

Ao FAl,...,Am.
in IT such that it is not satisfied by X, in other words
Ag & X

and
{A1,..., Ap} C X.

Since X is an intersection of all sets satisfying IT then we conclude that (i)
{A1,..., Ay} belongs to each one of the sets satisfying II and (ii) there is a
set Y satisfying II such that Ag € Y. By definition, Y does not satisfy 1I.
We derive at contradiction.

O

Proposition 1 allows us to talk about the smallest set of atoms that
satisfies II.

Definition 3. The smallest set of atoms that satisfies positive traditional
program 11 is called the answer set of II.

For instance, the sets of atoms satisfying program (2) are

{r}, {p.r}, {p;q. 7},

and its answer set is {p}.

Proposition 2. If X is an answer set of a positive traditional program 11,
then every element of X is the head of one of the rules of II.

Intuitively, we can think of (4) as a rule for generating atoms: once you
have generated Ay, ..., Ay, you are allowed to generate Ag. The answer set
is the set of all atoms that can be generated by applying rules of the program
in any order. For instance, the first rule of (2) allows us to include p in the
answer set. The second rule says that we can add r to the answer set if we
have already included p and ¢. Given these two rules only, we can generate
no atoms besides p. If we extend program (2) by adding the rule

q < p-

then the answer set will become {p, ¢, r}.
Positive rules may remind you Horn clauses or definite clauses. One can
identify (4) with the following implication

AN NAL = A
that is equivalent to the Horn clause
—A1 V-V A, V Ay

Rule (4) is satisfied by a set of atoms if and only if its respective Horn clause
is satisfied by this set in propositional logic.

Problem 3. (Extra credit: 5pt) Prove the claim of Proposition 2.

1.3 Answer Sets of a Program with Negation

To extend the definition of an answer set to arbitrary traditional programs,
we will introduce one more auxiliary definition.

Definition 4. The reduct IIX of a traditional program II relative to a
set X of atoms is the set of rules (4) for all rules (1) in II such that
Apst, ., An € X.

In other words, IT¥ is constructed from II by (i) dropping all rules (1)
such that at least one atom from A,,41,..., A, isin X, and (ii) eliminating
not Ami1,-..,not A, expression from the rest of the rules.

Thus ITI¥ is a positive traditional program.

Problem 4. (5pt) Let II be (3),

X What is TIX 2 | Explanation
0 p. D 4 ot
q. q < ROt
{r} |p D ROt
q. q — rot—-
{q} q. POt
q < ot

{r}

{ra}
{pr}
{gr}

{pqr}

Definition 5. We say that X is an answer set of Il if X is the answer set
of IIX (that is, the smallest set of atoms satisfying 11X).

Problem 5. (Ipt)

X Is X an answer set of program (3)?
0 No
{p} No
) |Ves

{r}

{rq}
{pr}
{ar}

{pqr}

If 1T is positive then, for any X, ITX = II. It follows that the new defini-
tion of an answer set is a generalization of the definition from Section 1.2:
for any positive traditional program II, X is the smallest set of atoms sat-
isfying ITX iff X is the smallest set of atoms satisfying II.

Intuitively, rule (1) allows us to generate Ay as soon as we generated
the atoms A1, ..., Ay, provided that none of the atoms Apy1, ..., Ay can be

generated using the rules of the program. There is a vicious circle in this
sentence: to decide whether a rule of II can be used to generate a new atom,
we need to know which atoms can be generated using the rules of II. The
definition of an answer set overcomes this difficulty by employing a “fixpoint
construction.” Take a set X that you suspect may be exactly the set of atoms
that can be generated using the rules of II. Under this assumption, II has
the same meaning as the positive program IIX. Consider the answer set
of ITX, as defined in Section 1.2. If this set is exactly identical to the set X
that you started with then X was a “good guess”; it is indeed an answer set
of II.

In Problem 5, to find all answer sets of program (3) we constructed its
reduct for each subset of {p, ¢, r} to establish whether these sets are answer
sets of (3). The following general properties of answer sets of traditional
programs allow us to sometime establish that a set is not an answer set in
a trivial way by inspecting its elements rather than constructing the reduct
of a given program.

Proposition 3. If X is an answer set of a traditional program Il then every
element of X is the head of one of the rules of I1.

Proposition 4. For any traditional program 11 and any sets X, Y of atoms,
if X CY then IIV C ITX.

Proposition 5. If X is an answer set for a traditional program II then no
proper subset of X can be an answer set of I1.

In application to program (3), Proposition 3 tells us that its answer
sets do not contain 7, so that we only need to check) and {p,q}. By
Proposition 3, () cannot be an answer set because it is a proper subset of
the answer set {¢}, and {p, ¢} cannot be an answer set because the answer
set {q} is its proper subset. Consequently, {¢} is the only answer set of (3).

Program (3) has a unique answer set. On the other hand, the program

p < not q.
q < not p.

(5)
has two answer sets: {p} and {q}. The one-rule program

r < not 7. (6)

has no answer sets.

Problem 6. (5pt) Prove that if X is an answer set of a traditional pro-
gram II so that for some rule (1), it holds that {Ai,...,An} € X and
{Ami1, - A} N X =0, then Ap € X.

Problem 7. (5pt) Find all answer sets of the following program, which
extends (5) by two additional rules:

p < not q.
q < not p.
T 4 .
r<—q.

Problem 8. (5pt) Find all answer sets of the following combination of
programs (5) and (6):

p < not q.

q < not p.

T 4= not T.

r < p.

Problem 9. (Extra credit: 5pt) Prove the claim of Proposition 3.
Problem 10. (Extra credit: 5pt) Prove the claim of Proposition 4.

Problem 11. (Eztra credit: 5pt) Prove the claim of Proposition 5.

2 Answer Set Programming

Answer set programming (ASP) [1] is a declarative programming formalism
based on the answer set semantics of logic programs. The idea of ASP is
to represent a given computational problem by a program whose answer
sets correspond to solutions, and then use an answer set solver to generate
answer sets for this program.

In this course we will use the answer set system CLINGO! that incorpo-
rates answer set solver CLASP! with its front-end grounder GRINGO! (user
guide is available online at https://sourceforge.net/projects/potassco/
files/guide/2.0/guide-2.0.pdf/download). You may access system CLINGO
via web interface available at https://potassco.org/clingo/run/ or down-
load an executable for CLINGO version 5 from the url listed at footnote 1.

A common methodology to solve a problem in ASP is to design GENER-
ATE, DEFINE, and TEST parts of a program. The GENERATE part defines a

"https://potassco.org/clingo/.

large collection of answer sets that could be seen as potential solutions. The
TEST part consists of rules that eliminate the answer sets of the GENERATE
part that do not correspond to solutions. The DEFINE section expresses
additional concepts and connects the GENERATE and TEST parts.

In addition to Prolog-like rules such as rule (1), GRINGO also accepts
rules of other kinds — “choice rules” and “constraints”. For example, rule

{p,q,r}.

is a choice rule. Answer sets of this one-rule program are:

0, {r}, {a}, {r}, {p.a}, {p,7}, {a,7}, {p,a,7}

Choice rules are typically the main members of the GENERATE part of the
program. Constraints often form the TEST section of a program. Syntac-
tically, a constraint is the rule with an empty head (we can, intuitively,
understand empty head as false). It encodes the conditions on the answer
sets that have to be met. For instance, the constraint

< p, not q.

eliminates the answer sets of a program that include p and do not include gq.
Or, in other words, the situations when p holds while ¢ does not hold lead
to contradiction (false).

System GRINGO allows the user to specify large programs in a compact
way, using rules with (schematic) variables and other abbreviations. A de-
tailed description of its input language can be found in the online Guide (see
url listed earlier). Grounder GRINGO takes a program “with abbreviations
and variables” as an input and produces its propositional counterpart that
is then processed by CLASP. The system CLINGO can be used as a shortcut
for invoking both of these systems at once.

In this handout, we use the convention common in logic programming:
variables are represented by capitalized identifiers. For a program II with
variables, by ground(Il) we denote the result of its grounding — a program
that contains no variables (such as programs we discussed in Section 1).
We bypass formal definition of grounding process while illustrating it using
examples. Let II be a program with variables

{a(1)}. {a(2)}. {p(1)}. (7)
co(X) ¢ a(X),b(X).

ground(II) follows
{a(D)}. {a(@)}. {6(1)}.
c(1) < a(1),b(1). (8)
c(2) « a(2),b(2).

Symbols 1 and 2 are the “constants” that occur in (7). These constants are
used to instantiate the only rule

¢(X) = a(X),b(X) (9)
with variables in this program so that it results in two ground instances

c(1) « a(1),b(1).
c(2) < a(2),b(2).

Substituting rule (9) in program (7) by rule
d(X,Y) < a(X),b(Y).

results in the following grounding:

{a(V)}. {a(2)}. HL)}

d(1,1) < a(1),b(1).

d(1,2) « a(1),b(2). (10)
d(2,1) < a(2),b(1).

d(2,2) < a(2),b(2).

The answer sets of a program IT with variables are answer sets of ground(II).
For instance, there are eight answer sets of program (7) including () and set

{a(1) b(1) ¢(1)}-

Problem 12. (2pt) (a) Follow the link https: //potassco. org/clingo/
run/ . Replace symbol “—“ by ”7:-“in (10) and let CLINGO Tun on the
program (10) using reasoning mode “enumerate all“.

(b) Recall that (10) is the result of grounding the following program with

variables
{a()}. {a(2)}. {b(1)}
d(X,Y) + a(X),b(Y).

Using the same procedure as in (a), find all answer sets for this program.
Do answer sets found in (a) coincide with the ones enumerated in this step?

10

Given a program II with variables, CLINGO often produces a variable-
free program that is smaller than ground(II), but still has the same answer
sets as ground(II); we call any such program an image of II. For example,

program
{a(1)}. {a(2)}. {6(1)}.
c(1) « a(1),b(1).

is an image of (7). In fact, given program (7) as an input grounder GRINGO
of CLINGO will generate this image. To produce images for input programs,
grounders follow techniques exemplified by intelligent grounding [2]. Dif-
ferent grounders implement distinct procedures so that they may generate
different images for the same input program. One can intuitively measure
the quality of a produced image by its size so that the smaller the image
is the better. A common syntactic restriction that grounders pose on input
programs is “safety”. A program Il is safe if every variable occurring in a
rule of IT also occurs in positive body of that rule. For instance, programs (7)
is safe. The safety requirement suggests that positive body of a rule must
contain information on the values that should be substituted for a variable
in the process of grounding. Safety is instrumental in designing grounding
techniques that utilize knowledge about the structure of a program for con-
structing smaller images. System CLINGO can process only safe programs.
Passing parameter —¢ in command line when calling CLINGO on a program
will force the system to produce ground program in human readable form.

Problem 13. (1pt) Let CLINGO run on the program (10) using reasoning
mode “enumerate all“ and marking checkbox ”statistics”. What is the num-
ber of rules that CLINGO reports?

This number corresponds to the size of the image (measured in number
of rules) produced by GRINGO after grounding the input program.

Running CLINGO in online interface with checkbox ”statistics” allows
one to obtain valuable information about the execution of the system. For
example, lines titled

e “Rules” provides number of rules in a grounding of the input and
suggests the relative size of a ground program,

e “Choices” corresponds to the number of backtracks done by the system
in search for the solution,

e “Time” reports the execution time of the system.

11

In command line to obtain statistics while running CLINGO use flag “--stats”

In mastering the art of answer set programming it is enough to develop
intuitions about answer sets of the programs with variables that are formed
in accordance with the GENERATE, DEFINE, and TEST methodology. Some
of these intuitions will stem from the general properties you encountered
in Section 1 such as any element of answer set must appear in the head of
some rule in a program (see Problem 3). For the general definition of an
answer set, it is more difficult to develop intuitions on what answer sets
conceptually are and unnecessary.

To illustrate discussed concepts, we look at the formalization of 3-coloring
problem G'C' in answer set programming.

A 3-coloring of a graph is a labeling of its vertexes with at most 3
colors such that no two vertexes sharing the same edge have the
same color.

Logic programs with variables can often represent the statements of such
combinatorial search problems as GC' concisely. Atoms of the form c(v, 1),
where c is a predicate symbol and v, ¢ are constants denoting a vertex v and
color i, respectively, assert that vertex v is assigned a color ¢. Atom of the
form vtz(v) states that an object constant v is a vertex, while atom e(v, w)
states that there is an edge from vertex v to vertex w in a given graph.
Atom color(i) states that a constant i represents a color. A program with
variables presented in the second column of the following chart

Dw.py | vtz(v). (veV)
e(v,w). ({v,w} € E)
Iy color(1).
color(2).
color(3). (11)

{c(V,I)} « vtz(V), color(I).

—c(V,I), «(V,J), I <J, vte(V), color(I), color(J).
—c(V,I), (W, I), vte(V), vtx(W), color(I), e(V,W).
— note(V, 1), note(V, 2), note(V, 3), vtz (V).

encodes a solution to the graph coloring problem GC for an input graph (V, E).
The facts in the first five lines of (11) form the DEFINE part of the program
and encode the definition of an input graph as well as enumerate available
colors. The rule

{c(V,I)} « vtz(V), color(I).

12

states that every vertex may be assigned some colors. This rule also forms
the GENERATE part of the encoding. The last three rule form the TEST part,
where the rule

—c(V,I), ¢(V,J), I <J, vte(V), color(I), color(J).
says that it is impossible that a vertex is assigned two colors; the rule
—c(V,I), (W, I), vte(V), vtx(W), color(I), e(V,W).

says that it is impossible that any two adjacent vertexes are assigned the
same color; and the last rule in (11) states that it is impossible that a vertex
is not assigned a color.

We note that answer set programming provides a general purpose mod-
eling language that supports elaboration tolerant solutions for search prob-
lems. We now follow the lines of [1] in defining a search problem abstractly.
A search problem P consists of a set of instances with each instance I as-
signed a finite set Sp(I) of solutions. In ASP, to solve a search problem P,
we construct a program Ilp that captures problem’s specifications so that
when extended with facts Dj representing an instance I of the problem,
the answer sets of IIp U D are in one to one correspondence with members
in Sp(I). In other words, answer sets describe all solutions of problem P
for the instance I. Thus solving of a search problem is reduced to find-
ing a uniform encoding of its specifications by means of a logic program
with variables. For example, program Il in (11) is an example of such
a uniform encoding for the 3-coloring problem GC, where any graph is an
instance of this search problem. As a result, for any graph (V, E) answer
sets of g U D(y,g) correspond to solutions of 3-coloring search problem to
instance graph (V, E).

Consider a specific graph Gy

a O—»ﬁ b
d (L—O c

Facts Dg, representing G; follow
vtxz(a). vtx(b). vtx(c). vtx(d). e(a,b). e(b,c). e(c,d). e(d,a). e(b,d).
One of the answer sets of program Il,;. U Dg, follows
{vtz(a) vtz (b) vtz(c) vtx(d)
e(a,b) e(b,c) e(e,d) e(d,a) e(b,d)
color(1) color(2) color(3)
c(a,1) ¢(b,2) e(c,1) e(d,3)}.

(12)

13

This answer set specifies that coloring vertex a and ¢ with color 1, vertex b
with color 2, and vertex d with color 3 is a 3-coloring of G;. If we add a
constraint

+ c(a,1). (13)

to Iy U Dg,, it forbids accepting solutions that assign color 1 to vertex a.
Thus the set (12) is not an answer set of the resulting program.

Problem 14. (3pt) (a) Write program I1,.UDg, in the language of CLINGO.
Run CLINGO on the resulting program instructing the system to enumerate
all solutions. How many solutions to this instance of 3-coloring problem are
there, or in other words, how many answer sets does CLINGO find?

(b) Run your program with the constraint (13) instructing the system
to enumerate all solutions. How many answer sets do you have? Which
3-colorings do these answer sets encode.

(¢) Consider another graph, called Ga,

a OXT b
d (L—O c
How many 3-colorings exist for this graph? Encode this graph as a set Dg,
of facts (similarly as we encoded graph Gy by set Dg, of facts). Run CLINGO

on program Ily. U Dg, (remember to replace symbol < by :-) instructing

the system to enumerate all solutions. How many answer sets does CLINGO
find?

3 ASP Formulation of n-Queens

We now turn our attention to another combinatorial search problem: n-
queens problem.

The goal is to place n queens on an n x n chessboard so that
no two queens would be placed on the same row, column, and
diagonal.

A solution can be described by a set of atoms of the form ¢(7,j) (1 <i,j <
n); including ¢(7,j) in the set indicates that there is a queen at position
(,7). A solution is a set X satisfying the following conditions:

1. the cardinality of X is n,

14

2. X does not contain a pair of different atoms of the form ¢(i, 7), (7', j)
(two queens on the same row),

3. X does not contain a pair of different atoms of the form ¢(i,), ¢(i, j)
(two queens on the same column),

4. X does not contain a pair of different atoms of the form ¢(i, j), (i, j')
with i/ —i| = |’ — j| (two queens on the same diagonal).

Here is the representation of this program in the input language of
CLINGO:

number (1. .n).

%Condition 1 and 2
1{q(K,J) : number(K)}1:- number(J).

%Condition 3
:-q(I,J), q(I,J1), J<J1.

%Condition 4
:-q(I,J), q(I1,J1), J<J1, |I1-I|==J1-7J.

We name this program queens.clingo.
Appending the line

const n=8.

to the code in queens.clingo will instruct answer set system CLINGO to search
for solution for 8-queens problem. Alternatively, the command line

clingo -c n=8 queens.clingo

instructs the answer set system CLINGO to find a single solution for 8-queens
problem, whereas the command line

clingo —c n=8 queens.clingo O

instructs CLINGO to find all solutions to 8-queens program. The command
line

gringo -c n=8 queens.clingo > queens.8.grounded

instructs the grounder GRINGO to ground 8-queens problem; the ground
problem (ready for processing with CLASP) is stored in file queens.8.grounded.
The command lines

15

gringo -t -c n=8 queens.clingo
or
clingo -t -c n=8 queens.clingo

will produce human-readable grounded 8-queens problem.
The command line

clasp < queens.8.grounded

will instruct the answer set solver CLASP to look for answer sets of a program
in queens.8.grounded
An extract from the output of the last command line follows

Answer: 92

number (1) number (2) number (3) number(4)

number (56) number (6) number(7) number(8)

q(5,8) q(7,7) q(2,6) q(6,5) q(3,4) q(1,3) q(8,2) q(4,1)
SATISFIABLE

This 92nd solution found by the solver encodes the following valid configu-
ration of queens on the board

123456738

1 Q
2 Q
3

8 Q
Similarly, appending the line
const n=4.

to the code in queens.clingo will instruct CLINGO to solve 4-queens problem.
The command line

clingo -c n=4 queens.clingo O

instructs CLINGO to find all solutions for 4-queens problem.

16

Problem 15. (3pt) (a) Use CLINGO to find all solutions to the 8-queens
problem that have a queen at (1,1). How many solutions of the kind are
there? (b) Use CLINGO to find all solutions to the 12-queens problem that
have a queen at (1,1). How many solutions of the kind are there?

Submit the lines of code that you wrote to solve these problems.

Problem 16. (7pt) (a) Use CLINGO to find all solutions to the 8-queens
problem that have no queens in the 4 X 4 square in the middle of the board.
How many solutions of the kind are there? (b) Use CLINGO to find all so-
lutions to the 10-queens problem that have no queens in the 4 X 4 square in
the middle of the board. How many solutions of the kind are there?

Submit the lines of code that you wrote to solve these problems.

Acknowledgments

Parts of these notes follow the lecture notes on Answer Sets; and Methodol-

ogy of Answer Set Programming; course Answer set programming: CS395T,
Spring 2005* by Vladimir Lifschitz.

References

[1] Gerhard Brewka, Thomas Eiter, and Miros law Truszczynski. Answer
set programming at a glance. Communications of the ACM, 54(12):92-
103, 2011.

[2] Francesco Calimeri, Susanna Cozza, Giovambattista Ianni, and Nicola
Leone. Computable functions in ASP: theory and implementation.
In Proceedings of International Conference on Logic Programming
(ICLP), pages 407-424, 2008.

’http://wuw.cs.utexas.edu/~v1l/teaching/asp.html

17

