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1. Abstract 
In this tutorial we give an overview of constraint logic programming (CLP), a combination of 
two declarative programming paradigms, logic programming and constraint solving. We 
present an informal introduction to different constraint solving methods used in CLP systems, 
with the emphasis on finite domain constraints. In addition we look at different ways to 
express heuristics as part of CLP programs and discuss problem solving methodology. We 
also give an overview of different CLP systems currently available and present some of their 
application domains, with special emphasis on industrial applications for production 
planning, scheduling and resource allocation. 

2. Introduction 
In the last ten years, constraint logic programming has emerged as a very interesting sub field 
of logic programming. CLP aims at combining the declarative aspects of logic programming 
and constraint solving in an efficient problem solving environment. Constraints over different 
domains can be stated in a uniform framework and are solved with methods originating in 
various areas, from artificial intelligence (AI) to Operations Research (OR).  
CLP is now used industrially for applications as diverse as digital circuit design, portfolio 
management and production scheduling systems and there are several industrial systems 
available for constraint programming. 

2.1 Structure of document 
The tutorial is structured in the following way. We start with a section on the motivation for 
using constraints, discussing typical problems with conventional program development for 
complex decision support systems. We then briefly review some of the techniques which are 
used inside CLP. It combines methods from logic programming and constraint solving, as 
well as advanced techniques from Operations Research and finite mathematics. We also give 
some pointers to the theoretical aspects of constraint logic programming. 
In section 5, we introduce a classification of different constraint solving methods, which we 
will use later on. This classification distinguishes complete and incomplete solvers, based on 
syntactical or semantic methods. In the next section, we present an overview of different 
constraint solving methods which are currently applied in CLP systems. The computation 
domains handled by these solvers are quite diverse, including Boolean algebra, linear 
programming over rational numbers, finite domains or list and set handling. As it is the most 
interesting domain from a practical point of view, we present the finite domain constraint 
solver in more detail in section 7.  
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There are many different types of finite domain constraints besides the basic arithmetic ones. 
In recent years new types of very high level, global constraints have been introduced, which 
we discuss in section 7.2.2. Another important aspect of finite domain constraints is the 
possibility to control the solution process with an enumeration scheme. Heuristics and 
strategies can be expressed in different ways. We present some alternatives in section 7.3. 
We then come to an overview of different constraint solving tools, where we also briefly 
discuss the history of the various constraint solvers. 
In the last part, section 9, we give an overview of industrial applications which have been 
developed using CLP tools. Most of these applications are from the scheduling and planning 
areas, with some notable exceptions in other domains. At the end we also talk about some 
more in-depth material, which could be used for study after this tutorial. 

3. Interesting Problems 
In this section we discuss the motivation for the use of constraint logic programming. We 
explain which type of problem is best suited for the CLP approach and where these problems 
occur in practice. They share a set of characteristics, which make them very hard to tackle 
with conventional problem solving methods.  
Combinatorial problems occur in many different application domains. We encounter them in 
Operations Research (for example scheduling and assignment), in hardware design 
(verification and testing, placement and layout), financial decision making (option trading or 
portfolio management) or even biology (DNA sequencing). In all these problems we have to 
choose among many possible alternatives to find solutions respecting a large number of 
constraints.  
We may be asked to find an admissible, feasible solution to a problem or to find a good or 
even optimal solution according to some evaluation criteria. 
From a computational point of view, we know that most of these problems are difficult. They 
belong to the class of NP-hard [GJ79] problems. This means that no efficient and general 
algorithms are known to solve them.  
At the same time, the problems themselves are rapidly changing. For example, in a factory, 
new machines with new characteristics may be added, which might completely change the 
production scheduling problem. New products with new requirements will be added. If a 
scheduling system can not be adapted to these changes, it will rapidly become useless. 
Another aspect is that the complexity of the problems is steadily increasing. This may be due 
to increased size or complexity of the problem, or may be caused by higher standards on 
quality or cost effectiveness. Many problems which have been handled manually for a long 
time now exceed the capacity of a human problem solver. 
At the same time, humans are typically very good at solving these complex decision making 
problems. They can have a good understanding of the underlying problem and often know 
effective heuristics and strategies to solve them. In many situation they also know which 
constraints can be relaxed or ignored when a complete solution is not possible. For this 
reason, it is necessary to build systems which co-operate with the user via friendly graphical 
interfaces and which can incorporate different rules and strategies as part of the problem 
solving mechanism. 
Developing such applications with conventional tools has a number of important drawbacks.  
 
• The development time will be quite long. This will increase the cost, making bespoke 

application development very expensive. 
• The programs are hard to maintain. Due to their size and complexity, a change in one 

place may well lead to a number of other changes which are required in other places. 
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• The programs are difficult to adapt and to extend. As new requirements arise during the 
life cycle of the program, changes become more and more difficult.   

 
The use of constraint logic programming should lead to a number of improvements: 
 
• The development time is decreased, as the constraint solving methods are reused. 
• A declarative problem statement makes it easier to change and modify programs.  
• As constraints can be added incrementally to a system, new functionality can be added 

without changing the overall architecture of the system. 
• Strategies and heuristics can be easily added or modified. This allows to include problem 

specific information inside the problem solver. 
 

4. Background Techniques 
We will now review some of the background techniques which are used inside CLP. Due to 
space limitations we will restrict ourselves to the main concepts. Further material can be 
found in the references. In Figure 1, we show the basic influences on constraint logic 
programming 
 

Figure 1: Techniques behind constraints 

In the next paragraphs, we will discuss these different influences. 

4.1.1 Logic Programming 
Logic programming is based on the idea that (a subset of) first order logic can be used for 
computing. The first logic programming language PROLOG was created by A. Colmerauer in 
1972. Other important influences come from the work of J. A. Robinson on unification and of 
R. Kowalski on SL-resolution. Originally intended for natural language processing, PROLOG 
is now used as a general purpose language.  
A basic idea in logic programming is the separation of logic and control [Kow79]. 
Programming in logic is concerned first with the correct statement of a problem. The program 
should state what is true about the problem, not how to solve it procedurally. Efficiency of 
the program should come second, and ideally should be handled automatically by the 
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language itself. This separation of concerns helps to develop correct programs more easily 
and makes it possible to change and extend existing programs without rewriting large parts.  
Three other fundamental concepts of logic programming are also very important for 
constraint logic programming. They are 
 
• relational form which allows to define predicates without fixing input and output 

arguments a priori 
• non determinism which includes a tree search procedure (backtracking) as part of the 

computation mechanism 
• unification which solves equations of (un-interpreted) symbolic terms 
 
While logic programming offers a big advantage over conventional programming in terms of 
simplicity, it also encounters some difficulties for solving the type of complex problems we 
are interested in.  
 
• The built-in search procedure is based on the generate and test paradigm, which becomes 

very inefficient for complex problems. Solutions are generated by non-deterministic 
choice, and then tested in a deterministic way. 

• The basic data structures in Prolog are un-interpreted (Herbrand) terms. These symbolic 
terms are not specialised for the particular computation domains encountered in 
applications. There is a large conceptual gap between the problem to be solved and the 
expression of the problem in logic programming. 

• Unification and resolution are general, but rather weak inference mechanisms. More 
advanced, specialised methods exist in other areas for problem solving. Equation solving 
methods from mathematics or consistency techniques from constraint solving are 
examples of such more powerful methods. 

 

4.1.2 Constraint Handling 
Constraint handling techniques are a well known method in the artificial intelligence area. 
Early traces can be found in work on computer graphics by Sutherland [Sut63] and Borning 
[Bor81]. They are also used by Sussman and Steele [SS80]  for circuit analysis or by Davis 
[Dav84] for circuit diagnosis. Another early use of constraints is in computer vision by Waltz 
[Wal72]. More general constraint handling systems are for example REF-ARF [Fik70] and 
ALICE [Lau78]. The basic idea is the declarative expression of problems as constraints and 
specialised constraint solvers over some restricted domains (numbers, finite sets) to 
efficiently find solutions to the constraints. A common technique in these solvers is local 
propagation or demon based computation [SS80]. A problem is expressed by a network of 
constraints. As soon as some information becomes available at some point in this network, 
constraint demons are woken which try to propagate this information through the network. 
This may wake up other constraints and so on. 
Consistency techniques form a important subclass of constraint handling methods. They have 
been introduced in [Mon74] [Mac77] [MF85] [HE80] to express problems over finite 
domains. Problems are modelled with two components, variables, which can range over finite 
sets of possible values and constraints, which are relations between the variables. Different 
techniques, for example arc- and path- consistency, are used to remove inconsistent values 
from the variable domains until solutions are found. An introduction to this field can be found 
in [Tsa93] [FM94]. While consistency techniques present a good theoretical framework for 
the analysis of different constraint solving methods, they are rarely used for problem solving 
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as standalone procedures. Constraint techniques must be embedded in a programming system 
which allows easy constraint manipulation, as well as the combination with heuristics and 
strategies. 

4.1.3 Operations Research 
A large number of techniques from Operations research are used in CLP systems. The 
constraint solvers for linear constraints over rational numbers are based on linear 
programming techniques and the Simplex algorithm. The new global constraints [AB93] 
[BC94] over finite domains as well use techniques from scheduling and placement to check 
consistency. Some properties of OR methods pose problems when these methods are used 
inside CLP: 
 
• Most OR systems are build for specialised, particular problems. This way mathematical 

properties of the complete problem can be exploited to improve the solution.  
• Normally, all constraints to be included are known when the system is set up. The solution 

methods do not have to be incremental. 
• The control flow can be rearranged to minimise the effect of rounding errors in order to 

achieve numerical stability. 
 
For that reason, the techniques used in CLP systems often employ custom variants of well 
known algorithms, which must satisfy the following conditions: 
 
• They must be incremental, i.e. constraints can be added one by one without requiring the 

solution process to start again from scratch. 
• The methods must be general. Adding new constraints should not invalidate the 

preconditions of a method. This means that algorithms for particular problems will be 
normally not useful in CLP systems. 

• Since the control flow in a constraint solver is quite complex and completely data 
dependent, special care must be taken for achieving numerical stability. A typical case is 
the use of exact arithmetic for linear constraints [Col90] [DVS88a] or for correct, 
conservative interval arithmetic in some constraint solvers [OV90]. 

4.1.4 Mathematics 
CLP also uses a number of techniques from particular mathematical areas. Some of the 
problem solvers for Boolean problems for example use classical results from Boolean algebra 
[NM89]. Other results from finite mathematics and graph theory are used for global 
constraints [BC94]. The remarks made for OR techniques also apply here. We must look for 
incremental and general methods which can be combined in different ways inside the 
constraint solvers. 

4.2 Theoretical Issues 
Similar to logic programming, we can define different semantics for constraint logic 
programming. A mechanism for defining this semantics is given in the CLP(X) [JL87] 
scheme. This scheme allows to obtain general results on correctness and completeness for a 
class of languages CLP(X), which are parametrized in the constraint solver X used in a 
particular instance. Different constraint languages can be defined by defining sets of basic 
constraints and their constraint solver. A comprehensive overview of theoretical issues is 
given in [JM94]. 
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5. Constraint Solving Classification 
We now describe a classification of constraint solving mechanisms which we will use later on 
to distinguish between constraint solvers. Constraint solvers can differ in various aspects. A 
first criteria is the use of different computation domains. The computation domain defines the 
objects over which constraints can be expressed. We will present possible domains and 
discuss some considerations in the choice of a computation domain. Another important aspect 
of constraint solvers is the amount of propagation that they provide. We have to explain the 
basic notions of complete or incomplete constraint solvers. A third classification criteria 
distinguishes the techniques which are used for constraint solving for different constraints, 
which may be based on syntactic (domain independent) or semantic (domain dependent) 
methods. 

5.1 Choice of Computation Domains 
Constraints can be expressed over a variety of different domains. As a general rule, three 
conditions [DSV87] should be satisfied for a CLP language over a computation domain: 
 
• Constraints can be handled in a deterministic way without loosing completeness. 
• Efficient constraint solving methods exist for the domain. 
• The computation domain can be used for more than one application. 
 
A number of computation domains have been identified which satisfy these conditions, and 
which are now used in one or several CLP systems. They are 
 
Finite domains 
Finite domain constraints [DSV87] [VH89] are expressed over variables which range over a 
finite set of possible values. Often, the domains are expressed as bounded subsets of the 
natural numbers. Constraints may be arithmetic or symbolic. Complex, global constraints 
have been added in the last years. 
 
Linear arithmetic terms 
Constraints over linear arithmetic terms [Col90] [DVS88a] [JMS90] can be handled 
efficiently by Gaussian elimination and the Simplex algorithm. Several systems allow the use 
of rationals, while other handle floating point numbers. 
 
Boolean terms 
Equality constraints over Boolean terms can be handled by Boolean unification [NM89] 
[BS87]. Since any complete solver has worst case exponential complexity, other, incomplete 
solvers are popular for certain applications. 
 
Pseudo Boolean Constraints 
Arithmetic constraints over 0/1 variables with integer coefficients are called Pseudo Boolean 
constraints [Boc93] [Bar94]. Different methods from the Boolean domain generalise to this 
case, but there are also other methods originating in OR. 
 
Intervals 
Equality and inequality constraints over intervals [OV90] [BMV94] can be handled with 
bound propagation.  
 
Non-linear arithmetic 
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Non linear arithmetic constraints [ASS88] [Hon93] over real numbers can be handled by 
different constraint solvers. These constraint solvers use different results from computer 
algebra and mathematics. 
 
Sets 
Several different constraint solvers [Ger94] [LL91] over sets (or multi-sets) have been 
proposed. Constraints include quality, membership or set inclusion. 
 
Lists 
Equality constraints over finite lists or sequences [Col90] [LL91] can be handled in an 
efficient manner.  
 
Some other computation domains have been proposed, but are not yet widely used for 
problem solving. 
 
We will return to the different computation domains in section 6. 

5.2 Complete/Incomplete 
The amount of propagation performed by a constraint solver is an important classification 
criteria. Some constraint solvers are called complete. This means that they can decide the 
satisfiability of any set of constraints over the computation domain. This clearly is a very 
desirable property. At each step of the computation, we can decide whether the current 
constraint set still has a solution. Unfortunately, satisfiability of a constraint set may be a 
undecidable problem in some domains or may have exponential complexity. The later is the 
case for example for Boolean terms or finite domains. This restricts complete solvers to either 
relatively well structured domains like linear arithmetic terms or to special purpose solvers 
like the complete Boolean solvers. 
Incomplete solvers can be defined for most application domains. They may of course differ in 
the amount of propagation which is performed on the constraints.  

5.3 Syntactic/Semantic 
Another difference between constraint solvers is the use of syntactic or semantic methods for 
solving.  
Syntactic methods use constraint simplification and rewriting for constraint propagation. 
Most basic constraint solvers use syntactic methods like variable elimination or bound 
propagation. These methods are domain independent and can be used in similar form for 
different domains. 
Semantic methods use methods particular to the computation domain. These methods often 
require insights to the mathematical or structural properties of the domain. The handling of 
global constraints in CHIP [AB93] [BC94] uses semantic methods obtained from Operations 
Research, finite mathematics and graph theory to deduce better results than those obtained by 
the syntactic methods of the primitive constraints. 
In general, for one computation domain different combinations of complete/incomplete 
solvers using syntactic or semantic methods are possible. We will present some examples in 
the next sections. 
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6. Constraint Solving Methods 
In this section we want to give an idea of how the different constraint solvers in CLP systems 
work. For examples, we mainly use the form of constraints in the CHIP system. Other CLP 
languages use slightly different syntax. 
Figure 2 shows an overview of the methods which will be discussed. According to their 
importance to practical problems, the finite domain solver and to a lesser extend the rational 
and Boolean solvers will occupy more space in the presentation. 

6.1 Complete Solvers 
We start with a description of some complete solvers. A complete solver can decide the 
consistency of any  set of constraints over its domain. In order to improve efficiency, these 
solvers work incrementally. When a new constraint is added, the constraint set is not resolved 
completely, but only updated to check consistency. For this purpose, the constraints are 
internally kept in a solved form, a representation of the constraints in a normal form.  
All complete solvers which we discuss here use syntactical methods based on term 
manipulation and constraint simplification. 
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Figure 2: Constraint solving overview 

6.1.1 Rational 
The rational constraint solver [Col90][DSV88a] provides a complete solver over a continuous 
domain. Rational numbers instead of real numbers are used since they offer exact 
representation and arithmetic and since the rationals are closed under linear equalities and 
inequalities. If floating point numbers are used instead [JMS90], the correctness of the 
constraint system becomes compromised due to rounding and representation errors. A 
possible alternative is the use of intervals in a complete solver. This seems to be 
computationally expensive [CL94]. 

6.1.1.1 Domain 
Within the rational computation domain we can express constraints on linear terms over 
rational numbers. We can handle equality and inequality constraints as well as disequality 
constraints. Minimisation or maximisation of a term is possible with some meta-logical 
constructs. In CHIP, the primitives rmin X and rmax X are used. 

6.1.1.2 Methods 
The constraint solver for rational terms is based on Gaussian elimination and the Simplex 
algorithm. Constraints are transformed in a standard form based on a symbolic representation 
of arithmetic terms. As the number of constraints and variables, and therefore the number of 
lines and columns in the Simplex tableau are not known a priori we can not use a matrix 
representation. Inequalities are converted into equality constraints by introducing non-
negative slack variables. These additional variables can also occur in the solution. Different 
alternatives for the solved forms exist [VG90]. 
The handling of disequality constraints requires some extra work. Basically they are delayed 
until enough information is available. In some systems, non-linear constraints can be handled 
in a similar way. Their execution is delayed until the constraint becomes linear [JMS90].  
The Simplex method has a worst case exponential complexity, but this is rarely observed in 
practice. Alternatively, other linear programming methods like the interior point methods 
with polynomial complexity could be adapted as a CLP solver. 

6.1.1.3 Example 
This example is taken from [Col90]. The problem is to compute the yearly instalments in 
order to reimburse a capital borrowed from a bank. We suppose that: 
 

• the payments in instalments are fixed, 
• the interest rate is equal to 10% . 

 

payments ([], C):- 
 C ^= 0. 
payments([V | ListOfPayments], C):- 
 RemainToPay ^= (1 + 10/100)*C - V, 
 payments(ListOfPayments, RemainToPay). 
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The ^= denotes an equality constraint over rational terms. The first argument of the predicate 
payments is the list of yearly reimbursements which are necessary to reimburse C, the capital 
of the load. 
 
The first clause of the program expresses that it is not necessary to reimburse a capital which 
is null. The second clause says that the list of the n+1 successive payments is the payment V 
followed by the list of n successive payments which will allow to reimburse the capital C 
increased by 10% of the interest but decreased by the payment V already done. 
 
As an example we want to compute the values of the three payments V1, V2 and V3 such 
that: 
 

• V2 is twice the amount of V1, 
• V3 is three times the amount of V1, 
• the capital to reimburse is 1000. 

Example 1: 

?- payments([V1, 2*V1, 3*V1], 1000). 
 
V1 = 207.64430 

 
The program above can be used in different ways. As the constraints express a relation which 
is valid between the variables, we can for example reverse the query. If we want to compute 
how much we can borrow assuming that we can pay back the loan with five payments of 100, 
the query will be: 

Example 2: 

?- payments([100, 100, 100, 100, 100], C). 
 
C = 379.07867. 

 
This flexibility is a very important aspect of CLP programming. The same program can be 
used in different ways without re-programming. The constraint solver handles the details of 
how the solution is obtained without user intervention. 

6.1.2 Boolean 
The Boolean computation domain differs from the rational domain mainly in the fact that 
deciding satisfiability of Boolean constraint is NP-hard [GJ79]. This means in practice that 
the basic constraint solving method can be very expensive. 

6.1.2.1 Domain 
The Boolean computation domain consists of terms build from the truth values 0 and 1, from 
Boolean variables and operators for the functions and, or, xor, not etc. We only need to 
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handle equality constraints, as other constraints (disequality, implication) can be easily 
expressed as equalities. 

6.1.2.2 Methods 
There are a number of different methods to solve Boolean constraints in a complete solver. 
Two variants of Boolean unification have been introduced. These methods solve sets of 
equality constraints over Boolean terms. Boole’s method [BS87] is based on variable 
elimination, Loewenheim’s method [NM89] is based on the generalisation of a particular 
solution to the constraint set. Another approach is a specialised version of the Groebner bases 
method used in [ASS88]. Yet another approach uses saturation to check consistency [Col90]. 
An important aspect of Boolean constraint solving is the need of a compact data 
representation. Ordered binary decision diagrams (OBDD) offer such a compact 
representation for many common Boolean functions [Sim92]. 

6.1.2.3 Example 

Figure 3: Full adder circuit example 

The classical example of Boolean constraint solving is a full adder circuit (see [BS87]). The 
circuit computes the addition of three binary inputs X, Y, and Z as a sum S and a carry C. 
A representation of the circuit as a constraint problem is shown below: 
 

fa(X, Y, Z, S, C):- 
 S1 &= X xor Y, 
 C1 &= X and Y, 
 S &= S1 xor Z, 
 C2 &= S1 and Z, 
 C &= C1 or C2. 

 
The &= symbol denotes an equality constraint over Boolean terms. We obtain the following 
results from the query  
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?-fa(a,b,c,S,C). 
 S1 = a xor b 
 C1 = a and b 
 S = a xor b xor c 
 C2 = (a and c) xor (b and c) 
 C = (a and b) xor (a and c) xor (b and c) 

 
The results are expressed in terms of the functions and and xor and can be symbolically 
compared with a specification of the expected behaviour. Any differences show combinations 
of inputs where the expected and the actual behaviour differ. 
 

6.1.3 Pseudo Boolean 
The methods of the Boolean constraint solvers can be generalised for the Pseudo Boolean 
case [Boc93]. In this domain, we allow arithmetic constraints over 0/1 variables with integer 
coefficients. Symbolic solutions obtained by a complete solver are very difficult to use in this 
case, incomplete methods from Operations Research seem to be more promising from a 
practical point of view. 
 

6.2 Incomplete Solvers 
In this section we discuss some incomplete solvers for different computation domains. The 
most important one is the finite domain solver, which we will present in more detail in the 
next section. Other incomplete solvers can be defined for the Boolean domain or for Pseudo 
Boolean constraints. The bound propagation of finite domain constraints can be extended to 
intervals over real numbers. 

6.2.1 Finite Domains 

6.2.1.1 Domain 
Similar to consistency methods, the basic elements of finite domain solvers are variables and 
constraints. The variables range over a finite set of possible values which is known a priori. 
For practical purposes, the finite set is defined as a finite subset of the natural numbers. The 
constraints express relations over these variables. Many different types of constraints can be 
defined, we will discuss below arithmetic, symbolic and global constraints.  
As the constraint solver is not complete, a statement of the domains and the constraints will 
normally not be enough to solve a problem. The constraint solver must be combined with an 
enumeration procedure, which assigns the variables to admissible values. The choice of this 
enumeration procedure can have a huge effect on the performance of a particular program. 

6.2.1.2 Classification 
Based on the initial work on CHIP [DSV87] [DVS88a] [VH89], a number of different finite 
domain solvers have been designed. They differ in aspects of the 
 
• constraint granularity 
• richness of constraint sets 
• propagation results 
• user definable constraints/control 



Constraint Logic Programming  27/02/2008 

COSYTEC SA  13 

 
The constraint granularity defines which level of primitives are provided. Some systems are 
based on very low level constraint primitives [VSD92] [VSD92a], from which all other 
constraints can be defined. This provides a uniform framework and allows to refine constraint 
definitions based on those primitives. On the other hand, it makes application programming 
and debugging more complex and optimisation less likely. Other systems, like CHIP, provide 
constraints which correspond directly to constraints in the application domain. The constraint 
set is richer, and more easily understood without a deep understanding of the operational 
behaviour. As a disadvantage we can see the need to decide which alternative constraints to 
use and basically a restriction to the pre-defined constraint set. 
Different constraint systems also differ in the amount of propagation that is provided by the 
constraints. Especially for more complex constraints, different degrees of propagation can be 
implemented. We will discuss this distinction below in the section on semantic or syntactic 
methods. As problems become more and more complex, the need for powerful constraint 
propagation increases, even if this may mean a higher cost for simple problems. Ideally, the 
application programmer can influence the amount of propagation. 
Most systems provide some way of defining constraints by programming. More important is 
the possibility to control the enumeration scheme by easily defining heuristics and strategies 
inside the system.  

6.2.1.3 Methods 
Two basic methods for finite domain constraints should be explained at this point. The first 
one is called forward checking and is applied for disequality constraints, the second one is 
called lookahead and is applied to inequality constraints [HE80] [DSV87] [VH89]. 
Consider a disequality constraint between two variables which range over possible values 
from one to five. As long as no additional information is available, we can not solve the 
constraint. If one of the variables is bound to a value, say three, we can deduce more 
information. Since the other variable must have a different value, we can solve the constraint 
by removing the value three from the domain of the remaining variable. The general principle 
of forward checking is to wait until the constraint contains only one free variable. At this 
point, all incompatible values for this variable can be removed from the domain by the 
constraint procedure. The remaining values in the domain of the variable satisfy the 
constraint, which is therefore solved and does not have to be reconsidered. 
For inequality constraints, the stronger lookahead procedure can be applied even if no 
variables have been assigned yet. If we consider an inequality X < Y where X has a domain 
from 5 to 15 and Y a domain from 0 to 10, we note that some values for X and Y are not 
admissible. X can never take values from 10 to 15, since X is smaller than Y and the largest 
value for Y is 10. In the same way, Y can not take values from 0 to 5, since it is larger than X 
and the smallest value of X is 5. We can therefore immediately remove those values from the 
domains of X and Y.  
But this does not solve the constraint. We might still choose values for X and Y so that the 
constraint is violated. We have to check the constraint again whenever the domains of X or Y 
change until one the variables becomes instantiated. For inequalities, we do not need to look 
at values inside the domain, we can calculate with the minima and maxima of the domains of 
the variables. This bound propagation or partial lookahead is a useful specialisation of the 
more general lookahead procedure.  
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6.2.2 Boolean 
The incomplete solvers for Boolean constraints are based on the idea of local propagation. 
This idea was already exploited in constraint systems like CONSTRAINTS [SS80] or 
ThingLab [Bor81]. Local propagation (also called value propagation) amounts to deducing 
values for some variables in a constraint given the values of other variables. For instance, an 
and-constraint over the Boolean domain may be defined by rules similar to 
 
• If one input is 0, then the output is 0 
• If the output is 1, then all inputs have value 1 
 
To implement a program achieving this form of propagation, it is necessary to introduce a 
form of data driven computation where goals are suspended when not enough information is 
available and where they are reactivated when new information becomes available. 
This may be done with basic constraint primitives or the constraints can be built-in. It is also 
possible to simulate Boolean constraints with a number of other constraint solvers, this is 
shown in more detail in [SD93]. 
In CHIP, the basic Boolean constraints are built-in in form of demons. The demon for the and 
operation, for example performs the following rules 
 

and(X,Y,Z):- 
 X = 0 -> Z = 0, 
 X = 1 -> Z= Y, 
 Y = 0 -> Z = 0, 
 Y = 1 -> Z = X, 
 Z = 1 -> (X = 1, Y = 1), 
 X = Y -> X = Z. 

 
Each line of the clause defines a rule with the condition on the left side and an implication on 
the right side. The input argument of the and constraint are X and Y, the output argument is Z. 
If the constraint is called with the query 
 

?- and(0, Y, Z) 

 
the demon will wake and apply the first rule. As a result the output Z will be set to 0 and the 
constraint is solved. The value of Y is not required. 
On the other hand a query of the form 
 

?- and(X, Y, 0) 

 
will flounder. The constraint will be delayed, but not woken, as none of the rules applies and 
no additional values are set. 
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6.2.3 Pseudo Boolean 
An interesting approach is taken in [Bar94] for an incomplete solver over pseudo Boolean 
constraints. Cutting plane methods are well known in Operations Research for solving integer 
programming problems. Special cuts exists for the 0/1 case. These methods can be modified 
for an incomplete constraint solver. 

6.2.4 Intervals 
One of the basic ideas in the finite domain solver is the propagation of minimum and 
maximum domain bounds in arithmetic equality and inequality constraints. This method can 
be generalised to bound propagation over real numbers [OV90]. Variables range over 
intervals represented by two floating point numbers. In difference to the case of finite 
domains, all operations must apply safe rounding modes in order to preserve correctness of 
the results. Interval methods allow to easily combine different domains like integer subsets, 
0/1 variables or continuous domains. Unfortunately, bound propagation alone is a relatively 
weak propagation method. Intervals also do not handle disequality constraints, which 
severely restricts their usefulness for finite domain problems. 

6.2.5 Others 
There are other constraint solving methods for domains like sets, multi-sets, sequences or 
lists. Research on these topics is still ongoing [Ger94][Col90][LL91] and is not discussed 
here. 

7. Finite domain solver 
We will now return to the finite domain solver and discuss it in more detail. 

7.1 Domain concept 

7.1.1 Domain Definition 
Domain variables are defined in CHIP with the :: primitive. Several types of domains are 
provided. Some examples are 
 

X :: 1..10 
Y :: 100:200 
[A, B, C]  :: 0..100 

 
The first statement defines a single domain variable X with domain from 1 to 10. The second 
example defines a domain variable Y as an interval from 100 to 200. Interval variables can 
not be used in constraints which remove values from the middle of a domain, like disequality 
constraints. But as they do not have to represent the domain inside their data structure, they 
use less memory than explicit domains. The third example defines a list of three variables A, 
B and C which all have the same initial domain from 0 to 100. 

7.1.2 Indomain 
Another basic primitive in CHIP is the indomain predicate. This non-deterministic predicate 
can be used to enumerate all values in the domain of a variable. It has one argument, a 
domain variable, and binds the variable to the smallest values in the domain. On 
backtracking, it chooses the next value, until all values have been tested. The indomain 
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primitive can be combined with the built-in backtracking search of Prolog to define 
enumeration schemes for sets of variables. The most simple form is 
 

labeling([]). 
labeling([H|T]):- 
 indomain(H), 
 labeling(T). 

 
This predicate will search for a ground assignment of a list of domain variables, and will, on 
backtracking, enumerate all such assignments.  

7.2 Constraints 
We now look at the different constraints provided for finite domains. We distinguish three 
classes of constraints, arithmetic and symbolic constraints based on syntactic methods, and 
global constraints based on semantic methods.  

7.2.1 Syntactic Methods 
We have already discussed in section 6.2.1.3 two basic principles which are used to solve 
constraints with syntactic methods, forward checking and partial lookahead.  

7.2.1.1 Numerical Constraints 
Numerical constraints express equality and inequalities between domain variables. The 
propagation method of these  constraints is partial lookahead. Special versions of the 
constraint can be defined for the two variable case. The more general form of the constraint 
handles linear terms over domain variables. 
It is possible to extend the constraints to non-linear constraints over finite domains. 
Experiments have shown that the propagation with partial lookahead is rather slow and that 
the constraints do not occur too often in practical problems.  

7.2.1.1.1 Linear Terms 
If we extend the arithmetic constraints to linear terms, then the most general form of the 
equality constraint becomes 
 
a X a X a X c b Y b Y b Y dn n m m1 1 2 2 1 1 1 2 2 1+ + + + = + + + +... ...  
 
where X1,..Xn, Y1,..Ym are domain variables and ai, bi, ci, di are natural numbers. The 
reasoning on this constraint is again performed by partial lookahead. We obtain bounds for 
the left and right hand side of the equation  
 
a X a X a X cn n l l1 1 2 2 1+ + + + ∈... min , max  
 
and  
 
b Y b Y b Y dm m r r1 1 2 2 1+ + + + ∈... min , max  
 
If the constraint is satisfied the bounds can be strengthened to 
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min max(min , min )
max min(max , max )

=

=
l r

l r

 

 
From this we can deduce new bounds for the individual variables. 
We see this on a small example. The equality constraint over finite domains is expressed with 
the  symbol #=. From the constraint 
 

[X, Y, Z]:: 1..10, 
2*X + 3*Y + 3  #= Z 

 
we deduce the bounds 8..53 for the left hand side and 1..10 for the right hand side. If the 
constraint is satisfied, then the value must be in the range 8..10. This restricts the domain on 
Z directly. Since X has a minimum value of 1, the term 3*Y must be in the range 3..5. The 
only compatible value for Y is 1, and this leads to the possible values for X of 1 and 2. The 
constraint reasoning stops at this point. Note that the value 9 for Z can never be achieved, but 
that the bound propagation does not remove inconsistent values from the middle of the 
domain. 

7.2.1.2 Symbolic Constraints 
Symbolic constraints are useful to express non-arithmetic conditions between domain  
variables. The most basic form are disequality and the binary element constraints. Other 
symbolic constraints work on sets of domain variables. In difference to the global constraints 
defined below they use syntactic constraint propagation mechanisms like forward checking or 
partial lookahead to reduce the search space.  

7.2.1.2.1 disequality 
We will now consider a small example to show how the disequality constraints are used. 
Consider a simple graph colouring problem. The graph in Figure 4 should be coloured with 3 
colours, i.e. we have to assign colours to the nodes of the graph in such a way that nodes 
which are linked never have the same colour. We describe each node as a domain variable 

with domain 1 to 3, and each link in the graph as a disequality constraint 

Figure 4: Graph colouring example 
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graph(A,B,C,D,E):- 
 [A,B,C,D,E]  :: 1..3, 
 A ≠ B, A  ≠ C, A ≠ D, A ≠ E, B ≠ C, B ≠ E, C ≠ D, D ≠ E, 
 labeling([A,B,C,D,E]). 

 
When the program is executed, the disequality constraints are set up. They delay until the 
labeling procedure is called and assigns the first variable A to the value 1. At this moment, all 
constraints using the variable A are woken and the value 1 is removed from the domain of the 
variables B, C, D and E. In the next labeling step, the variable B is instantiated to the value 2. 
This wakes the unsolved constraints using the variable B. These constraints remove the value 
2 from the variables C and E. Since the domain of these variables now only contains one 
value, they are automatically assigned to the value 3. This wakes the two remaining 
constraints which delete the value 3 from the domain of D, which is automatically assigned to 
the value 2. At this point all variables are assigned and all constraints are satisfied. The 
labeling routine continues on ground values and the system returns the answer  1, 2, 3, 2, 3 as 
a first solution. The enumeration scheme and the constraint solver are interacting without 
explicit user control. The program still shows a very simple structure even if the actual 
calculation of an answer is completely data-driven and quite complex. 

7.2.1.2.2 element 
The element constraint expresses a functional dependency between two variables. It has the 
form 
 

element(X, L, Y) 

 
with domain variables X and Y and a list of integers L and states that Y is equal to the Xth 
element of L. The constraint reasoning on the constraint works in both directions. If the 
domain of X is restricted, then only those values in the domain of Y are retained which 
correspond to the possible entries in the list L. If alternatively the domain of Y is constrained, 
the domain of X is restricted to the corresponding indices.  
The element constraint is particularly useful to express the cost of making choices. If in an 
assignment problem a task can be assigned to five possible machines named 1 to 5, with costs 
of 10, 20 ,5, 10 and 5 respectively, then we can link the decision variable X and the cost 
variable Y via an element constraint 
 

element(X, [10, 20, 5, 10, 5], Y) 

 
The variable Y now stands for the cost of the assignment of X. If for example the domain of 
the cost variable is restricted by Y < 15, then value 2 will be removed from the domain of X. 
In the same way, a constraint X < 3, will remove the value 5 from the domain of Y. 
For many problems, using the element constraint allows to derive a more compact and natural 
problem representation and helps to avoid large sets of 0/1 decision variables.  

7.2.1.2.3 alldifferent 
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The alldifferent constraint states that all values in a list of domain variables must be different. 
It is equivalent to defining pair-wise disequality constraints between the variables. The 
constraint propagation uses forward checking as a syntactic method. We can use other, global 
constraints (see below) to express the same declarative condition and obtain better 
propagation. 
Other constraints of a similar form, like atmost, atleast and circuit have been defined. They 
all use syntactic methods, which for most problems are inferior to propagation obtained by 
global constraints. 

7.2.2 Semantic Methods 
The constraints in the previous sections were all based on syntactic, domain independent 
propagation methods. We now present some finite domain constraints based on semantic 
methods. These constraints use domain specific knowledge to derive better propagation 
results. Constraint of this type are called global constraints [AB93][BC94] and combine 
several important properties: 
 
• They model a complex condition on sets of variables. 
• The condition can be used in multiple contexts. 
• The constraint reasoning detects inconsistency in many situations and reduces the search 

space significantly. 
• They can be applied to large problem instances. 
 
In the following we will discuss four such constraints found in CHIP: 
 
• The cumulative constraint is used to express cumulative resource limits over a period. 
• The diffn constraint expresses non-overlapping constraints on n-dimensional rectangles. 
• The cycle constraint finds cycles in directed graphs. 
• The among constraints enforces constraints on sequences of numbers. 
 
The constraints can be used and combined for many different problems and significantly 
extend the range of problems which can be handled with CLP. 

7.2.2.1 cumulative 
A typical use of the cumulative constraint is found in resource restricted scheduling. We have 
to schedule a number of tasks of different duration where the tasks require certain amounts of 
manpower during their operation. The overall amount of manpower available during the 
scheduling period is fixed and the total requirements at each time point by all tasks should not 
exceed the available limit. Other constraints, like precedence, may be required in the problem 
and can be expressed with inequality constraints for example. 
 
Formulation 
This manpower constraint can be modelled with a simple form of the cumulative constraint. 
For each of the n tasks, we define domain variables Si for the start time, Di for the duration 
and Ri for the resource use of the task, and state the constraint 
 

cumulative([S1, S2,..., Sn], [D1, D2,..., Dn], [R1, R2,..., Rn], Limit) 
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where the domain variable Limit ranges between 0 and the available resource limit. The 
cumulative constraint has the mathematical definition that 
 

∀ ∈ +⎡
⎣⎢

⎤
⎦⎥

≤
≤ ≤ ≤ ≤

≤ < +
∑i S S D R Limit

j n j j n j j k
k S i S Dk k k

min( ), max( ) :
:

1 1
 

 
This means that at each timepoint between the start of the first task and the end of the last 
task the cumulative resource use by all tasks running at this time point is smaller than the 
available resource limit. We can visualise the meaning of the constraint with a little diagram. 
Figure 5 shows the profile generated by a set of tasks. In x-direction we display time, in y-
direction the resource use. A task is shown as a rectangle with duration Di, height Ri and the 
left border at time Si. The cumulative profile of all tasks must stay below the overall resource 
limit.  
 
We have shown here only the most basic form of the cumulative constraint. It has a number 
of additional parameters to express conditions on the end dates of the tasks, on the surface of 
the rectangles, on the overall end date or on intermediate resource limits. These additional 
parameters make the constraint more flexible and allow to express more complex conditions. 

Figure 5: Cumulative resource profiles 

Usage 
An important consideration when defining the constraint was to make it as general as 
possible, so that the same constraint can be used for multiple purposes. In case of the 
cumulative constraint we can use it to express a large variety different conditions. 
 
The handling of disjunctive resources can be treated as a special case of the cumulative 
constraint. A disjunctive constraint means that a resource can work on only one task at a time. 
Each task uses one resource unit, and the overall resource limit is one. These constraints are 
very common in scheduling problems, for example in the job-shop scheduling case and 
impose strong conditions on the sequence of tasks [AB93]. 
 
The cumulative constraint can also be used to express bin packing conditions. In bin packing 
problems, we have to place items of different sizes in bins of certain capacity. Often, the 
problem is to use a minimum number of bins. These constraints occur in many assignment 
and scheduling problems, where the bins correspond to resources with limited overall 
capacity [AB93]. 
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Another use of the cumulative constraint is found in producer/consumer [SC94] constraints 
for consumable resources. These constraints occur in scheduling problems where certain 
operations produce materials, like intermediate products, which are consumed by other 
operations. The constraint states that at each time point more of these products must have 
been produced than consumed, but also that the amount of stock at any time point may be 
limited. A simple modelling of these constraints using the cumulative constraint is given in 
[SC94]. 
 
The cumulative constraint can also be used for a variety of placement and packing problems 
[AB93], where it imposes important necessary conditions on the existence of solutions. 
 
Methods 
The handling of the cumulative constraint combines a large number of different techniques. 
Around 20 different methods are used to check consistency or to define lower bounds of the 
resource use. To give an idea of how these methods work, we give two very simple examples. 
 
One method compares the available space inside the resource constraint with the amount 
required by the different tasks. As an obvious bound, the following equation must be 
satisfied: 
 
Limit S D S D R

j j j j j i i
i

⋅ + − ≥ ⋅∑(max( ) min( )  

 
Different bounds on these terms can be calculated even when none of the variables have been 
assigned yet. Much stronger bounds can be obtained by a more careful reasoning on the 
available and required space inside the constraint. 
 
A second method we want to explain is the use of obligatory parts for tasks. When the start 
time and the duration of a task is known, we can judge its influence on other tasks and restrict 
the possibilities for placing them. But even if the start and duration are not yet known, we can 
deduce some information, if the domains are sufficiently restricted. Figure 6 shows a typical 
situation. A task can start between its earliest and latest start date with a minimum and 
maximum duration. Regardless of the choice of values we know that the tasks will be running 
during the shaded period, and will therefore require resources during that period. As the 
domains get more and more restricted, this obligatory part will increase. But right from the 
beginning we can check whether obligatory parts overlap and constrain each other. 
 
 

earliest start min duration max duration 

latest start min duration 
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Figure 6: Obligatory part  

All these different methods are used to deduce more about the constraint and to restrict the 
search space as early as possible. This means that even complex problems can be handled in 
an efficient, but still declarative manner. 

7.2.2.2 diffn 
The diffn constraint is another very useful construct to express that a set of n-dimensional 
rectangles do not overlap. For simplicity, we introduce the constraint here in two dimensions.  
 
Formulation 
The basic constraint is the following. We consider a set of n rectangles with lower left corner 
(Xi, Yi), with length Li and height Hi. These rectangles should not overlap. This means that 
for each pair of rectangles Ri and Rj, one of these four  condition must hold: 
 
• Ri is above Rj 
• Ri is below Rj 
• Ri is to the left of Rj 
• Ri is to the right of Rj 
 
If we want to translate this constraint into primitive conditions, we have to handle a 
disjunction of four arithmetic constraints. Experiments have shown that we obtain very poor 
propagation results, although we generate a number of constraints which is quadratic in the 
number of rectangles. Using the diffn constraint, we simply state 
 

diffn([[X1, Y1, W1, H1], [X2, Y2, W2, H2],...,[Xn, Yn, Wn, Hn]]) 

 
The one argument of diffn is a list of lists, this allows to express the condition in higher 
dimensions as well. 
 
Usage 
Obviously, the diffn constraint can be applied for many types of packing and placement 
problems in two or more dimensions. In two dimensions this also corresponds to cutting 
problems of various forms. In three dimensions, typical problems are packing of palettes or 
containers with rectangular boxes. In four dimensions, we extend the three dimensional 
problem with a choice of the container. The first three co-ordinates describe the position of a 
box within the container, the fourth dimension describes in which of several containers we 
place each box.  
 
The diffn constraint is also applied for scheduling and assignment problems, where it can 
easily model disjunctive machine assignment for tasks. The x-dimension of the constraint 
represents time, each value in the y-dimension stands for a possible machine assignment. 
Each task is represented as a rectangle, which is given by its start time, its resource 
assignment, its duration and a height 1 (see Figure 7). The non-overlapping condition states 
that no tasks can be scheduled at the same time on the same machine.  
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Figure 7: Machine assignment with diffn 

The difference to the use of the cumulative constraint lies in the fact that we not only control 
that enough resources are available globally, but that we assign each task to a particular 
machine. This type of constraint also occurs in time tabling problems and personnel 
assignment situations. 
 
Other constraints that can be expressed with the diffn constraints are set-up times in 
scheduling problems [Sim95] or location continuity for transport problems [Sim94]. Set-up 
times occur when a machine must be stopped between two operations for cleaning or to 
change tools. If the time between two tasks depends on the sequence of operations as well as 
the type of machine, then we can use the diffn constraint to model this complex condition. 
Location continuity constraints occur in transport problems if a resource may move between 
different locations. 
 
We can also use the diffn constraint for routing problems like the VLSI channel routing 
[Sim92]. 
 
Methods 
Similar to the cumulative constraint, the implementation of the diffn constraint uses a 
combination of different methods from OR and discrete mathematics. These methods are 
combined with the internal use of spatial data structures. One of the methods which is applied 
is a generalisation of the obligatory parts explained above to several dimensions.  
 
The reasoning methods of the diffn and cumulative constraints are orthogonal, i.e. they rarely 
use the same reasoning and propagation methods. For many assignment problems it is 
worthwhile to combine a diffn constraint with cumulative constraints which describe the 
cumulative relaxation of a problem. 

7.2.2.3 cycle  
The cumulative constraint was inspired by methods from OR and scheduling, the diffn 
constraint uses geometrical methods and placement algorithms. Another global constraint, the 
cycle constraint [BC94], uses ideas from graph theory and combinatorics. The constraint is 
applicable to many transportation problems, where we have to plan sequences of visits to 
different places by one or several agents. 
Mathematically speaking, this problem corresponds to finding one or several cycles in a 
directed graph. Figure 8 shows a simple example. We have to visit the places 1 to 6 by 2 
agents. From each place, only some connections to other locations are possible. They are 
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represented by directed arcs. To express this problem with constraints, we use the cycle 
constraint. 
 

Figure 8: Directed graph example 

We represent each node in the graph by a domain variable and number the nodes from 1 to n. 
The domain of a node variable is defined by the numbers of all nodes which are directly 
connected to the node. In Figure 8, the variable V1 has domain [2, 6] and the variable V2 has 
domain [3, 4] for example. The program to find two cycles in this graph is shown below: 
 

graph(X1, X2, X3, X4, X5, X6):- 
 X1 :: [2, 6], X2 :: [3, 4], X3 :: [1], X4 :: [2, 3], X5 :: [2, 6], X6 :: [2, 5], 
 cycle(2,[X1, X2, X3, X4, X5, X6]), 
 labeling([X1, X2, X3, X4, X5, X6]). 
 

 
The program finds the solution [2, 4, 1, 3, 6, 5] which consists of two cycles, one containing 
the nodes 1, 2, 4 and 3, the other containing the nodes 5 and 6. 
 
Usage 
The cycle constraint can be used for many problems from the logistics area. Tour planning 
and travelling salesman problems (TSP) can be expressed quite simply. While such programs 
are not yet competitive with specialised algorithms for pure problems like TSP, they have the 
advantage that they can handle many additional constraints which can not be expressed inside 
specialised solutions for pure problems.  
Another large application area for the cycle constraint consist in planning personnel rotations 
for example in the airline domain. The nodes of the graph are tasks to be assigned to 
personnel, connections exist if two tasks can be done consecutively by the same person. 
Constraints on location, working time, precedence etc can all be included in the model 
[BKC94]. 
Specific constraints in many scheduling problems can be expressed with the cycle constraint. 
An example is the handling of sequence dependent compatibility or set-up time conditions 
[Sim95].  
The problem of finding cycles in graphs is closely related to finding permutations with 
certain properties. The cycle constraint can be used for such problems as well [BC94]. 
 
Methods 
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The methods which are integrated in the cycle constraint mainly come from graph theoretical 
algorithms. One typical method calculates the number of connected components in the graph. 
This is a lower bound for the number of cycles that we can find. If there is no connection 
from one node to another node (via a number of intermediate nodes), then obviously these 
nodes must belong to different cycles. A number of other methods are used which for 
example remove arcs from the graph when they can not be used by any cycle. 

7.2.2.4 among 
The among constraint expresses conditions on sequences and sub-sequences of domain 
variables. We can express the condition that values in the set V1, V2, ..., Vm should occur 
atleast K times and atmost L times in any sub-sequence of length P of the sequence X1, X2, 
..., Xn. 
The condition is expressed with the constraint 
 

among(K, L, P, [X1, X2, ..., Xn], [V1, V2,..., Vm]) 

 
With the constraint 
 

among(3, 3, 5, [X1, X2, X3,..., X10], [9]) 

 
we state that each of the following sets contains the value 9 exactly three times. 
 

Figure 9: Overlapping periods for among 

Usage 
The constraint is very useful for time tabling problems or general planning problems. In this 
context, the value Xi correspond to the type of operation performed in time interval i. The 
different values of these variables mean the different activities which can be performed, like 
work or rest periods. With the among constraint we can express for example constraints that 
every interval of a certain length should contain atleast K1 rest activities or atmost L2 heavy 
duty work activities. The constraint is enforced for every sub period of length P. 
Another typical use of the among constraint is to balance the resource use over a longer time 
span by enforcing that for short periods only a maximum number of uses occur. In this way 
balancing heuristics can be implemented. 
 

 
X1         X2         X3         X4         X5        X6         X7         X8         X9         X10 

C1 

C6 
C5 

C4 
C3 

C2 



Constraint Logic Programming  27/02/2008 

COSYTEC SA  26 

Methods 
The constraint reasoning uses the interaction between the constraints on each sub-sequence to 
deduce additional, stronger conditions which must be satisfied by the ensemble of constraints. 
If, in the example of Figure 9, the variable X2 receives the value 9, then the propagation will 
enforce that X7 also has the value 9, since X3 to X6 must contain the value 9 twice 
(constraint C2) and X3 to X7 contain the value three times (constraint C3). 

7.3 Control 
So far we have talked about the different constraints which can be used to express conditions 
on finite domain problems. Given a set of variables and the constraints on them, the different 
propagation techniques of the finite domain solver will reduce the search space for the 
variables, but will normally not find a solution or detect inconsistency without search. We 
need an enumeration strategy to search through different possible assignments. As we can 
program this strategy ourselves, we have full control over the complexity of this search. A 
simple, built-in method can be used for small problems. Very complex strategies can emulate 
problem specific methods which are derived from human behaviour. 
In this section we will look at two different aspects of search, heuristic search for one 
solution and optimisation under an optimisation criterion. 

7.3.1 Heuristics 
In many problems we are interested in finding a single solution which satisfies all constraints. 
Instead of blindly enumerating alternatives, we can, by making the right choices, quickly 
guide the program through the search tree to a solution. The search for such heuristics is 
common to both OR and artificial intelligence methods. We want to show how we can 
express different types of heuristics easily within the CLP framework.  
To enumerate solutions of a finite domain problem, we have two main alternatives. 
 
• The first method consists in assigning values to the variables until a ground solution is 

found and all constraints are satisfied. This assignment method creates a search tree which 
is traversed until a leave node, a solution is found. 

• A second method consists in forcing choices among constraint alternatives and adding 
constraints to the system until the system allows only one solution and the propagation 
finds this solution. The cutting plane method from OR is such a technique. This approach 
depends on particular properties of the constraint system and is therefore very system 
specific An application to CLP is shown in [DSV90]. 

 
In the following we will only talk about the first alternative. 

7.3.1.1 Variable Selection and Value Selection 
If we choose a variable enumeration method, we have to make two types of decisions. Given 
the set of variables, we have to choose which variable from the set to assign next and which 
value to try for this variable. The variable selection rule decides which variable is taken next, 
and the value selection rule state which value is tested next. Both of them may be 
deterministic or non-deterministic. This leads to two variants of the variable assignment 
methods. 

7.3.1.2 Value Choice 
In this case we choose the variable from the set deterministically and branch on the possible 
values of the variable. This value choice is a standard enumeration method of artificial 
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intelligence. We can apply different heuristics to select the right variable and we can try the 
possible values of this variable in different order to quickly find a solution. 
 
• A well known strategy of value choice is the first fail [HE80] [VH89] method. We select 

the variable which has the smallest number of possible alternatives left in its domain. This 
limits the branching factor of the search tree, as we only have to consider a few 
alternatives for the variable. 

• Another method is the most constraining selection rule. We pick the variable which occurs 
in the largest number of constraints and therefore has a strong influence on many other 
variables. 

• Yet another selection rules is the maximum regret rule, where we choose the variable 
where the cost difference between making the cheapest choice and choosing another value 
is maximal. 

 
Most of these heuristics are also well known from specialised algorithms. Note that all these 
heuristics lead to complete search methods, where all possible solutions are examined on 
backtracking.  

7.3.1.3 Variable Choice 
Another type of selection mechanism is known from many OR problems. Instead of choosing 
one variable and branching on its possible values, we choose non-deterministically from all 
variables and assign this variable deterministically. A typical example is found in certain 
scheduling problems, where we choose one task among all unassigned tasks, fix it to its 
earliest compatible start date and enforce that no other task may start before it. On 
backtracking, instead of trying different start-dates for this task, we choose another task to 
start before all other alternatives. This variable choice strategy often explores a much smaller 
search space, but its completeness is not guaranteed. This question must be studied on a case-
by-case basis. 
 
An important question for many problems is the elimination or reduction of symmetries in the 
solutions. This removal can be handled either by adding special constraints, like enforcing a 
partial order on the values of variables to remove the symmetries from the problem, or may 
be handled inside the assignment part by excluding certain branches of the search tree. 

7.3.2 Branch and Bound 
For some problems, we want to find an optimal solution which satisfies all constraints and 
minimises a cost function. Note that many optimal solutions with the same cost may exist. 
We are typically interested in just one of these solutions. If we have a routine to explore 
feasible solutions, called the generator, and a cost function which gives a cost value for each 
ground solution, we can use the min_max meta predicate to find optimal solutions. This meta 
predicate works as follows: 

The generator predicate is called to find a solution. If a solution is found, a new 
constraint is added that the improved cost should be better than the value which has 
been found. The generator is recalled to find a better solution. If no (more) solution is 
found, the best solution so far is returned or the systems fails if none has been found 
at all. 

This re-starting optimisation is a very simple, but quite powerful optimisation method. Other 
methods have been investigated or implemented [VH89][DVS88a]. 
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Parallel search for optimal or feasible solutions is possible. This has been proposed for either 
multi-processor systems with shared memory or for networked workstations. If the search 
tree is cut at a node close to the root, then the different sub problems will be quite large and 
linear speedups are easily obtained. Due to the exponential nature of most finite domain 
problems, this linear speed-up has little influence on the type or size of problems which can 
be efficiently handled. 

8. Constraint Systems 
In this section we discuss the history and features of different CLP systems. A (simplified) 
family tree of CLP systems and developments is shown in Figure 10. 

Figure 10: CLP tool history 

Commercial systems are outlines in black, research systems are filled in grey. We will now 
discuss some of these systems in more detail.  

8.1 Prolog III 
Prolog III [Col90] was one of the first CLP systems. It is now a commercial product of 
Prologia in Marseilles. It contains three different constraint solvers 
 
• a complete solver for linear arithmetic over rationals 
• a complete solver for Boolean terms based on saturation 
• an incomplete solver for equality constraint over lists  
 
A successor, called Prolog IV, is currently under development. 

8.2 CLP(R) 
CLP(R) [JMS90] was developed at IBM and Monash University as a demonstrator for the 
CLP(X) [JL87] scheme. It contains a  
 
• complete constraint solver for linear terms over real numbers (represented by floating 

point numbers)  
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An updated, compiled version is also available. 

8.3 CHIP 
CHIP [DSV88a] was another of the first CLP systems. It was first developed at ECRC in 
Munich, and is now being marketed and developed by COSYTEC.  It contains  
 
• an incomplete solver for finite domains,  
• a complete solver for linear terms over rationals, and  
• both complete and incomplete Boolean solvers.  
 
The current version CHIP V4.1 includes a number of global constraints [AB93] [BC94] and 
offers others features for a complete application environment (objects, graphics, interfaces). 
The early versions of CHIP were the basis for a number of other developments. ECRC 
shareholder companies developed different products, CHARME (see below) by BULL, 
DecisionPower by ICL and SNI-Prolog by Siemens. ECRC has also continued research on 
constraints. A new system, called Eclipse is currently available as a research platform. 

8.4 CAL 
The Japanese research centre ICOT has produced CAL [ASS88], a constraint system written 
in Prolog with constraint solvers for  
 
• Boolean constraints (complete solver based on Groebner bases) 
• Linear terms (Simplex based, complete) 
• Non-linear constraints (Groebner bases) 
 
A parallel version GDCC is also available. 

8.5 BNR 
The BNR [OV90] system is available from Bell Northern Research. It contains a  
 
• incomplete solver for intervals 
 
which is based on bound propagation.  

8.6 Non logic based 
Motivated by the success of CLP techniques, in particular finite domain constraints, a number 
of non-logic based constraint systems have appeared on the market. These offer mainly finite 
domain constraints as C or C++ libraries. Since the host language does not support 
backtracking, they either restrict the possibilities of developing user-written labeling routines 
or provide complex control mechanisms to simulate backtracking in a user program. More 
details on these systems can be found in [Cra94]. 

8.6.1 CHARME 
The first such system was CHARME by BULL. It is based on the finite domain solver of an 
early CHIP version, but uses a proprietary, C-like language to express constraints. A 
successor, CHARME object, has been discontinued. 



Constraint Logic Programming  27/02/2008 

COSYTEC SA  30 

8.6.2 Solver 
The French company Ilog is offering Solver, a C++ library of finite domain constraints. 

8.6.3 Chleo/Chlare 
Another finite domain C library is available form the French company Axia. 

8.6.4 CHIP library 
The finite domain and the rational solvers of CHIP are also available as C/C++ libraries from 
COSYTEC. 

9. Application examples 
In this section, we show different industrial application of CLP. A large number of studies 
and research prototypes using CLP have been reported. An overview of these activities can be 
found in [JM94]. Particular examples are shown for example in [CL94] [CG93] [LW93] 
[Rue93] [Wal94]. 
 
One of the first large scale applications of CLP was the HIT scheduling system developed for 
a container terminal at Hong Kong harbour. The system, developed by ICL, used CHIP, later 
DecisionPower to schedule and assign berths for ships arriving at the harbour. The system 
used finite domain constraints to express various conditions on the schedule. 
Besides the HIT application, DecisionPower [Eva92] has been used for 
 
• Fleet management (Cathay Pacific) 
• Training staff scheduling and allocation (National Westminster Bank) 
 
An in-house application developed at Siemens uses the Boolean constraint solver inside SNI-
Prolog for digital circuit verification. The program CVE [FST91] provides interfaces to 
different design tools and checks application specific integrated circuits (ASIC) against 
formal specifications.  
 
The constraint system CHARME has been applied to a number of problems, among them 
 
• Planning production and packaging in an oil refinery (Elf) 
• Determination of product mix & manufacturing of animal nutrition products (Rhone-

Poulenc) 
• Scheduling of spare parts arrival in a car assembly factory (MCA/Renault) 
• Resource allocation in a crisis management system (Albertville 92) 
 
The constraint library of ILOG Solver has been used for  
 
• Planning “personnel evolution policy” (French Army) 
• Fleet management - Locomotives (SNCF) 
• Maintenance scheduling - Locomotives (SNCF) 
• Manpower planning for shift operation (Banque Bruxelles Lambert) 
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9.1 Applications using CHIP 
In this section we concentrate on large scale, industrial systems developed with CHIP. These 
examples show that constraint logic programming based on Prolog can be used efficiently to 
develop end-user applications. The constraint solver is a small, but crucial part of these 
applications. Other key aspects are graphical user interfaces and interfaces to data bases or 
other programs. Some background on how such applications can be developed with logic 
programming is given in [KS95]. 
 
ATLAS, [SC94] a tool for detailed production scheduling in a chemical factory, is based on a 
constraint model using numerous constraints on machines and consumable resources. The 
constraint solver is embedded in a user-friendly graphical environment and uses a relational 
database to exchange information with other information system tools. The program was co-
developed by the Belgian company Beyers and Partners and COSYTEC. 
 
FORWARD is a simulation and scheduling tool for oil refineries. In this application, CHIP is 
linked to a simulation tool written in FORTRAN which calculates results from a schedule 
obtained with the CHIP solver. The basic constraints express a non-linear optimisation 
problem over a continuous domain. The program was developed by the engineering company 
TECHNIP and COSYTEC and  is currently in used at two refineries. 
 
TACT combines planning, scheduling and assignment aspects for the operational fleet 
management in the food industry. The system uses several interacting solvers to create a 
schedule for drivers, lorries and other resources in a transportation problem. The system is 
used both to create working schedules and to handle ‘what-if’ decision support scenarios. The 
application was developed by COSYTEC. 
 
Dassault Aviation has developed several applications with CHIP. PLANE [BCP92] is a 
medium-long term scheduling system for aircraft assembly line scheduling. MADE [CDF94] 
is controlling a complex work-cell in the factory, and COCA schedules micro-tasks in the 
production process.  
 
CHIP is used inside the TFS program from TFP as part of an optimisation module for a 
process scheduling package. The constraint solver is used as a back-end invisible to the user  
 
In a similar way, Saveplan from Sligos uses CHIP as a scheduling engine for a shop-floor 
scheduling system. Saveplan is a FORTRAN scheduling package, which has been re-
engineered in Delphia Prolog. 
 
The LOCARIM application is capable of designing a computer/phone network in large 
buildings. It is used by France Telecom to design the cabling and estimate cabling costs for 
new buildings. The constraint model corresponds to an extended warehouse location problem. 
The application was developed by Telesystemes together with COSYTEC. 
 
EVA is used by EDF to plan and schedule the transport of nuclear waste between reactors 
and the reprocessing plant in Le Hague. This problem is highly constrained by the limited 
availability of transport containers and the required availability of the reactors. The program 
was co-developed by EDF and the software firm GIST. 
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PILOT [BKC94] is a planning system for crew assignment in an airline. It schedules and 
reassigns pilots and cabin crews to flights and aircraft respecting physical constraints, 
government regulations and union agreements. The program is intended for day-to-day 
management of operations with rapidly changing constraints. 
 
SEVE is a portfolio management system for CDC, a major bank in Paris, developed in-house. 
It uses non-linear constraints over rationals and finite domain constraints to choose among 
different investment options. The system can be used for “what-if” and “goal-seeking” 
scenarios, based on different assumptions on the development of the economy. 
 
Other application development with CHIP has been reported in [DVS88] [VC88] [DS91] 
[SD93] [CF94] [Ber90] [VH89] [DSV92] [DSV88] [Sim92]. 
 

10. To learn more 
This tutorial only offers a first introduction to CLP. To learn more about this field, the 
following reviews and articles are recommended: 
 
[JM94] gives a comprehensive overview of the field, discussing methods and theory as well 
as giving an application overview. 
[FHK92] gives an informal overview of CLP, with emphasis on user definable constraints. 
The book [VH89] is useful as a source of many examples and a introduction to finite domain 
constraints.  
The commercial report [Cra94] gives an overview of the non-academic tools available in the 
field. 
Books like [BC93][Bor94] give an overview of current research topics. 
The book [Sar93] presents the field of concurrent constraint languages in a theoretical 
framework. 
For a more general overview of constraint programming techniques see [FM94]. 
In addition, the newsgroup comp.constraints offers a list of FAQ (frequently asked questions) 
which contains an up-to-date list of all available academic CLP systems and which gives 
pointers to current issues in constraint logic programming. 
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