
Constraint Logic Programming

Helmut Simonis
COSYTEC SA

4, rue Jean Rostand
F-91893 Orsay Cedex

France
simonis@cosytec.fr

1. Abstract
In this tutorial we give an overview of constraint logic programming (CLP), a combination of
two declarative programming paradigms, logic programming and constraint solving. We
present an informal introduction to different constraint solving methods used in CLP systems,
with the emphasis on finite domain constraints. In addition we look at different ways to
express heuristics as part of CLP programs and discuss problem solving methodology. We
also give an overview of different CLP systems currently available and present some of their
application domains, with special emphasis on industrial applications for production
planning, scheduling and resource allocation.

2. Introduction
In the last ten years, constraint logic programming has emerged as a very interesting sub field
of logic programming. CLP aims at combining the declarative aspects of logic programming
and constraint solving in an efficient problem solving environment. Constraints over different
domains can be stated in a uniform framework and are solved with methods originating in
various areas, from artificial intelligence (AI) to Operations Research (OR).
CLP is now used industrially for applications as diverse as digital circuit design, portfolio
management and production scheduling systems and there are several industrial systems
available for constraint programming.

2.1 Structure of document
The tutorial is structured in the following way. We start with a section on the motivation for
using constraints, discussing typical problems with conventional program development for
complex decision support systems. We then briefly review some of the techniques which are
used inside CLP. It combines methods from logic programming and constraint solving, as
well as advanced techniques from Operations Research and finite mathematics. We also give
some pointers to the theoretical aspects of constraint logic programming.
In section 5, we introduce a classification of different constraint solving methods, which we
will use later on. This classification distinguishes complete and incomplete solvers, based on
syntactical or semantic methods. In the next section, we present an overview of different
constraint solving methods which are currently applied in CLP systems. The computation
domains handled by these solvers are quite diverse, including Boolean algebra, linear
programming over rational numbers, finite domains or list and set handling. As it is the most
interesting domain from a practical point of view, we present the finite domain constraint
solver in more detail in section 7.

Constraint Logic Programming 27/02/2008

COSYTEC SA 2

There are many different types of finite domain constraints besides the basic arithmetic ones.
In recent years new types of very high level, global constraints have been introduced, which
we discuss in section 7.2.2. Another important aspect of finite domain constraints is the
possibility to control the solution process with an enumeration scheme. Heuristics and
strategies can be expressed in different ways. We present some alternatives in section 7.3.
We then come to an overview of different constraint solving tools, where we also briefly
discuss the history of the various constraint solvers.
In the last part, section 9, we give an overview of industrial applications which have been
developed using CLP tools. Most of these applications are from the scheduling and planning
areas, with some notable exceptions in other domains. At the end we also talk about some
more in-depth material, which could be used for study after this tutorial.

3. Interesting Problems
In this section we discuss the motivation for the use of constraint logic programming. We
explain which type of problem is best suited for the CLP approach and where these problems
occur in practice. They share a set of characteristics, which make them very hard to tackle
with conventional problem solving methods.
Combinatorial problems occur in many different application domains. We encounter them in
Operations Research (for example scheduling and assignment), in hardware design
(verification and testing, placement and layout), financial decision making (option trading or
portfolio management) or even biology (DNA sequencing). In all these problems we have to
choose among many possible alternatives to find solutions respecting a large number of
constraints.
We may be asked to find an admissible, feasible solution to a problem or to find a good or
even optimal solution according to some evaluation criteria.
From a computational point of view, we know that most of these problems are difficult. They
belong to the class of NP-hard [GJ79] problems. This means that no efficient and general
algorithms are known to solve them.
At the same time, the problems themselves are rapidly changing. For example, in a factory,
new machines with new characteristics may be added, which might completely change the
production scheduling problem. New products with new requirements will be added. If a
scheduling system can not be adapted to these changes, it will rapidly become useless.
Another aspect is that the complexity of the problems is steadily increasing. This may be due
to increased size or complexity of the problem, or may be caused by higher standards on
quality or cost effectiveness. Many problems which have been handled manually for a long
time now exceed the capacity of a human problem solver.
At the same time, humans are typically very good at solving these complex decision making
problems. They can have a good understanding of the underlying problem and often know
effective heuristics and strategies to solve them. In many situation they also know which
constraints can be relaxed or ignored when a complete solution is not possible. For this
reason, it is necessary to build systems which co-operate with the user via friendly graphical
interfaces and which can incorporate different rules and strategies as part of the problem
solving mechanism.
Developing such applications with conventional tools has a number of important drawbacks.

• The development time will be quite long. This will increase the cost, making bespoke

application development very expensive.
• The programs are hard to maintain. Due to their size and complexity, a change in one

place may well lead to a number of other changes which are required in other places.

Constraint Logic Programming 27/02/2008

COSYTEC SA 3

• The programs are difficult to adapt and to extend. As new requirements arise during the
life cycle of the program, changes become more and more difficult.

The use of constraint logic programming should lead to a number of improvements:

• The development time is decreased, as the constraint solving methods are reused.
• A declarative problem statement makes it easier to change and modify programs.
• As constraints can be added incrementally to a system, new functionality can be added

without changing the overall architecture of the system.
• Strategies and heuristics can be easily added or modified. This allows to include problem

specific information inside the problem solver.

4. Background Techniques
We will now review some of the background techniques which are used inside CLP. Due to
space limitations we will restrict ourselves to the main concepts. Further material can be
found in the references. In Figure 1, we show the basic influences on constraint logic
programming

Figure 1: Techniques behind constraints

In the next paragraphs, we will discuss these different influences.

4.1.1 Logic Programming
Logic programming is based on the idea that (a subset of) first order logic can be used for
computing. The first logic programming language PROLOG was created by A. Colmerauer in
1972. Other important influences come from the work of J. A. Robinson on unification and of
R. Kowalski on SL-resolution. Originally intended for natural language processing, PROLOG
is now used as a general purpose language.
A basic idea in logic programming is the separation of logic and control [Kow79].
Programming in logic is concerned first with the correct statement of a problem. The program
should state what is true about the problem, not how to solve it procedurally. Efficiency of
the program should come second, and ideally should be handled automatically by the

CLP

Logic Programming

Operations Research

Mathematics

Constraint Solving

Constraint Logic Programming 27/02/2008

COSYTEC SA 4

language itself. This separation of concerns helps to develop correct programs more easily
and makes it possible to change and extend existing programs without rewriting large parts.
Three other fundamental concepts of logic programming are also very important for
constraint logic programming. They are

• relational form which allows to define predicates without fixing input and output

arguments a priori
• non determinism which includes a tree search procedure (backtracking) as part of the

computation mechanism
• unification which solves equations of (un-interpreted) symbolic terms

While logic programming offers a big advantage over conventional programming in terms of
simplicity, it also encounters some difficulties for solving the type of complex problems we
are interested in.

• The built-in search procedure is based on the generate and test paradigm, which becomes

very inefficient for complex problems. Solutions are generated by non-deterministic
choice, and then tested in a deterministic way.

• The basic data structures in Prolog are un-interpreted (Herbrand) terms. These symbolic
terms are not specialised for the particular computation domains encountered in
applications. There is a large conceptual gap between the problem to be solved and the
expression of the problem in logic programming.

• Unification and resolution are general, but rather weak inference mechanisms. More
advanced, specialised methods exist in other areas for problem solving. Equation solving
methods from mathematics or consistency techniques from constraint solving are
examples of such more powerful methods.

4.1.2 Constraint Handling
Constraint handling techniques are a well known method in the artificial intelligence area.
Early traces can be found in work on computer graphics by Sutherland [Sut63] and Borning
[Bor81]. They are also used by Sussman and Steele [SS80] for circuit analysis or by Davis
[Dav84] for circuit diagnosis. Another early use of constraints is in computer vision by Waltz
[Wal72]. More general constraint handling systems are for example REF-ARF [Fik70] and
ALICE [Lau78]. The basic idea is the declarative expression of problems as constraints and
specialised constraint solvers over some restricted domains (numbers, finite sets) to
efficiently find solutions to the constraints. A common technique in these solvers is local
propagation or demon based computation [SS80]. A problem is expressed by a network of
constraints. As soon as some information becomes available at some point in this network,
constraint demons are woken which try to propagate this information through the network.
This may wake up other constraints and so on.
Consistency techniques form a important subclass of constraint handling methods. They have
been introduced in [Mon74] [Mac77] [MF85] [HE80] to express problems over finite
domains. Problems are modelled with two components, variables, which can range over finite
sets of possible values and constraints, which are relations between the variables. Different
techniques, for example arc- and path- consistency, are used to remove inconsistent values
from the variable domains until solutions are found. An introduction to this field can be found
in [Tsa93] [FM94]. While consistency techniques present a good theoretical framework for
the analysis of different constraint solving methods, they are rarely used for problem solving

Constraint Logic Programming 27/02/2008

COSYTEC SA 5

as standalone procedures. Constraint techniques must be embedded in a programming system
which allows easy constraint manipulation, as well as the combination with heuristics and
strategies.

4.1.3 Operations Research
A large number of techniques from Operations research are used in CLP systems. The
constraint solvers for linear constraints over rational numbers are based on linear
programming techniques and the Simplex algorithm. The new global constraints [AB93]
[BC94] over finite domains as well use techniques from scheduling and placement to check
consistency. Some properties of OR methods pose problems when these methods are used
inside CLP:

• Most OR systems are build for specialised, particular problems. This way mathematical

properties of the complete problem can be exploited to improve the solution.
• Normally, all constraints to be included are known when the system is set up. The solution

methods do not have to be incremental.
• The control flow can be rearranged to minimise the effect of rounding errors in order to

achieve numerical stability.

For that reason, the techniques used in CLP systems often employ custom variants of well
known algorithms, which must satisfy the following conditions:

• They must be incremental, i.e. constraints can be added one by one without requiring the

solution process to start again from scratch.
• The methods must be general. Adding new constraints should not invalidate the

preconditions of a method. This means that algorithms for particular problems will be
normally not useful in CLP systems.

• Since the control flow in a constraint solver is quite complex and completely data
dependent, special care must be taken for achieving numerical stability. A typical case is
the use of exact arithmetic for linear constraints [Col90] [DVS88a] or for correct,
conservative interval arithmetic in some constraint solvers [OV90].

4.1.4 Mathematics
CLP also uses a number of techniques from particular mathematical areas. Some of the
problem solvers for Boolean problems for example use classical results from Boolean algebra
[NM89]. Other results from finite mathematics and graph theory are used for global
constraints [BC94]. The remarks made for OR techniques also apply here. We must look for
incremental and general methods which can be combined in different ways inside the
constraint solvers.

4.2 Theoretical Issues
Similar to logic programming, we can define different semantics for constraint logic
programming. A mechanism for defining this semantics is given in the CLP(X) [JL87]
scheme. This scheme allows to obtain general results on correctness and completeness for a
class of languages CLP(X), which are parametrized in the constraint solver X used in a
particular instance. Different constraint languages can be defined by defining sets of basic
constraints and their constraint solver. A comprehensive overview of theoretical issues is
given in [JM94].

Constraint Logic Programming 27/02/2008

COSYTEC SA 6

5. Constraint Solving Classification
We now describe a classification of constraint solving mechanisms which we will use later on
to distinguish between constraint solvers. Constraint solvers can differ in various aspects. A
first criteria is the use of different computation domains. The computation domain defines the
objects over which constraints can be expressed. We will present possible domains and
discuss some considerations in the choice of a computation domain. Another important aspect
of constraint solvers is the amount of propagation that they provide. We have to explain the
basic notions of complete or incomplete constraint solvers. A third classification criteria
distinguishes the techniques which are used for constraint solving for different constraints,
which may be based on syntactic (domain independent) or semantic (domain dependent)
methods.

5.1 Choice of Computation Domains
Constraints can be expressed over a variety of different domains. As a general rule, three
conditions [DSV87] should be satisfied for a CLP language over a computation domain:

• Constraints can be handled in a deterministic way without loosing completeness.
• Efficient constraint solving methods exist for the domain.
• The computation domain can be used for more than one application.

A number of computation domains have been identified which satisfy these conditions, and
which are now used in one or several CLP systems. They are

Finite domains
Finite domain constraints [DSV87] [VH89] are expressed over variables which range over a
finite set of possible values. Often, the domains are expressed as bounded subsets of the
natural numbers. Constraints may be arithmetic or symbolic. Complex, global constraints
have been added in the last years.

Linear arithmetic terms
Constraints over linear arithmetic terms [Col90] [DVS88a] [JMS90] can be handled
efficiently by Gaussian elimination and the Simplex algorithm. Several systems allow the use
of rationals, while other handle floating point numbers.

Boolean terms
Equality constraints over Boolean terms can be handled by Boolean unification [NM89]
[BS87]. Since any complete solver has worst case exponential complexity, other, incomplete
solvers are popular for certain applications.

Pseudo Boolean Constraints
Arithmetic constraints over 0/1 variables with integer coefficients are called Pseudo Boolean
constraints [Boc93] [Bar94]. Different methods from the Boolean domain generalise to this
case, but there are also other methods originating in OR.

Intervals
Equality and inequality constraints over intervals [OV90] [BMV94] can be handled with
bound propagation.

Non-linear arithmetic

Constraint Logic Programming 27/02/2008

COSYTEC SA 7

Non linear arithmetic constraints [ASS88] [Hon93] over real numbers can be handled by
different constraint solvers. These constraint solvers use different results from computer
algebra and mathematics.

Sets
Several different constraint solvers [Ger94] [LL91] over sets (or multi-sets) have been
proposed. Constraints include quality, membership or set inclusion.

Lists
Equality constraints over finite lists or sequences [Col90] [LL91] can be handled in an
efficient manner.

Some other computation domains have been proposed, but are not yet widely used for
problem solving.

We will return to the different computation domains in section 6.

5.2 Complete/Incomplete
The amount of propagation performed by a constraint solver is an important classification
criteria. Some constraint solvers are called complete. This means that they can decide the
satisfiability of any set of constraints over the computation domain. This clearly is a very
desirable property. At each step of the computation, we can decide whether the current
constraint set still has a solution. Unfortunately, satisfiability of a constraint set may be a
undecidable problem in some domains or may have exponential complexity. The later is the
case for example for Boolean terms or finite domains. This restricts complete solvers to either
relatively well structured domains like linear arithmetic terms or to special purpose solvers
like the complete Boolean solvers.
Incomplete solvers can be defined for most application domains. They may of course differ in
the amount of propagation which is performed on the constraints.

5.3 Syntactic/Semantic
Another difference between constraint solvers is the use of syntactic or semantic methods for
solving.
Syntactic methods use constraint simplification and rewriting for constraint propagation.
Most basic constraint solvers use syntactic methods like variable elimination or bound
propagation. These methods are domain independent and can be used in similar form for
different domains.
Semantic methods use methods particular to the computation domain. These methods often
require insights to the mathematical or structural properties of the domain. The handling of
global constraints in CHIP [AB93] [BC94] uses semantic methods obtained from Operations
Research, finite mathematics and graph theory to deduce better results than those obtained by
the syntactic methods of the primitive constraints.
In general, for one computation domain different combinations of complete/incomplete
solvers using syntactic or semantic methods are possible. We will present some examples in
the next sections.

Constraint Logic Programming 27/02/2008

COSYTEC SA 8

6. Constraint Solving Methods
In this section we want to give an idea of how the different constraint solvers in CLP systems
work. For examples, we mainly use the form of constraints in the CHIP system. Other CLP
languages use slightly different syntax.
Figure 2 shows an overview of the methods which will be discussed. According to their
importance to practical problems, the finite domain solver and to a lesser extend the rational
and Boolean solvers will occupy more space in the presentation.

6.1 Complete Solvers
We start with a description of some complete solvers. A complete solver can decide the
consistency of any set of constraints over its domain. In order to improve efficiency, these
solvers work incrementally. When a new constraint is added, the constraint set is not resolved
completely, but only updated to check consistency. For this purpose, the constraints are
internally kept in a solved form, a representation of the constraints in a normal form.
All complete solvers which we discuss here use syntactical methods based on term
manipulation and constraint simplification.

 Constraints

Boolean

semantic syntacticValue
selection

Variable
selection

Branch and
bound

Heuristics

Constraint
solver

Control

element

Boolean Finite
domains

Rational

Incomplete
solver

Complete
solver

≠
disequality

numerical

<
inequality

=
equality

symbolic

cumulative diffn cycle among

Domain concept

Others Others

Constraint Logic Programming 27/02/2008

COSYTEC SA 9

Figure 2: Constraint solving overview

6.1.1 Rational
The rational constraint solver [Col90][DSV88a] provides a complete solver over a continuous
domain. Rational numbers instead of real numbers are used since they offer exact
representation and arithmetic and since the rationals are closed under linear equalities and
inequalities. If floating point numbers are used instead [JMS90], the correctness of the
constraint system becomes compromised due to rounding and representation errors. A
possible alternative is the use of intervals in a complete solver. This seems to be
computationally expensive [CL94].

6.1.1.1 Domain
Within the rational computation domain we can express constraints on linear terms over
rational numbers. We can handle equality and inequality constraints as well as disequality
constraints. Minimisation or maximisation of a term is possible with some meta-logical
constructs. In CHIP, the primitives rmin X and rmax X are used.

6.1.1.2 Methods
The constraint solver for rational terms is based on Gaussian elimination and the Simplex
algorithm. Constraints are transformed in a standard form based on a symbolic representation
of arithmetic terms. As the number of constraints and variables, and therefore the number of
lines and columns in the Simplex tableau are not known a priori we can not use a matrix
representation. Inequalities are converted into equality constraints by introducing non-
negative slack variables. These additional variables can also occur in the solution. Different
alternatives for the solved forms exist [VG90].
The handling of disequality constraints requires some extra work. Basically they are delayed
until enough information is available. In some systems, non-linear constraints can be handled
in a similar way. Their execution is delayed until the constraint becomes linear [JMS90].
The Simplex method has a worst case exponential complexity, but this is rarely observed in
practice. Alternatively, other linear programming methods like the interior point methods
with polynomial complexity could be adapted as a CLP solver.

6.1.1.3 Example
This example is taken from [Col90]. The problem is to compute the yearly instalments in
order to reimburse a capital borrowed from a bank. We suppose that:

• the payments in instalments are fixed,
• the interest rate is equal to 10% .

payments ([], C):-
 C ^= 0.
payments([V | ListOfPayments], C):-
 RemainToPay ^= (1 + 10/100)*C - V,
 payments(ListOfPayments, RemainToPay).

Constraint Logic Programming 27/02/2008

COSYTEC SA 10

The ^= denotes an equality constraint over rational terms. The first argument of the predicate
payments is the list of yearly reimbursements which are necessary to reimburse C, the capital
of the load.

The first clause of the program expresses that it is not necessary to reimburse a capital which
is null. The second clause says that the list of the n+1 successive payments is the payment V
followed by the list of n successive payments which will allow to reimburse the capital C
increased by 10% of the interest but decreased by the payment V already done.

As an example we want to compute the values of the three payments V1, V2 and V3 such
that:

• V2 is twice the amount of V1,
• V3 is three times the amount of V1,
• the capital to reimburse is 1000.

Example 1:

?- payments([V1, 2*V1, 3*V1], 1000).

V1 = 207.64430

The program above can be used in different ways. As the constraints express a relation which
is valid between the variables, we can for example reverse the query. If we want to compute
how much we can borrow assuming that we can pay back the loan with five payments of 100,
the query will be:

Example 2:

?- payments([100, 100, 100, 100, 100], C).

C = 379.07867.

This flexibility is a very important aspect of CLP programming. The same program can be
used in different ways without re-programming. The constraint solver handles the details of
how the solution is obtained without user intervention.

6.1.2 Boolean
The Boolean computation domain differs from the rational domain mainly in the fact that
deciding satisfiability of Boolean constraint is NP-hard [GJ79]. This means in practice that
the basic constraint solving method can be very expensive.

6.1.2.1 Domain
The Boolean computation domain consists of terms build from the truth values 0 and 1, from
Boolean variables and operators for the functions and, or, xor, not etc. We only need to

Constraint Logic Programming 27/02/2008

COSYTEC SA 11

handle equality constraints, as other constraints (disequality, implication) can be easily
expressed as equalities.

6.1.2.2 Methods
There are a number of different methods to solve Boolean constraints in a complete solver.
Two variants of Boolean unification have been introduced. These methods solve sets of
equality constraints over Boolean terms. Boole’s method [BS87] is based on variable
elimination, Loewenheim’s method [NM89] is based on the generalisation of a particular
solution to the constraint set. Another approach is a specialised version of the Groebner bases
method used in [ASS88]. Yet another approach uses saturation to check consistency [Col90].
An important aspect of Boolean constraint solving is the need of a compact data
representation. Ordered binary decision diagrams (OBDD) offer such a compact
representation for many common Boolean functions [Sim92].

6.1.2.3 Example

Figure 3: Full adder circuit example

The classical example of Boolean constraint solving is a full adder circuit (see [BS87]). The
circuit computes the addition of three binary inputs X, Y, and Z as a sum S and a carry C.
A representation of the circuit as a constraint problem is shown below:

fa(X, Y, Z, S, C):-
 S1 &= X xor Y,
 C1 &= X and Y,
 S &= S1 xor Z,
 C2 &= S1 and Z,
 C &= C1 or C2.

The &= symbol denotes an equality constraint over Boolean terms. We obtain the following
results from the query

and

xor

and

or

xor

Z

X

Y

C1

C2

C

S

S1

Constraint Logic Programming 27/02/2008

COSYTEC SA 12

?-fa(a,b,c,S,C).
 S1 = a xor b
 C1 = a and b
 S = a xor b xor c
 C2 = (a and c) xor (b and c)
 C = (a and b) xor (a and c) xor (b and c)

The results are expressed in terms of the functions and and xor and can be symbolically
compared with a specification of the expected behaviour. Any differences show combinations
of inputs where the expected and the actual behaviour differ.

6.1.3 Pseudo Boolean
The methods of the Boolean constraint solvers can be generalised for the Pseudo Boolean
case [Boc93]. In this domain, we allow arithmetic constraints over 0/1 variables with integer
coefficients. Symbolic solutions obtained by a complete solver are very difficult to use in this
case, incomplete methods from Operations Research seem to be more promising from a
practical point of view.

6.2 Incomplete Solvers
In this section we discuss some incomplete solvers for different computation domains. The
most important one is the finite domain solver, which we will present in more detail in the
next section. Other incomplete solvers can be defined for the Boolean domain or for Pseudo
Boolean constraints. The bound propagation of finite domain constraints can be extended to
intervals over real numbers.

6.2.1 Finite Domains

6.2.1.1 Domain
Similar to consistency methods, the basic elements of finite domain solvers are variables and
constraints. The variables range over a finite set of possible values which is known a priori.
For practical purposes, the finite set is defined as a finite subset of the natural numbers. The
constraints express relations over these variables. Many different types of constraints can be
defined, we will discuss below arithmetic, symbolic and global constraints.
As the constraint solver is not complete, a statement of the domains and the constraints will
normally not be enough to solve a problem. The constraint solver must be combined with an
enumeration procedure, which assigns the variables to admissible values. The choice of this
enumeration procedure can have a huge effect on the performance of a particular program.

6.2.1.2 Classification
Based on the initial work on CHIP [DSV87] [DVS88a] [VH89], a number of different finite
domain solvers have been designed. They differ in aspects of the

• constraint granularity
• richness of constraint sets
• propagation results
• user definable constraints/control

Constraint Logic Programming 27/02/2008

COSYTEC SA 13

The constraint granularity defines which level of primitives are provided. Some systems are
based on very low level constraint primitives [VSD92] [VSD92a], from which all other
constraints can be defined. This provides a uniform framework and allows to refine constraint
definitions based on those primitives. On the other hand, it makes application programming
and debugging more complex and optimisation less likely. Other systems, like CHIP, provide
constraints which correspond directly to constraints in the application domain. The constraint
set is richer, and more easily understood without a deep understanding of the operational
behaviour. As a disadvantage we can see the need to decide which alternative constraints to
use and basically a restriction to the pre-defined constraint set.
Different constraint systems also differ in the amount of propagation that is provided by the
constraints. Especially for more complex constraints, different degrees of propagation can be
implemented. We will discuss this distinction below in the section on semantic or syntactic
methods. As problems become more and more complex, the need for powerful constraint
propagation increases, even if this may mean a higher cost for simple problems. Ideally, the
application programmer can influence the amount of propagation.
Most systems provide some way of defining constraints by programming. More important is
the possibility to control the enumeration scheme by easily defining heuristics and strategies
inside the system.

6.2.1.3 Methods
Two basic methods for finite domain constraints should be explained at this point. The first
one is called forward checking and is applied for disequality constraints, the second one is
called lookahead and is applied to inequality constraints [HE80] [DSV87] [VH89].
Consider a disequality constraint between two variables which range over possible values
from one to five. As long as no additional information is available, we can not solve the
constraint. If one of the variables is bound to a value, say three, we can deduce more
information. Since the other variable must have a different value, we can solve the constraint
by removing the value three from the domain of the remaining variable. The general principle
of forward checking is to wait until the constraint contains only one free variable. At this
point, all incompatible values for this variable can be removed from the domain by the
constraint procedure. The remaining values in the domain of the variable satisfy the
constraint, which is therefore solved and does not have to be reconsidered.
For inequality constraints, the stronger lookahead procedure can be applied even if no
variables have been assigned yet. If we consider an inequality X < Y where X has a domain
from 5 to 15 and Y a domain from 0 to 10, we note that some values for X and Y are not
admissible. X can never take values from 10 to 15, since X is smaller than Y and the largest
value for Y is 10. In the same way, Y can not take values from 0 to 5, since it is larger than X
and the smallest value of X is 5. We can therefore immediately remove those values from the
domains of X and Y.
But this does not solve the constraint. We might still choose values for X and Y so that the
constraint is violated. We have to check the constraint again whenever the domains of X or Y
change until one the variables becomes instantiated. For inequalities, we do not need to look
at values inside the domain, we can calculate with the minima and maxima of the domains of
the variables. This bound propagation or partial lookahead is a useful specialisation of the
more general lookahead procedure.

Constraint Logic Programming 27/02/2008

COSYTEC SA 14

6.2.2 Boolean
The incomplete solvers for Boolean constraints are based on the idea of local propagation.
This idea was already exploited in constraint systems like CONSTRAINTS [SS80] or
ThingLab [Bor81]. Local propagation (also called value propagation) amounts to deducing
values for some variables in a constraint given the values of other variables. For instance, an
and-constraint over the Boolean domain may be defined by rules similar to

• If one input is 0, then the output is 0
• If the output is 1, then all inputs have value 1

To implement a program achieving this form of propagation, it is necessary to introduce a
form of data driven computation where goals are suspended when not enough information is
available and where they are reactivated when new information becomes available.
This may be done with basic constraint primitives or the constraints can be built-in. It is also
possible to simulate Boolean constraints with a number of other constraint solvers, this is
shown in more detail in [SD93].
In CHIP, the basic Boolean constraints are built-in in form of demons. The demon for the and
operation, for example performs the following rules

and(X,Y,Z):-
 X = 0 -> Z = 0,
 X = 1 -> Z= Y,
 Y = 0 -> Z = 0,
 Y = 1 -> Z = X,
 Z = 1 -> (X = 1, Y = 1),
 X = Y -> X = Z.

Each line of the clause defines a rule with the condition on the left side and an implication on
the right side. The input argument of the and constraint are X and Y, the output argument is Z.
If the constraint is called with the query

?- and(0, Y, Z)

the demon will wake and apply the first rule. As a result the output Z will be set to 0 and the
constraint is solved. The value of Y is not required.
On the other hand a query of the form

?- and(X, Y, 0)

will flounder. The constraint will be delayed, but not woken, as none of the rules applies and
no additional values are set.

Constraint Logic Programming 27/02/2008

COSYTEC SA 15

6.2.3 Pseudo Boolean
An interesting approach is taken in [Bar94] for an incomplete solver over pseudo Boolean
constraints. Cutting plane methods are well known in Operations Research for solving integer
programming problems. Special cuts exists for the 0/1 case. These methods can be modified
for an incomplete constraint solver.

6.2.4 Intervals
One of the basic ideas in the finite domain solver is the propagation of minimum and
maximum domain bounds in arithmetic equality and inequality constraints. This method can
be generalised to bound propagation over real numbers [OV90]. Variables range over
intervals represented by two floating point numbers. In difference to the case of finite
domains, all operations must apply safe rounding modes in order to preserve correctness of
the results. Interval methods allow to easily combine different domains like integer subsets,
0/1 variables or continuous domains. Unfortunately, bound propagation alone is a relatively
weak propagation method. Intervals also do not handle disequality constraints, which
severely restricts their usefulness for finite domain problems.

6.2.5 Others
There are other constraint solving methods for domains like sets, multi-sets, sequences or
lists. Research on these topics is still ongoing [Ger94][Col90][LL91] and is not discussed
here.

7. Finite domain solver
We will now return to the finite domain solver and discuss it in more detail.

7.1 Domain concept

7.1.1 Domain Definition
Domain variables are defined in CHIP with the :: primitive. Several types of domains are
provided. Some examples are

X :: 1..10
Y :: 100:200
[A, B, C] :: 0..100

The first statement defines a single domain variable X with domain from 1 to 10. The second
example defines a domain variable Y as an interval from 100 to 200. Interval variables can
not be used in constraints which remove values from the middle of a domain, like disequality
constraints. But as they do not have to represent the domain inside their data structure, they
use less memory than explicit domains. The third example defines a list of three variables A,
B and C which all have the same initial domain from 0 to 100.

7.1.2 Indomain
Another basic primitive in CHIP is the indomain predicate. This non-deterministic predicate
can be used to enumerate all values in the domain of a variable. It has one argument, a
domain variable, and binds the variable to the smallest values in the domain. On
backtracking, it chooses the next value, until all values have been tested. The indomain

Constraint Logic Programming 27/02/2008

COSYTEC SA 16

primitive can be combined with the built-in backtracking search of Prolog to define
enumeration schemes for sets of variables. The most simple form is

labeling([]).
labeling([H|T]):-
 indomain(H),
 labeling(T).

This predicate will search for a ground assignment of a list of domain variables, and will, on
backtracking, enumerate all such assignments.

7.2 Constraints
We now look at the different constraints provided for finite domains. We distinguish three
classes of constraints, arithmetic and symbolic constraints based on syntactic methods, and
global constraints based on semantic methods.

7.2.1 Syntactic Methods
We have already discussed in section 6.2.1.3 two basic principles which are used to solve
constraints with syntactic methods, forward checking and partial lookahead.

7.2.1.1 Numerical Constraints
Numerical constraints express equality and inequalities between domain variables. The
propagation method of these constraints is partial lookahead. Special versions of the
constraint can be defined for the two variable case. The more general form of the constraint
handles linear terms over domain variables.
It is possible to extend the constraints to non-linear constraints over finite domains.
Experiments have shown that the propagation with partial lookahead is rather slow and that
the constraints do not occur too often in practical problems.

7.2.1.1.1 Linear Terms
If we extend the arithmetic constraints to linear terms, then the most general form of the
equality constraint becomes

a X a X a X c b Y b Y b Y dn n m m1 1 2 2 1 1 1 2 2 1+ + + + = + + + +... ...

where X1,..Xn, Y1,..Ym are domain variables and ai, bi, ci, di are natural numbers. The
reasoning on this constraint is again performed by partial lookahead. We obtain bounds for
the left and right hand side of the equation

a X a X a X cn n l l1 1 2 2 1+ + + + ∈... min , max

and

b Y b Y b Y dm m r r1 1 2 2 1+ + + + ∈... min , max

If the constraint is satisfied the bounds can be strengthened to

Constraint Logic Programming 27/02/2008

COSYTEC SA 17

min max(min , min)
max min(max , max)

=

=
l r

l r

From this we can deduce new bounds for the individual variables.
We see this on a small example. The equality constraint over finite domains is expressed with
the symbol #=. From the constraint

[X, Y, Z]:: 1..10,
2*X + 3*Y + 3 #= Z

we deduce the bounds 8..53 for the left hand side and 1..10 for the right hand side. If the
constraint is satisfied, then the value must be in the range 8..10. This restricts the domain on
Z directly. Since X has a minimum value of 1, the term 3*Y must be in the range 3..5. The
only compatible value for Y is 1, and this leads to the possible values for X of 1 and 2. The
constraint reasoning stops at this point. Note that the value 9 for Z can never be achieved, but
that the bound propagation does not remove inconsistent values from the middle of the
domain.

7.2.1.2 Symbolic Constraints
Symbolic constraints are useful to express non-arithmetic conditions between domain
variables. The most basic form are disequality and the binary element constraints. Other
symbolic constraints work on sets of domain variables. In difference to the global constraints
defined below they use syntactic constraint propagation mechanisms like forward checking or
partial lookahead to reduce the search space.

7.2.1.2.1 disequality
We will now consider a small example to show how the disequality constraints are used.
Consider a simple graph colouring problem. The graph in Figure 4 should be coloured with 3
colours, i.e. we have to assign colours to the nodes of the graph in such a way that nodes
which are linked never have the same colour. We describe each node as a domain variable

with domain 1 to 3, and each link in the graph as a disequality constraint

Figure 4: Graph colouring example

E

A

D C

B

Constraint Logic Programming 27/02/2008

COSYTEC SA 18

graph(A,B,C,D,E):-
 [A,B,C,D,E] :: 1..3,
 A ≠ B, A ≠ C, A ≠ D, A ≠ E, B ≠ C, B ≠ E, C ≠ D, D ≠ E,
 labeling([A,B,C,D,E]).

When the program is executed, the disequality constraints are set up. They delay until the
labeling procedure is called and assigns the first variable A to the value 1. At this moment, all
constraints using the variable A are woken and the value 1 is removed from the domain of the
variables B, C, D and E. In the next labeling step, the variable B is instantiated to the value 2.
This wakes the unsolved constraints using the variable B. These constraints remove the value
2 from the variables C and E. Since the domain of these variables now only contains one
value, they are automatically assigned to the value 3. This wakes the two remaining
constraints which delete the value 3 from the domain of D, which is automatically assigned to
the value 2. At this point all variables are assigned and all constraints are satisfied. The
labeling routine continues on ground values and the system returns the answer 1, 2, 3, 2, 3 as
a first solution. The enumeration scheme and the constraint solver are interacting without
explicit user control. The program still shows a very simple structure even if the actual
calculation of an answer is completely data-driven and quite complex.

7.2.1.2.2 element
The element constraint expresses a functional dependency between two variables. It has the
form

element(X, L, Y)

with domain variables X and Y and a list of integers L and states that Y is equal to the Xth
element of L. The constraint reasoning on the constraint works in both directions. If the
domain of X is restricted, then only those values in the domain of Y are retained which
correspond to the possible entries in the list L. If alternatively the domain of Y is constrained,
the domain of X is restricted to the corresponding indices.
The element constraint is particularly useful to express the cost of making choices. If in an
assignment problem a task can be assigned to five possible machines named 1 to 5, with costs
of 10, 20 ,5, 10 and 5 respectively, then we can link the decision variable X and the cost
variable Y via an element constraint

element(X, [10, 20, 5, 10, 5], Y)

The variable Y now stands for the cost of the assignment of X. If for example the domain of
the cost variable is restricted by Y < 15, then value 2 will be removed from the domain of X.
In the same way, a constraint X < 3, will remove the value 5 from the domain of Y.
For many problems, using the element constraint allows to derive a more compact and natural
problem representation and helps to avoid large sets of 0/1 decision variables.

7.2.1.2.3 alldifferent

Constraint Logic Programming 27/02/2008

COSYTEC SA 19

The alldifferent constraint states that all values in a list of domain variables must be different.
It is equivalent to defining pair-wise disequality constraints between the variables. The
constraint propagation uses forward checking as a syntactic method. We can use other, global
constraints (see below) to express the same declarative condition and obtain better
propagation.
Other constraints of a similar form, like atmost, atleast and circuit have been defined. They
all use syntactic methods, which for most problems are inferior to propagation obtained by
global constraints.

7.2.2 Semantic Methods
The constraints in the previous sections were all based on syntactic, domain independent
propagation methods. We now present some finite domain constraints based on semantic
methods. These constraints use domain specific knowledge to derive better propagation
results. Constraint of this type are called global constraints [AB93][BC94] and combine
several important properties:

• They model a complex condition on sets of variables.
• The condition can be used in multiple contexts.
• The constraint reasoning detects inconsistency in many situations and reduces the search

space significantly.
• They can be applied to large problem instances.

In the following we will discuss four such constraints found in CHIP:

• The cumulative constraint is used to express cumulative resource limits over a period.
• The diffn constraint expresses non-overlapping constraints on n-dimensional rectangles.
• The cycle constraint finds cycles in directed graphs.
• The among constraints enforces constraints on sequences of numbers.

The constraints can be used and combined for many different problems and significantly
extend the range of problems which can be handled with CLP.

7.2.2.1 cumulative
A typical use of the cumulative constraint is found in resource restricted scheduling. We have
to schedule a number of tasks of different duration where the tasks require certain amounts of
manpower during their operation. The overall amount of manpower available during the
scheduling period is fixed and the total requirements at each time point by all tasks should not
exceed the available limit. Other constraints, like precedence, may be required in the problem
and can be expressed with inequality constraints for example.

Formulation
This manpower constraint can be modelled with a simple form of the cumulative constraint.
For each of the n tasks, we define domain variables Si for the start time, Di for the duration
and Ri for the resource use of the task, and state the constraint

cumulative([S1, S2,..., Sn], [D1, D2,..., Dn], [R1, R2,..., Rn], Limit)

Constraint Logic Programming 27/02/2008

COSYTEC SA 20

where the domain variable Limit ranges between 0 and the available resource limit. The
cumulative constraint has the mathematical definition that

∀ ∈ +⎡
⎣⎢

⎤
⎦⎥

≤
≤ ≤ ≤ ≤

≤ < +
∑i S S D R Limit

j n j j n j j k
k S i S Dk k k

min(), max() :
:

1 1

This means that at each timepoint between the start of the first task and the end of the last
task the cumulative resource use by all tasks running at this time point is smaller than the
available resource limit. We can visualise the meaning of the constraint with a little diagram.
Figure 5 shows the profile generated by a set of tasks. In x-direction we display time, in y-
direction the resource use. A task is shown as a rectangle with duration Di, height Ri and the
left border at time Si. The cumulative profile of all tasks must stay below the overall resource
limit.

We have shown here only the most basic form of the cumulative constraint. It has a number
of additional parameters to express conditions on the end dates of the tasks, on the surface of
the rectangles, on the overall end date or on intermediate resource limits. These additional
parameters make the constraint more flexible and allow to express more complex conditions.

Figure 5: Cumulative resource profiles

Usage
An important consideration when defining the constraint was to make it as general as
possible, so that the same constraint can be used for multiple purposes. In case of the
cumulative constraint we can use it to express a large variety different conditions.

The handling of disjunctive resources can be treated as a special case of the cumulative
constraint. A disjunctive constraint means that a resource can work on only one task at a time.
Each task uses one resource unit, and the overall resource limit is one. These constraints are
very common in scheduling problems, for example in the job-shop scheduling case and
impose strong conditions on the sequence of tasks [AB93].

The cumulative constraint can also be used to express bin packing conditions. In bin packing
problems, we have to place items of different sizes in bins of certain capacity. Often, the
problem is to use a minimum number of bins. These constraints occur in many assignment
and scheduling problems, where the bins correspond to resources with limited overall
capacity [AB93].

Resource limit

generated
profile

time

Use

Start Si

Usage Ri
Duration Di

task

Constraint Logic Programming 27/02/2008

COSYTEC SA 21

Another use of the cumulative constraint is found in producer/consumer [SC94] constraints
for consumable resources. These constraints occur in scheduling problems where certain
operations produce materials, like intermediate products, which are consumed by other
operations. The constraint states that at each time point more of these products must have
been produced than consumed, but also that the amount of stock at any time point may be
limited. A simple modelling of these constraints using the cumulative constraint is given in
[SC94].

The cumulative constraint can also be used for a variety of placement and packing problems
[AB93], where it imposes important necessary conditions on the existence of solutions.

Methods
The handling of the cumulative constraint combines a large number of different techniques.
Around 20 different methods are used to check consistency or to define lower bounds of the
resource use. To give an idea of how these methods work, we give two very simple examples.

One method compares the available space inside the resource constraint with the amount
required by the different tasks. As an obvious bound, the following equation must be
satisfied:

Limit S D S D R

j j j j j i i
i

⋅ + − ≥ ⋅∑(max() min()

Different bounds on these terms can be calculated even when none of the variables have been
assigned yet. Much stronger bounds can be obtained by a more careful reasoning on the
available and required space inside the constraint.

A second method we want to explain is the use of obligatory parts for tasks. When the start
time and the duration of a task is known, we can judge its influence on other tasks and restrict
the possibilities for placing them. But even if the start and duration are not yet known, we can
deduce some information, if the domains are sufficiently restricted. Figure 6 shows a typical
situation. A task can start between its earliest and latest start date with a minimum and
maximum duration. Regardless of the choice of values we know that the tasks will be running
during the shaded period, and will therefore require resources during that period. As the
domains get more and more restricted, this obligatory part will increase. But right from the
beginning we can check whether obligatory parts overlap and constrain each other.

earliest start min duration max duration

latest start min duration

max duration

obligatory part

Constraint Logic Programming 27/02/2008

COSYTEC SA 22

Figure 6: Obligatory part

All these different methods are used to deduce more about the constraint and to restrict the
search space as early as possible. This means that even complex problems can be handled in
an efficient, but still declarative manner.

7.2.2.2 diffn
The diffn constraint is another very useful construct to express that a set of n-dimensional
rectangles do not overlap. For simplicity, we introduce the constraint here in two dimensions.

Formulation
The basic constraint is the following. We consider a set of n rectangles with lower left corner
(Xi, Yi), with length Li and height Hi. These rectangles should not overlap. This means that
for each pair of rectangles Ri and Rj, one of these four condition must hold:

• Ri is above Rj
• Ri is below Rj
• Ri is to the left of Rj
• Ri is to the right of Rj

If we want to translate this constraint into primitive conditions, we have to handle a
disjunction of four arithmetic constraints. Experiments have shown that we obtain very poor
propagation results, although we generate a number of constraints which is quadratic in the
number of rectangles. Using the diffn constraint, we simply state

diffn([[X1, Y1, W1, H1], [X2, Y2, W2, H2],...,[Xn, Yn, Wn, Hn]])

The one argument of diffn is a list of lists, this allows to express the condition in higher
dimensions as well.

Usage
Obviously, the diffn constraint can be applied for many types of packing and placement
problems in two or more dimensions. In two dimensions this also corresponds to cutting
problems of various forms. In three dimensions, typical problems are packing of palettes or
containers with rectangular boxes. In four dimensions, we extend the three dimensional
problem with a choice of the container. The first three co-ordinates describe the position of a
box within the container, the fourth dimension describes in which of several containers we
place each box.

The diffn constraint is also applied for scheduling and assignment problems, where it can
easily model disjunctive machine assignment for tasks. The x-dimension of the constraint
represents time, each value in the y-dimension stands for a possible machine assignment.
Each task is represented as a rectangle, which is given by its start time, its resource
assignment, its duration and a height 1 (see Figure 7). The non-overlapping condition states
that no tasks can be scheduled at the same time on the same machine.

Constraint Logic Programming 27/02/2008

COSYTEC SA 23

Figure 7: Machine assignment with diffn

The difference to the use of the cumulative constraint lies in the fact that we not only control
that enough resources are available globally, but that we assign each task to a particular
machine. This type of constraint also occurs in time tabling problems and personnel
assignment situations.

Other constraints that can be expressed with the diffn constraints are set-up times in
scheduling problems [Sim95] or location continuity for transport problems [Sim94]. Set-up
times occur when a machine must be stopped between two operations for cleaning or to
change tools. If the time between two tasks depends on the sequence of operations as well as
the type of machine, then we can use the diffn constraint to model this complex condition.
Location continuity constraints occur in transport problems if a resource may move between
different locations.

We can also use the diffn constraint for routing problems like the VLSI channel routing
[Sim92].

Methods
Similar to the cumulative constraint, the implementation of the diffn constraint uses a
combination of different methods from OR and discrete mathematics. These methods are
combined with the internal use of spatial data structures. One of the methods which is applied
is a generalisation of the obligatory parts explained above to several dimensions.

The reasoning methods of the diffn and cumulative constraints are orthogonal, i.e. they rarely
use the same reasoning and propagation methods. For many assignment problems it is
worthwhile to combine a diffn constraint with cumulative constraints which describe the
cumulative relaxation of a problem.

7.2.2.3 cycle
The cumulative constraint was inspired by methods from OR and scheduling, the diffn
constraint uses geometrical methods and placement algorithms. Another global constraint, the
cycle constraint [BC94], uses ideas from graph theory and combinatorics. The constraint is
applicable to many transportation problems, where we have to plan sequences of visits to
different places by one or several agents.
Mathematically speaking, this problem corresponds to finding one or several cycles in a
directed graph. Figure 8 shows a simple example. We have to visit the places 1 to 6 by 2
agents. From each place, only some connections to other locations are possible. They are

time

Resource

R1

R2

R3
1

duration

start

resource
assignment

task

Constraint Logic Programming 27/02/2008

COSYTEC SA 24

represented by directed arcs. To express this problem with constraints, we use the cycle
constraint.

Figure 8: Directed graph example

We represent each node in the graph by a domain variable and number the nodes from 1 to n.
The domain of a node variable is defined by the numbers of all nodes which are directly
connected to the node. In Figure 8, the variable V1 has domain [2, 6] and the variable V2 has
domain [3, 4] for example. The program to find two cycles in this graph is shown below:

graph(X1, X2, X3, X4, X5, X6):-
 X1 :: [2, 6], X2 :: [3, 4], X3 :: [1], X4 :: [2, 3], X5 :: [2, 6], X6 :: [2, 5],
 cycle(2,[X1, X2, X3, X4, X5, X6]),
 labeling([X1, X2, X3, X4, X5, X6]).

The program finds the solution [2, 4, 1, 3, 6, 5] which consists of two cycles, one containing
the nodes 1, 2, 4 and 3, the other containing the nodes 5 and 6.

Usage
The cycle constraint can be used for many problems from the logistics area. Tour planning
and travelling salesman problems (TSP) can be expressed quite simply. While such programs
are not yet competitive with specialised algorithms for pure problems like TSP, they have the
advantage that they can handle many additional constraints which can not be expressed inside
specialised solutions for pure problems.
Another large application area for the cycle constraint consist in planning personnel rotations
for example in the airline domain. The nodes of the graph are tasks to be assigned to
personnel, connections exist if two tasks can be done consecutively by the same person.
Constraints on location, working time, precedence etc can all be included in the model
[BKC94].
Specific constraints in many scheduling problems can be expressed with the cycle constraint.
An example is the handling of sequence dependent compatibility or set-up time conditions
[Sim95].
The problem of finding cycles in graphs is closely related to finding permutations with
certain properties. The cycle constraint can be used for such problems as well [BC94].

Methods

5

6

2 4

3
1

Constraint Logic Programming 27/02/2008

COSYTEC SA 25

The methods which are integrated in the cycle constraint mainly come from graph theoretical
algorithms. One typical method calculates the number of connected components in the graph.
This is a lower bound for the number of cycles that we can find. If there is no connection
from one node to another node (via a number of intermediate nodes), then obviously these
nodes must belong to different cycles. A number of other methods are used which for
example remove arcs from the graph when they can not be used by any cycle.

7.2.2.4 among
The among constraint expresses conditions on sequences and sub-sequences of domain
variables. We can express the condition that values in the set V1, V2, ..., Vm should occur
atleast K times and atmost L times in any sub-sequence of length P of the sequence X1, X2,
..., Xn.
The condition is expressed with the constraint

among(K, L, P, [X1, X2, ..., Xn], [V1, V2,..., Vm])

With the constraint

among(3, 3, 5, [X1, X2, X3,..., X10], [9])

we state that each of the following sets contains the value 9 exactly three times.

Figure 9: Overlapping periods for among

Usage
The constraint is very useful for time tabling problems or general planning problems. In this
context, the value Xi correspond to the type of operation performed in time interval i. The
different values of these variables mean the different activities which can be performed, like
work or rest periods. With the among constraint we can express for example constraints that
every interval of a certain length should contain atleast K1 rest activities or atmost L2 heavy
duty work activities. The constraint is enforced for every sub period of length P.
Another typical use of the among constraint is to balance the resource use over a longer time
span by enforcing that for short periods only a maximum number of uses occur. In this way
balancing heuristics can be implemented.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

C1

C6
C5

C4
C3

C2

Constraint Logic Programming 27/02/2008

COSYTEC SA 26

Methods
The constraint reasoning uses the interaction between the constraints on each sub-sequence to
deduce additional, stronger conditions which must be satisfied by the ensemble of constraints.
If, in the example of Figure 9, the variable X2 receives the value 9, then the propagation will
enforce that X7 also has the value 9, since X3 to X6 must contain the value 9 twice
(constraint C2) and X3 to X7 contain the value three times (constraint C3).

7.3 Control
So far we have talked about the different constraints which can be used to express conditions
on finite domain problems. Given a set of variables and the constraints on them, the different
propagation techniques of the finite domain solver will reduce the search space for the
variables, but will normally not find a solution or detect inconsistency without search. We
need an enumeration strategy to search through different possible assignments. As we can
program this strategy ourselves, we have full control over the complexity of this search. A
simple, built-in method can be used for small problems. Very complex strategies can emulate
problem specific methods which are derived from human behaviour.
In this section we will look at two different aspects of search, heuristic search for one
solution and optimisation under an optimisation criterion.

7.3.1 Heuristics
In many problems we are interested in finding a single solution which satisfies all constraints.
Instead of blindly enumerating alternatives, we can, by making the right choices, quickly
guide the program through the search tree to a solution. The search for such heuristics is
common to both OR and artificial intelligence methods. We want to show how we can
express different types of heuristics easily within the CLP framework.
To enumerate solutions of a finite domain problem, we have two main alternatives.

• The first method consists in assigning values to the variables until a ground solution is

found and all constraints are satisfied. This assignment method creates a search tree which
is traversed until a leave node, a solution is found.

• A second method consists in forcing choices among constraint alternatives and adding
constraints to the system until the system allows only one solution and the propagation
finds this solution. The cutting plane method from OR is such a technique. This approach
depends on particular properties of the constraint system and is therefore very system
specific An application to CLP is shown in [DSV90].

In the following we will only talk about the first alternative.

7.3.1.1 Variable Selection and Value Selection
If we choose a variable enumeration method, we have to make two types of decisions. Given
the set of variables, we have to choose which variable from the set to assign next and which
value to try for this variable. The variable selection rule decides which variable is taken next,
and the value selection rule state which value is tested next. Both of them may be
deterministic or non-deterministic. This leads to two variants of the variable assignment
methods.

7.3.1.2 Value Choice
In this case we choose the variable from the set deterministically and branch on the possible
values of the variable. This value choice is a standard enumeration method of artificial

Constraint Logic Programming 27/02/2008

COSYTEC SA 27

intelligence. We can apply different heuristics to select the right variable and we can try the
possible values of this variable in different order to quickly find a solution.

• A well known strategy of value choice is the first fail [HE80] [VH89] method. We select

the variable which has the smallest number of possible alternatives left in its domain. This
limits the branching factor of the search tree, as we only have to consider a few
alternatives for the variable.

• Another method is the most constraining selection rule. We pick the variable which occurs
in the largest number of constraints and therefore has a strong influence on many other
variables.

• Yet another selection rules is the maximum regret rule, where we choose the variable
where the cost difference between making the cheapest choice and choosing another value
is maximal.

Most of these heuristics are also well known from specialised algorithms. Note that all these
heuristics lead to complete search methods, where all possible solutions are examined on
backtracking.

7.3.1.3 Variable Choice
Another type of selection mechanism is known from many OR problems. Instead of choosing
one variable and branching on its possible values, we choose non-deterministically from all
variables and assign this variable deterministically. A typical example is found in certain
scheduling problems, where we choose one task among all unassigned tasks, fix it to its
earliest compatible start date and enforce that no other task may start before it. On
backtracking, instead of trying different start-dates for this task, we choose another task to
start before all other alternatives. This variable choice strategy often explores a much smaller
search space, but its completeness is not guaranteed. This question must be studied on a case-
by-case basis.

An important question for many problems is the elimination or reduction of symmetries in the
solutions. This removal can be handled either by adding special constraints, like enforcing a
partial order on the values of variables to remove the symmetries from the problem, or may
be handled inside the assignment part by excluding certain branches of the search tree.

7.3.2 Branch and Bound
For some problems, we want to find an optimal solution which satisfies all constraints and
minimises a cost function. Note that many optimal solutions with the same cost may exist.
We are typically interested in just one of these solutions. If we have a routine to explore
feasible solutions, called the generator, and a cost function which gives a cost value for each
ground solution, we can use the min_max meta predicate to find optimal solutions. This meta
predicate works as follows:

The generator predicate is called to find a solution. If a solution is found, a new
constraint is added that the improved cost should be better than the value which has
been found. The generator is recalled to find a better solution. If no (more) solution is
found, the best solution so far is returned or the systems fails if none has been found
at all.

This re-starting optimisation is a very simple, but quite powerful optimisation method. Other
methods have been investigated or implemented [VH89][DVS88a].

Constraint Logic Programming 27/02/2008

COSYTEC SA 28

Parallel search for optimal or feasible solutions is possible. This has been proposed for either
multi-processor systems with shared memory or for networked workstations. If the search
tree is cut at a node close to the root, then the different sub problems will be quite large and
linear speedups are easily obtained. Due to the exponential nature of most finite domain
problems, this linear speed-up has little influence on the type or size of problems which can
be efficiently handled.

8. Constraint Systems
In this section we discuss the history and features of different CLP systems. A (simplified)
family tree of CLP systems and developments is shown in Figure 10.

Figure 10: CLP tool history

Commercial systems are outlines in black, research systems are filled in grey. We will now
discuss some of these systems in more detail.

8.1 Prolog III
Prolog III [Col90] was one of the first CLP systems. It is now a commercial product of
Prologia in Marseilles. It contains three different constraint solvers

• a complete solver for linear arithmetic over rationals
• a complete solver for Boolean terms based on saturation
• an incomplete solver for equality constraint over lists

A successor, called Prolog IV, is currently under development.

8.2 CLP(R)
CLP(R) [JMS90] was developed at IBM and Monash University as a demonstrator for the
CLP(X) [JL87] scheme. It contains a

• complete constraint solver for linear terms over real numbers (represented by floating

point numbers)

Prolog III CLP(R) CHIP

Decision
 Power CharmeSNI

 Prolog

CHIP
SEPIA

CHIP lib

CHIP V4

Charme
Object

Chlare

Chleo

Solver

Pecos

Prolog based Other base
language

CAL

BNR

cc(FD)
Eclipse

Constraint Logic Programming 27/02/2008

COSYTEC SA 29

An updated, compiled version is also available.

8.3 CHIP
CHIP [DSV88a] was another of the first CLP systems. It was first developed at ECRC in
Munich, and is now being marketed and developed by COSYTEC. It contains

• an incomplete solver for finite domains,
• a complete solver for linear terms over rationals, and
• both complete and incomplete Boolean solvers.

The current version CHIP V4.1 includes a number of global constraints [AB93] [BC94] and
offers others features for a complete application environment (objects, graphics, interfaces).
The early versions of CHIP were the basis for a number of other developments. ECRC
shareholder companies developed different products, CHARME (see below) by BULL,
DecisionPower by ICL and SNI-Prolog by Siemens. ECRC has also continued research on
constraints. A new system, called Eclipse is currently available as a research platform.

8.4 CAL
The Japanese research centre ICOT has produced CAL [ASS88], a constraint system written
in Prolog with constraint solvers for

• Boolean constraints (complete solver based on Groebner bases)
• Linear terms (Simplex based, complete)
• Non-linear constraints (Groebner bases)

A parallel version GDCC is also available.

8.5 BNR
The BNR [OV90] system is available from Bell Northern Research. It contains a

• incomplete solver for intervals

which is based on bound propagation.

8.6 Non logic based
Motivated by the success of CLP techniques, in particular finite domain constraints, a number
of non-logic based constraint systems have appeared on the market. These offer mainly finite
domain constraints as C or C++ libraries. Since the host language does not support
backtracking, they either restrict the possibilities of developing user-written labeling routines
or provide complex control mechanisms to simulate backtracking in a user program. More
details on these systems can be found in [Cra94].

8.6.1 CHARME
The first such system was CHARME by BULL. It is based on the finite domain solver of an
early CHIP version, but uses a proprietary, C-like language to express constraints. A
successor, CHARME object, has been discontinued.

Constraint Logic Programming 27/02/2008

COSYTEC SA 30

8.6.2 Solver
The French company Ilog is offering Solver, a C++ library of finite domain constraints.

8.6.3 Chleo/Chlare
Another finite domain C library is available form the French company Axia.

8.6.4 CHIP library
The finite domain and the rational solvers of CHIP are also available as C/C++ libraries from
COSYTEC.

9. Application examples
In this section, we show different industrial application of CLP. A large number of studies
and research prototypes using CLP have been reported. An overview of these activities can be
found in [JM94]. Particular examples are shown for example in [CL94] [CG93] [LW93]
[Rue93] [Wal94].

One of the first large scale applications of CLP was the HIT scheduling system developed for
a container terminal at Hong Kong harbour. The system, developed by ICL, used CHIP, later
DecisionPower to schedule and assign berths for ships arriving at the harbour. The system
used finite domain constraints to express various conditions on the schedule.
Besides the HIT application, DecisionPower [Eva92] has been used for

• Fleet management (Cathay Pacific)
• Training staff scheduling and allocation (National Westminster Bank)

An in-house application developed at Siemens uses the Boolean constraint solver inside SNI-
Prolog for digital circuit verification. The program CVE [FST91] provides interfaces to
different design tools and checks application specific integrated circuits (ASIC) against
formal specifications.

The constraint system CHARME has been applied to a number of problems, among them

• Planning production and packaging in an oil refinery (Elf)
• Determination of product mix & manufacturing of animal nutrition products (Rhone-

Poulenc)
• Scheduling of spare parts arrival in a car assembly factory (MCA/Renault)
• Resource allocation in a crisis management system (Albertville 92)

The constraint library of ILOG Solver has been used for

• Planning “personnel evolution policy” (French Army)
• Fleet management - Locomotives (SNCF)
• Maintenance scheduling - Locomotives (SNCF)
• Manpower planning for shift operation (Banque Bruxelles Lambert)

Constraint Logic Programming 27/02/2008

COSYTEC SA 31

9.1 Applications using CHIP
In this section we concentrate on large scale, industrial systems developed with CHIP. These
examples show that constraint logic programming based on Prolog can be used efficiently to
develop end-user applications. The constraint solver is a small, but crucial part of these
applications. Other key aspects are graphical user interfaces and interfaces to data bases or
other programs. Some background on how such applications can be developed with logic
programming is given in [KS95].

ATLAS, [SC94] a tool for detailed production scheduling in a chemical factory, is based on a
constraint model using numerous constraints on machines and consumable resources. The
constraint solver is embedded in a user-friendly graphical environment and uses a relational
database to exchange information with other information system tools. The program was co-
developed by the Belgian company Beyers and Partners and COSYTEC.

FORWARD is a simulation and scheduling tool for oil refineries. In this application, CHIP is
linked to a simulation tool written in FORTRAN which calculates results from a schedule
obtained with the CHIP solver. The basic constraints express a non-linear optimisation
problem over a continuous domain. The program was developed by the engineering company
TECHNIP and COSYTEC and is currently in used at two refineries.

TACT combines planning, scheduling and assignment aspects for the operational fleet
management in the food industry. The system uses several interacting solvers to create a
schedule for drivers, lorries and other resources in a transportation problem. The system is
used both to create working schedules and to handle ‘what-if’ decision support scenarios. The
application was developed by COSYTEC.

Dassault Aviation has developed several applications with CHIP. PLANE [BCP92] is a
medium-long term scheduling system for aircraft assembly line scheduling. MADE [CDF94]
is controlling a complex work-cell in the factory, and COCA schedules micro-tasks in the
production process.

CHIP is used inside the TFS program from TFP as part of an optimisation module for a
process scheduling package. The constraint solver is used as a back-end invisible to the user

In a similar way, Saveplan from Sligos uses CHIP as a scheduling engine for a shop-floor
scheduling system. Saveplan is a FORTRAN scheduling package, which has been re-
engineered in Delphia Prolog.

The LOCARIM application is capable of designing a computer/phone network in large
buildings. It is used by France Telecom to design the cabling and estimate cabling costs for
new buildings. The constraint model corresponds to an extended warehouse location problem.
The application was developed by Telesystemes together with COSYTEC.

EVA is used by EDF to plan and schedule the transport of nuclear waste between reactors
and the reprocessing plant in Le Hague. This problem is highly constrained by the limited
availability of transport containers and the required availability of the reactors. The program
was co-developed by EDF and the software firm GIST.

Constraint Logic Programming 27/02/2008

COSYTEC SA 32

PILOT [BKC94] is a planning system for crew assignment in an airline. It schedules and
reassigns pilots and cabin crews to flights and aircraft respecting physical constraints,
government regulations and union agreements. The program is intended for day-to-day
management of operations with rapidly changing constraints.

SEVE is a portfolio management system for CDC, a major bank in Paris, developed in-house.
It uses non-linear constraints over rationals and finite domain constraints to choose among
different investment options. The system can be used for “what-if” and “goal-seeking”
scenarios, based on different assumptions on the development of the economy.

Other application development with CHIP has been reported in [DVS88] [VC88] [DS91]
[SD93] [CF94] [Ber90] [VH89] [DSV92] [DSV88] [Sim92].

10. To learn more
This tutorial only offers a first introduction to CLP. To learn more about this field, the
following reviews and articles are recommended:

[JM94] gives a comprehensive overview of the field, discussing methods and theory as well
as giving an application overview.
[FHK92] gives an informal overview of CLP, with emphasis on user definable constraints.
The book [VH89] is useful as a source of many examples and a introduction to finite domain
constraints.
The commercial report [Cra94] gives an overview of the non-academic tools available in the
field.
Books like [BC93][Bor94] give an overview of current research topics.
The book [Sar93] presents the field of concurrent constraint languages in a theoretical
framework.
For a more general overview of constraint programming techniques see [FM94].
In addition, the newsgroup comp.constraints offers a list of FAQ (frequently asked questions)
which contains an up-to-date list of all available academic CLP systems and which gives
pointers to current issues in constraint logic programming.

11. References

[AB93] A. Aggoun, N. Beldiceanu
Extending CHIP in Order to Solve Complex Scheduling Problems
Journal of Mathematical and Computer Modelling, Vol. 17, No. 7, pages 57-73
Pergamon Press, 1993

[ASS88] A. Aiba, K. Sakai, Y. Sato, D. Hawley, R. Hasegawa
Constraint Logic Programming Language CAL
Proc Int Conf on Fifth Generation Computer Systems 1988, 263-276, 1988

[Bar94] P. Barth
Simplifying Clausal Satisfiability Problems
in J. Jouannaud (Ed.) Constraints in Computational Logics,
LNCS 845, Springer Verlag, 1994

[BKC94] G. Baues, P. Kay, P. Charlier
Constraint Based Resource Allocation for Airline Crew Management
ATTIS 94, Paris, April 1994

Constraint Logic Programming 27/02/2008

COSYTEC SA 33

[BC94] N. Beldiceanu, E. Contejean
Introducing Global Constraints in CHIP
Journal of Mathematical and Computer Modelling, Vol 20, No 12, pp 97-123, 1994

[BCP92] J. Bellone, A. Chamard, C. Pradelles
PLANE -An Evolutive Planning System for Aircraft Production.
First International Conference on the Practical Application of Prolog.
1-3 April 1992, London.

[BC93] F. Benhamou, A. Colmerauer (Editors)
Constraint Logic Programming: Selected Research
MIT Press, 1993

[BMV94] F. Benhamou, D. McAllester, P. Van Hentenryck
CLP(Intervals) Revisited
ILPS, Ithaca, NY., November 1994

[Ber90] F. Berthier
Solving Financial Decision Problems with CHIP
Proc 2nd Conf Economics and AI, Paris 223-238, June 1990

[Boc93] A. Bockmayr
Logic Programming with Pseudo-Boolean Constraints
in [BC93]

[Bor81] A. Borning
The Programming Language Aspects of ThingLab, A Constraint Oriented Simulation Laboratory
ACM Transactions of Programming Languages and Systems, 3(4), 252-387, October 1981

[Bor94] A. Borning (Ed)
Principles and Practice of Constraint Programming
PPCP 94, Rosario, Orcas Island, WA, May 1994
Springer Verlag LNCS 874

[BS87] W. Büttner, H. Simonis
Embedding Boolean Expressions into Logic Programming
Journal of Symbolic Computation, 4:191-205, October 1987

[CL94] Y. Caseau, F. Laburthe
Improved CLP Scheduling with Task Intervals
Proc 11th ICLP 1994,
Italy, June 1994. MIT Press

[Col90] A. Colmerauer
An Introduction to Prolog III
Communications of the ACM 33(7), 52-68, July 1990

[CG93] M. Carlsson, M. Grindal
Automatic Frequency Assignment for Cellular Telephones Using Constraint Satisfaction Techniques
Proc 10th Int Conf Logic Programming, Budapest, Hungary, pp 647-665, 1993

[CDF94] A. Chamard, F. Deces, A. Fischler
A Workshop Scheduler System written in CHIP
2nd Conf Practical Applications of Prolog, London, April 1994

[CF94] C. Chiopris, M. Fabris
Optimal Management of a Large Computer Network with CHIP
2nd Conf Practical Applications of Prolog, London, April 1994

Constraint Logic Programming 27/02/2008

COSYTEC SA 34

[CL94] C. Chiu, J. Lee
Towards Practical Interval Constraint Solving in Logic Progrmming
in ILPS 94, Ithaca, NY, November 1994

[Cra94] J-Y. Cras
A Review of Industrial Constraint Solving Tools
AI Perspectives Report
Oxford, UK, 1994

[Dav84] R. Davis
Diagnostics Reasoning Based on Structure and Behaviour
Artificial Intelligence, (24):374-410, 1984

[DVS88a] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf and F. Berthier.
The Constraint Logic Programming Language CHIP.
In Proceedings of the International Conference on Fifth Generation Computer Systems (FGCS'88), pages 693-
702, Tokyo, 1988.

[DVS88] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun and T. Graf.
Applications of CHIP to Industrial and Engineering Problems.
In First International Conference on Industrial and Engineering Applications of Artificial Intelligence and
Expert Systems, Tullahoma, Tennessee, USA, June 1988.

[DSV90] M. Dincbas, H. Simonis and P. Van Hentenryck.
Solving Large Combinatorial Problems in Logic Programming.
Journal of Logic Programming - 8, pages 75-93, 1990.

[DS91] M. Dincbas, H. Simonis
APACHE - A Constraint Based, Automated Stand Allocation System
Proc. of Advanced Software Technology in Air Transport (ASTAIR'91)
Royal Aeronautical Society, London, UK, 23-24 October 1991, pages 267-282

[DSV92] M. Dincbas, H. Simonis, P. Van Hentenryck
Solving a Cutting-Stock Problem with the Constraint Logic Programming Language CHIP
Journal of Mathematical and Computer Modelling, Vol. 16, No. 1, pp. 95-105,
Pergamon Press, 1992

[DSV87] M. Dincbas, H. Simonis, P. Van Hentenryck.
Extending Equation Solving and Constraint Handling in Logic Programming.
In Colloquium on Resolution of Equations in Algebraic Structures (CREAS), Texas, May 1987.

[DSV88] M. Dincbas, H. Simonis, P. Van Hentenryck.
Solving the Car Sequencing Problem in Constraint Logic Programming.
In European Conference on Artificial Intelligence (ECAI-88),
Munich, W. Germany, August 1988.

[Eva92] O. Evans
Factory Scheduling Using Finite Domains
In Logic Programming in Action LNCS 636, 45-53, 1992

[Fik70] R. Fikes
REF-ARF: A System for Solving Problems stated as Procedures
Artificial Intelligence, 1, 27-120, 1970

[FST91] T. Filkorn, R. Schmid, E. Tiden, P. Warkentin
Experiences from a Large Industrial Circuit Design Application
ILPS, San Diego, Ca., October 1991

Constraint Logic Programming 27/02/2008

COSYTEC SA 35

[FHK92] T. Fruewirth, A. Herold, V. Kuchenhoff, T. Le Provost, P. Lim, M. Wallace
Constraint Logic Programming - An Informal Introduction
In Logic Programming in Action LNCS 636, 3-35, 1992

[GJ79] M.R. Garey and D.S. Johnson.
Computers and Intractability: A Guide to the Theory of NP-Completeness.
Freeman and Co., pages 236-244, 1979.

[Ger94] C. Gervet
Conjunto: Constraint Logic Programming with Finite Set Domains
ILPS, Ithaca, NY., November 1994

[HE80] R. Haralick, G. Elliot
Increasing Tree Search Efficiency for Constraint Satisfaction Problems
Artificial Intelligence, 14:263-314, October 1980

[Hon93] H. Hong
RISC-CLP(R): Logic Programming with Non-linear Constraints
in [BC93]

[JL87] J. Jaffar and J.L. Lassez.
Constraint Logic Programming.
In Proceedings of the Fourteenth ACM Symposium on Principles of Programming Languages, Munich, 1987.

[JM94] J. Jaffar M. Maher
Constraint Logic Programming: A Survey
Journal of Logic Programming, 19/20:503-581, 1994

[JMS90] J. Jaffar, S. Michaylov, P. Stuckey, R. Yap
The CLP(R) language and System
IBM Tech report RC 16292, November 1990

[KS95] P. Kay, H. Simonis
Building Industrial CHIP Applications from Reusable Software Components
3rd International Conf. Practical Applications of Prolog
Paris, April 1995

[Kow79] R. Kowalski
Logic for Problem Solving
North Holland, New York, 1979

[Lau78] J. Lauriere
A Language and a Program for Stating and Solving Combinatorial Problems,
Artificial Intelligence, 10, 29-127, 1978

[LL91] B. Legeard, E. Legros
Short Overview of the CLPS System
PLILP 91, Passau, Germany, August 1991

[LW93] T. Le Provost, M. Wallace
Generalized Constraint Propagation over the CLP Scheme
Journal of Logic Programming, 16, 319-359, 1993

[Mac77] A. Mackworth
Consistency in Networks of Relations
Artificial Intelligence, 8(1):99-118, 1977

[MF85] A. Mackworth, E. Freuder
The Complexity of Some Polynomial Network Consistency Algorithms for Constraint Satisfaction Problems

Constraint Logic Programming 27/02/2008

COSYTEC SA 36

Artificial Intelligence, 25:65-74, 1985

[Mon74] U. Montanari
Networks of Constraints: Fundamental Properties and Applications to Picture Processing
Information Science, 7(2):95-132, 1974

[NM89] T. Nipkow, U. Martin
Boolean Unification - The Story So Far
Journal of Symbolic Computation, 7:275-293, 1989

[OV90] W. Older, A. Vellino
Extending Prolog with Constraint Arithmetics on Real Intervals
Canadian Conference on Computer and Electrical Engineering, Ottawa, 1990

[Rue93] M. Rueher
A First Exploration of Prolog III’s Capabilities
Software- Practice and Experience 23, 177-200, 1993

[Sar93] V. Saraswat,
Concurrent Constraint Programing
MIT Press, 1993

[SC94] H. Simonis, T. Cornelissens
Modelling Producer/Consumer Constraints
ILPS Post Conference Workshop on Constraint Languages/Systems and their Use in Problem Modelling, Ithaca,
NY, Nov 1994

[Sim92] H. Simonis
Constraint Logic Programming as a Digital Circuit Design Tool
COSYTEC Technical Report, 1992

[Sim94] H. Simonis
The Use of Exclusion Constraints to Handle Location Continuity Conditions
COSYTEC Technical Report, November 1994

[Sim95] H. Simonis
Modelling Machine Set-up Time with Exclusion Constraints
COSYTEC Technical Report, March 1995

[SD93] H. Simonis, M. Dincbas
Propositional Calculus Problems in CHIP
In A. Colmerauer and F. Benhamou, Editors,
Constraint Logic Programming - Selected Research, pages 269-285
MIT Press, 1993

[Sut63] I. Sutherland
A Man-Machine Graphical Communication System
PhD Thesis, MIT Boston, Ma, January 1963

[SS80] G. Sussman, G. Steele
CONSTRAINTS - A Language for Expressing Almost-Hierarchical Descriptions
Artificial Intelligence, 14:1-39, 1980

[Tsa93] E. Tsang
Foundations of Constraint Satisfaction
Academic Press, 1993

[VD91] P. Van Hentenryck and Y. Deville.
The Cardinaliy Operator: A New Logical Connective for Constraint Logic Programming.

Constraint Logic Programming 27/02/2008

COSYTEC SA 37

In Proc. Eighth International Conference on Logic Programming. pages 745-759, Paris, France, June 1991.

[VH89] P. Van Hentenryck.
Constraint Satisfaction in Logic Programming.
MIT Press, Boston, Ma, 1989.

[VH91] P. Van Hentenryck.
Constraint Logic Programming
The Knowledge Engineering Review, 6(3):151-194, 1991

[VSD92] P. Van Hentenryck, H. Simonis, M. Dincbas
Constraint Satisfaction using Constraint Logic Programming.
Journal of Artificial Intelligence, Vol.58, No.1-3, pp.113-161, USA, 1992

[VSD92a] P. Van Hentenryck, V. Saraswat, Y. Deville
Constraint Logic Programming over Finite Domains - The Design, Implementation and Applications of cc(FD).
Technical Report, Brown University, 1992

[VC88] P. Van Hentenryck, J-P. Carillon.
Generality versus Specificity: an Experience with AI and OR Techniques.
In American Association for Artificial Intelligence (AAAI-88), St. Paul, Mi, August 1988.

[VG90] P. Van Hentenryck, T. Graf.
Standard Forms for Rational Linear Arithmetic in Constraint Logic Programming.
Proceedings of Internatioanl Symposium on Artificial Intelligence and Mathematics,
Fort Lauderdale, Fl., 1990

[Wal94] M. Wallace
Applying Constraints for Scheduling.
In B. Mayoh, E. Tyugu, J. Penjaam (Eds) Constraint Programming, Springer Verlag, 1994

[Wal72] D.Waltz
Generating Semantic Descriptions from Drawings of Scenes with Shadows.
MIT Technical Report AI271, November 1972

