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Abstract. Coinduction has recently been introduced as a powerful tech-
nique for reasoning about unfounded sets, unbounded structures, and
interactive computations. Where induction corresponds to least fixed
point semantics, coinduction corresponds to greatest fixed point seman-
tics. In this paper we discuss the introduction of coinduction into logic
programming. We discuss applications of coinductive logic programming
to verification and model checking, lazy evaluation, concurrent logic pro-
gramming and non-monotonic reasoning.

1 Introduction

Recently coinduction has been introduced as a technique for reasoning about
unfounded sets [10], behavioral properties of programs [4, 7], and proving liveness
properties in model checking [13]. Coinduction also serves as the foundation for
lazy evaluation [8] and type inference [16] in functional programming as well as
for interactive computing [6,25].

Coinduction is the dual of induction. Induction corresponds to well-founded
structures that start from a basis which serve as the foundation for building
more complex structures. For example, natural numbers are inductively defined
via the base element zero and the successor function. Inductive definitions have
3 components: initiality, iteration and minimality [6]. Thus, the inductive def-
inition of list of numbers is as follows: (i) [1 (empty list) is a list (initiality);
(i1) [HIT] is as a list if T is a list and H is some number (iteration); and, (iii)
nothing else is a list (minimality). Minimality implies that infinite-length lists
of numbers are not members of the inductively defined set of lists of numbers.
Inductive definitions correspond to least fixed point interpretations of recursive
definitions.

Coinduction eliminates the initiality condition and replaces the minimality
condition with maximality. Thus, the coinductive definition of a list of numbers
is: (1) [HIT] is as a list if T is a list and H is some number (iteration); and,
(i1) the set of lists is the maximal set of such lists. There is no base case in
coinductive definitions, and while this may appear circular, the definition is well
formed since coinduction corresponds to the greatest fixed point interpretation of
recursive definitions (recursive definitions for which gfp interpretation is intended



are termed corecursive definitions). Thus, the set of lists under coinduction is
the set of all infinite lists of numbers (no finite lists are contained in this set).
Note, however, that if we have a recursive definition with a base case, then under
coinductive interpretation, the set defined will contain both finite and infinite-
sized elements, since in this case the gfp will also contain the Ifp. In the context
of logic programming, in the presence of coinduction, proofs may be of infinite
length. A coinductive proof essentially is an infinite-length proof.

2 Coinduction and Logic Programming

Coinduction has been incorporated in logic programming in a systematic way
only recently [22,21], where an operational semantics—similar to SLD—is given
for computing the greatest fixed point of a logic program. This operational se-
mantics called co-SLD relies on a coinductive hypothesis rule and systematically
computes elements of the gfp of a program via backtracking. The semantics is
limited to only regular proofs, i.e., those cases where the infinite behavior is
obtained by infinite repetition of a finite number of finite behaviors.

Consider the list example above. The normal logic programming definition
of a stream (list) of numbers is given as program P1 below:

stream([]).

stream([H|T]) :- number(H), stream(T).

Under SLD resolution, the query ?- stream(X) will systematically produce all
finite streams one by one starting from the [] stream. Suppose now we remove
the base case and obtain the program P2:

stream([H|T]) :- number(H), stream(T).

In the program P2, the meaning of the query 7- stream(X) is semantically null
under standard logic programming. The problems are two-fold. The Herbrand
universe does not allow for infinite terms such as X and the least Herbrand model
does not allow for infinite proofs, such as the proof of stream(X) in program P2;
yet these concepts are commonplace in computer science, and a sound mathe-
matical foundation exists for them in the field of hyperset theory [4]. Coinductive
LP extends the traditional declarative and operational semantics of LP to allow
reasoning over infinite and cyclic structures and properties [22,23,21]. In the
coinductive LP paradigm the declarative semantics of the predicate stream/1
above is given in terms of infinitary Herbrand (or co-Herbrand) universe, infini-
tary (or co-Herbrand) Herbrand base [12], and mazimal models (computed using
greatest fized-points).

Thus, under coinductive interpretation of P2, the query 7- stream(X) pro-
duces all infinite sized stream as answers, e.g., X = [1, 1, 1, ... 1, X = [1,
2, 1, 2, ... 1, etc., thus, P2 is not semantically null (but proofs may be of
infinite-length).

If we take a coinductive interpretation of program P1, then we get all finite
and infinite stream as answers to the query ?- stream(X). Coinductive logic
programming allows programmers to manipulate infinite structures. As a result,
unification has to be necessarily extended and “occurs check” removed. Thus,



unification equations such as X = [1 | X] are allowed in coinductive logic pro-
gramming; in fact, such equations will be used to represent infinite (regular)
structures in a finite manner.

The operational semantics of coinductive logic programming is given in terms
of the coinductive hypothesis rule which states that during execution, if the
current resolvent R contains a call C’ that unifies with a call C' encountered
earlier, then the call C’ succeeds; the new resolvent is R’ where §§ = mgu(C, C")
and R’ is obtained by deleting C’ from R. With this extension, a clause such as

p(L1]T]) :- p(T)
and the query ?7- p(Y) will produce an infinite answer Y = [1]Y].

Thus, given a call during execution of a logic program, where, earlier, the
candidate clauses were tried one by one via backtracking, under coinductive
logic programming the trying of candidate clauses is extended with yet more
alternatives: applying the coinductive hypothesis rule to check if the current
call will unify with any of the earlier calls. The coinductive hypothesis rule
will work for only those infinite proofs that are regular in nature, i.e., infinite
behavior is obtained by a finite number of finite behaviors interleaved infinite
number of times (such as a circular linked list). More general implementations
of coinduction are possible, but they are beyond the scope of this paper [21].

Even with regular proofs, there are many applications of coinductive logic
programming, some of which are discussed next. These include model checking,
concurrent logic programming, real-time systems, non-monotonic reasoning, etc.
We will not focus on the implementation of coinductive LP (implementation atop
YAP is available from the authors) except to note that to implement coinductive
LP, one needs to remember in a memo-table (memoize) all the calls made to
coinductive predicates.

Finally note that one has to be careful when using both inductive and coin-
ductive predicates together, since careless use can result in interleaving of least
fixed point and greatest fixed point computations. Such programs cannot be
given meaning easily. Consider the following program where the predicate p is
coinductive and q is inductive.

P - q.

q - p.
For computing the result of goal 7- q., we will use Ifp semantics, which will
produce null, implying that q should fail. Given the goal 7~ p. now, it should
also fail, since p calls q. However, if we use gfp semantics (and the coinductive
hypothesis computation rule), the goal p should succeed, which, in turn, implies
that q should succeed. Thus, naively mixing coinduction and induction leads to
contradictions. This contradiction is resolved by disallowing such cyclical nesting
of inductive and coinductive predicates, 1.e., stratifying inductive and coinductive

predicates in a program. An inductive predicate in a given strata cannot call a
coinductive predicate in a higher strata and vice versa [23,21].



3 Examples

Next, we illustrate coinductive Logic Programming via more examples.

Infinite Streams: The following example involves a combination of an induc-

tive predicate and a coinductive predicate. By default, predicates are inductive,
unless indicated otherwise. Consider the execution of the following program,
which defines a predicate that recognizes infinite streams of natural numbers.
Note that only the stream/1 predicate is coinductive, while the number/1 pred-
icate is inductive.

:— coinductive stream/1.

stream([L H | T 1) :- number(H), stream(T).
number (0) .

number (s(N)) :- number(N).

| ?7- stream([ 0, s(0), s(s(0)) | T 1).

The following is an execution trace, for the above query, of the memoization of
calls by the operational semantics. Note that calls of number/1 are not memo’ed
because number/1 is inductive.

MEMO: stream([ 0, s(0), s(s(0)) | T 1)
MEMO: stream([ s(0), s(s(0)) | T 1)
MEMO: stream([ s(s(0)) | T 1)

The next goal call is stream(T), which unifies with the first memo’ed ancestor,
and therefore immediately succeeds. Hence the original query succeeds with the
infinite solution:

T=1[0, s(0), s(s(0)) | T]

The user could force a failure here, which would cause the goal to be unified
with the next two matching memo’ed ancestor producing T = [s(0),s(s(0))|T]
and T = [s(s(0))|T] respectively. If no remaining memo’ed elements exist, the
goal 1s memo’ed, and expanded using the coinductively defined clauses, and
the process repeats—generating additional results, and effectively enumerating
the set of (rational) infinite lists of natural numbers that begin with the prefix
[0,s(0),s(s(0))].

The goal stream(T) is true whenever T is some infinite list of natural num-
bers. If number/1 was also coinductive, then stream(T) would be true whenever
T is a list containing either natural numbers or w, i.e., infinity, which is repre-
sented as an infinite application of successor s(s(s(...))). Such a term has a
finite representation as X = s(X).

Note that excluding the occurs check is necessary as such structures have a
greatest fixed-point interpretation and are in the co-Herbrand Universe. This is
in fact one of the benefits of coinductive LP. Unification without occurs check
is typically more efficient than unification with occurs check, and now it is even
possible to define non-trivial predicates on the infinite terms that result from
such unification, which are not definable in LP with rational trees. Traditional
logic programming’s least Herbrand model semantics requires SLD resolution to
unify with occurs check (or lack soundness), which adversely affects performance



in the common case. Coinductive LP, on the other hand, has a declarative se-
mantics that allows unification without doing occurs check, and it also allows
for non-trivial predicates to be defined on infinite terms resulting from such
unification.

List Membership: This example illustrates that some predicates are naturally

defined inductively, while other predicates are naturally defined coinductively.
The member/2 predicate is an example of an inherently inductive predicate.

member(H, [ H | _1J).
member(H, [ _ | T ]) :- member(H, T).

If this predicate was declared to be coinductive, then member( X, L) is true
whenever X is in L or whenever L is an infinite list, even if X is not in L! The
definition above, whether declared coinductive or not, states that the desired
element is the last element of some prefix of the list, as the following equivalent
reformulation of member/2, called membera/2 demonstrates, where drop/3 drops
a prefix ending in the desired element and returns the resulting suffix.

membera(X, L) :- drop(X, L, .).

drop(H, [H | T 1, T).

drop(H, [ - | T 1, T1) :- drop(H, T, T1).

When the predicate is inductive, this prefix must be finite, but when the predi-
cate is declared coinductive, the prefix may be infinite. Since an infinite list has
no last element, it is trivially true that the last element unifies with any other
term. This explains why the above definition, when declared to be coinductive,
is always true for infinite lists regardless of the presence of the desired element.

A mixture of inductive and coinductive predicates can be used to define a
variation of member/2, called comember/2, which is true if and only if the desired
element occurs an infinite number of times in the list. Hence it is false when the
element does not occur in the list or when the element only occurs a finite number
of times in the list. On the other hand, if comember/2 was declared inductive,
then it would always be false. Hence coinduction i1s a necessary extension.

:— coinductive comember/2.
comember (X, L) :- drop(X, L, L1), comember(X, L1).
?-X=1[1, 2, 3| X1, comember(2, X).

Answer: yes.

?-X=1[1, 2, 3, 1, 2, 31, comember(2, X).
Answer: no.
?-X=1[1, 2, 3| X1, comember(Y, X).
Answer: Y = 1;
Y = 2;
Y = 3;

Note that drop/3 will have to be evaluated using OLDT tabling for it not to go
into an infinite loop for inputs such as X = [1,2,3[X] (if X is absent from the
list L, the Ifp of drop(X,L) is null).

List Append: Let us now consider the definition of standard append predicate.



append([], X, X).
append([H|T], Y, [HIZ]) :- append(T, Y, Z).

Not only can the above definition append two finite input lists, as well as split a
finite list into two lists in the reverse direction, it can also append infinite lists
under coinductive execution. It can even split an infinite list into two lists that
when appended, equal the original infinite list. For example:

| »- Y =1[4, 5, 6, | Y], append([1, 2, 3], Y, Z).

Answer: Z = [1, 2, 3 | Y], Y= 1[4, 5, 6, | Y]

More generally, the coinductive append has interesting algebraic properties.
When the first argument is infinite, it doesn’t matter what the value of the second
argument is, as the third argument is always equal to the first. However, when
the second argument is infinite, the value of the third argument still depends on
the value of the first. This 1s illustrated below:

| - X =101, 2,3, | X1, Y=1[3, 4 | Y], append(X, Y, Z).

Answer: Z = [1, 2, 3 | Z], X = [1,2,3|X], Y = [3,4]|Y]
The coinductive append can also be used to split infinite lists as in:
| 7= Z2=1[1, 2 | Z], append(X, Y, Z).

Answers: X =[1, Y=1[1, 2121, z=1I[1, 2 | Z1;
=[], vy=0[12112], z=1I1, 2 | Z];
=[,2], Yy=2z,zZ2=1[1 | Z1;

[1, 2
=[1,2 1 X1, Yy=_12=1I1, 2 | Z];
=M1, 2,11, y=10[2112Z]1, Z=1T[1, 2 | Z1;
=[1,2,1,2], Y=2,2Z=1[1, 2 | 7];
=[1, 2,1, 2| X1, Yy=_,2=1[1, 2| 2];
Note that application of the coinductive hypothesis rule will produce solutions
in which X gets bound to an infinite list (fourth and seventh solutions above).

Sieve of Eratosthenes: Coinductive LP also allows for lazy evaluation to be
elegantly incorporated into Prolog. Lazy evaluation allows for manipulation of,
and reasoning about, cyclic and infinite data structures and properties. Lazy
evaluation can be put to fruitful use, in situations where only a finite part of
the infinite term is of interest. In the presence of coinductive LP, if the infinite
terms involved are rational, then given the goal p(X), q(X) with coinductive
predicates p/1 and q/1, then p(X) can coinductively succeed and terminate,
and then pass the resulting X to q(X). If X is bound to an infinite irrational
term during the computation, then p and q must be executed in a coroutined
manner to produce answers. That is, one of the goals must be declared the
producer of X and the other the consumer of X, and the consumer goal must not
be allowed to bind X. Consider the (coinductive) lazy logic program for the sieve
of Eratosthenes:

:— coinductive sieve/2, filter/3, comember/2.

primes(X) :- generate_infinite_list(I), sieve(I,L), comember(X,L).
sieve([H|T], [HIR]) :- filter(H,T,F), sieve(F,R).

filter(H,[1,[1).



filter(H, [KIT],[KIT1]) :- R is K mod H, R > 0, filter(H,T,T1).
filter(H,[KIT],T1) :- 0 is K mod H, filter(H,T,T1).

In the above program filter/3 removes all multiples of the first element
in the list, and then passes the filtered list recursively to sieve/2. If the call
generate_infinite 1ist(I) binds I to an inductive or rational list (e.g., X =
[2, ..., 20] or X = [2, .., 20 | X]), then filter can be completely pro-
cessed in each call to sieve/2. However, in contrast, if I is bound to an irrational
infinite list as in:

:— coinductive int/2.
int(X, [X|Y]) :- X1 is X+1, int(X1, Y).
generate_infinite_list(I) :- int(2,I).

then in primes/1 predicate, the calls generate_infinite list/1, comember/2,
and sieve/2 should be co-routined, and likewise, in the sieve/2 predicate, the
calls filter/3 and the recursive call sieve/2 must be coroutined.

4 Application to Model Checking and Verification

Model checking is a popular technique used for verifying hardware and software
systems. It works by constructing a model of the system in terms of a finite state
Kripke structure and then determining if the model satisfies various properties
specified as temporal logic formulae. The verification is performed by means of
systematically searching the state space of the Kripke structure for a counter-
example that falsifies the given property. The vast majority of properties that
are to be verified can be classified into safety properties and liveness properties.
Intuitively, safety properties are those which assert that ‘nothing bad will hap-
pen’ while liveness properties are those that assert that ‘something good will
eventually happen.’

o ——»O——»O0
-1 0 1 2 3
Figure A Figure B

Fig. 1. Example Automata

An important application of coinductive LP is in directly representing and
verifying properties of Kripke structures and w-automata (automata that ac-
cept infinite strings). Just as automata that accept finite strings can be directly



programmed using standard LP, automata that accept infinite strings can be di-
rectly represented using coinductive LP (one merely has to drop the base case).
Consider the automata (over finite strings) shown in Figure 1.A which is repre-
sented by the logic program below.

automata([X|T], St) :- trans(St, X, NewSt), automata(T, NewSt).
automata([], St) :- final(St).

trans(s0, a, s1). trans(sl, b, s2).
trans(s2, c, s3). trans(s3, 4, s0).
trans(s2, e, s0). final(s2).

A call to ?7- automata(X, s0) in a standard LP system will generate all
finite strings accepted by this automata. Now suppose we want to turn this
automata into an w-automata, i.e., it accepts infinite strings (an infinite string
is accepted if states designated as final state are traversed infinite number of
times), then the (coinductive) logic program that simulates this automata can
be obtained by simply dropping the base case (for the moment, we’ll ignore the
requirement that final-designated states occur infinitely often; this can be easily
checked by comember/2).

automata([X|T], St) :- trans(St, X, NewSt), automata(T, NewSt).
Under coinductive semantics, posing the query | ?- automata(X, s0). will
yield the solutions:

X=1[a, b, c, d | X];

X =[a, b, e | X];

This feature of coinductive LP can be leveraged to directly and elegantly verify
liveness properties in model checking, multi-valued model checking, for modeling
and verifying properties of timed w-automata, checking for bisimilarity, etc.

4.1 Verifying Liveness Properties

It is well known that safety properties can be verified by reachability analysis,
i.e, if a counter-example to the property exists, it can be finitely determined
by enumerating all the reachable states of the Kripke structure. Verification of
safety properties amounts to computing least fixed-points and thus is elegantly
handled by standard LP systems extended with tabling [18]. Verification of live-
ness properties under such tabled LP systems is however problematic. This is
because counterexamples to liveness properties take the form of infinite traces,
which are semantically expressed as greatest fixed-points. Tabled LP systems
[18] work around this problem by transforming the temporal formula denoting
the property into a semantically equivalent least fixed-point formula, which can
then be executed as a tabled logic program. This transformation is quite complex
as it uses a sequence of nested negations.

In contrast, coinductive LP can be directly used to verify liveness properties.
Coinductive LP can directly compute counterexamples using greatest fixed-point
temporal formulae without requiring any transformation. Intuitively, a state is



not live if it can be reached via an infinite loop (cycle). Liveness counterexam-
ples can be found by (coinductively) enumerating all possible states that can be
reached via infinite loops and then by determining if any of these states con-
stitutes a valid counterexample. Consider the example of a modulo 4 counter,
adapted from [20] (See Figure 1.B). For correct operation of the counter, we
must verify that along every path the state s_; is not reached, i.e., there is at
least one infinite trace of the system along which s_; never occurs. This property
is naturally specified as a greatest fixed-point formula and can be verified coin-
ductively. A simple coinductive logic program Sp to solve the problem is shown
below. We compose the counter program with the negation of the property, i.e.,
N1 >= 0. Note that sm1 represents the state corresponding to -1.

:— coinductive s0/2, s1/2, s2/2, s3/2, sml/2.
sm1i(N, [sm1|T]) :- N1 is N+1 mod 4, sO(N1,T), Ni1>=0.
sO(N, [sOIT]) :- N1 is N+1 mod 4, s1(N1,T), Ni1>=0.
s1(N,[s1|T]) :- N1 is N+1 mod 4, s2(N1,T), N1>=0.
s2(N, [s2|T]) :- N1 is N+1 mod 4, s3(N1,T), N1>=0.
s3(N, [s3|T]) :- N1 is N+1 mod 4, sO(N1,T), N1>=0.

The counter is coded as a cyclic program that loops back to state sy via
states sy, so and s3. State s_; represents a state where the counter has the value
—1. The property P to be verified is whether the state s_; is live. The query
:— smi1(-1,X), comember(smi,X) where the comember predicate coinductively
checks that sm1 occurs in X infinitely often, will fail implying inclusion of the
property in the model, i.e., the absence of a counterexample to the property.
The benefit of our approach is that we do not have to transform the model into
a form amenable to safety checking. This transformation is expensive in general
and can reportedly increase the time and memory requirements by 6-folds [20].

This direct approach to verifying liveness properties also applies to multi-
valued model checking of the p-calculus [13]. Multi-valued model checking is
used to model systems, whose specification has varying degrees of inconsistency
or incompleteness. Earlier effort [13] verified liveness properties by computing the
gfp which was found using negation based transformation described earlier. With
coinduction, the gfp can be computed directly as in standard model checking as
described above. We do not give details due to lack of space. Coinductive LP
can also be used to check for bisimilarity. Bisimilarity is reduced to coinductively
checking if two w-automata accept the same set of rational infinite strings.

4.2 Verifying Properties of Timed Automata

Timed automata are simple extensions of w-automata with stopwatches [1],
and are easily modeled as coinductive logic programs with CLP(R) [9]. Timed
automata can be modeled with coinductive logic programs together with con-
straints over reals for modeling clock constraints. The coinductive logic program
with CLP(R) constraints for modeling the classic train-gate-controller problem is
shown below. This program runs on our implementation of coinduction on YAP
[19] extended with CLP(R). The system can be queried to enumerate all the



infinite strings that will be accepted by the automata and that meet the time
constraints. Safety and liveness properties can be checked by negating those
properties, and checking that they fail for each string accepted by the automata
with the help of comember/2 predicate.

The code for the timed automata represented in Fig 2 is given below. The
predicate driver/9, that composes the 3 automata, is coinductive, as it executes
forever.

idle . idle

ide

Y

(i) train (i) controller (iii) gate

Fig. 2. Train-Controller-Gate Timed Automata

:- use_module(library(clpr)).
:— coinductive driver/9.

train(X,up,X,T1,T2,T2). gate(s0,lower,s1,T1,T2,T3) :-

train(s0,approach,s1,T1,T2,T3) :- {T3 = T1}.

{T3 = T1}. gate(s1,down,s2,T1,T2,T3) :-
train(sl,in,s2,T1,T2,T3) :- {T3 = T2,

{T1 - T2 > 2, Tl - T2 < 1}.

T3 = T2}. gate(s2,raise,s3,T1,T2,T3) :-
train(s2,out,s3,T1,T2,T2). {T3 = T1}.

train(s3,exit,s0,T1,T2,T3) :-

{T3 = T2,

T1 - T2 < 57.
train(X,lower,X,T1,T2,T2).
train(X,down,X,T1,T2,T2).
train(X,raise,X,T1,T2,T2).

contr(s0,approach,s1,T1,T2,T1).

gate(s3,up,s0,T1,T2,T3) :-
{T3=T2, T1 - T2 > 1,
Ti - T2 < 2%}.
gate(X,approach,X,T1,T2,T2).
gate(X,in,X,T1,T2,T2).
gate(X,out,X,T1,T2,T2).
gate(X,exit,X,T1,T2,T2).

contr(sl,lower,s2,T1,T2,T3) :- {T3 = T2, T1 - T2 = 1}.

contr(s2,exit,s3,T1,T2,T1).

contr(s3,raise,s0,T1,T2,T2) :- {T1-T2 < 1}.

contr(X,in,X,T1,T2,T2).
contr(X,up,X,T1,T2,T2).

contr(X,out,X,T1,T2,T2).
contr(X,down,X,T1,T2,T2).

driver(S0,S1,S2,T,T0,T1,T2, [X|Rest], [(X,T)IR]) :-

train(S0,X,S00,T,T0,T00),
contr(si,X,S10,T,T1,T10) ,
gate(S2,X,S20,T,T2,T20),



{Ta > T},
driver(S00,510,520,TA,T00,T10,T20,Rest,R).

Given the query:

| ?- driver(s0, sO, s0, T, Ta, Tb, Tc, X, R).
We obtain the following infinite lists as answers (A, B, C, .., etc. are the time
on the wall clock when the corresponding event occurs).

R = [(approach,h), (lower,B), (down,C),(in,D), (out,E),
(exit,F),(raise,G), (up,H) |R],
X = [approach,lower,down,in,out,exit,raise,up | X] 7 ;

R= [(approach,4d), (lower,B),(down,C),(in,D), (out,E),
(exit,F),(raise,G), (approach,H), (up,I)|R],
X = [approach,lower,down,in,out,exit,raise,approach,up|X] ? ;

no

A call to coinductively defined sublist/2 predicate (not shown here) can then
be used to check the safety property that the signal down occurs before in by
checking that the infinite list Y = [down, in | Y] is coinductively contained
in the infinite string X above. This ensure that the system satisfies the safety
property, namely, that the gate is down before the train is in the gate area. A
similar approach can be used to verify the liveness property, namely that the
gate will eventually go up [9], by finding the maximum difference between the
times the gate goes down and later comes up.

Note that from the answers above, one can see that another train can ap-
proach before the gate goes up, however, this behavior is entirely consistent as
the gate will go up and will come down again, by the time the second train
arrives in the gate area (see Figure 2). We can find out the minimum time that
must intervene between two trains for the system to remain safe by finding he
minimum value the time that elapses between two approach signals given the
above constraints (answer is computed to be 7 units of time).

4.3 Verification of Nested Finite and Infinite Automata

We next illustrate application of coinductive logic programming to verification in
which infinite (coinductive) and finite (inductive) automata are nested. Tt is well
known that reachability-based inductive techniques are not suitable for verifying
liveness properties [17]. Further, it is also well known that, in general, verification
of liveness properties can be reduced to verification of termination under the
assumption of fairness [24] and that fairness properties can be specified in terms
of alternating fixed-point temporal logic formulas [11]. Earlier we showed that
co-inductive LP allows one to verify a class of liveness properties in the absence of
fairness constraints. Coinductive LP further permits us to verify a more general
class of all liveness properties that can only be verified in the presence of fairness
constraints.



Essentially, a coinductive LLP based approach demonstrates that if a model
satisfies the fairness constraint then, it also satisfies the liveness property. This is
achieved by composing a program Ppy, which encodes the model, with a program
Pr, which encodes the fairness constraint and a program Pxp, which encodes the
negation of the liveness property, to obtain a composite program P,. We then
compute the stratified alternating fixed-point of the logic program P, and check
for the presence of the initial state of the model in the stratified alternating
fixed-point. If the alternating fixed-point contains the initial state, then that
implies the presence of a valid counterexample that violates the given liveness
property. On the other hand, if the alternating fixed-point is empty, then that
implies that no counterexample can be constructed, which in turn implies that
the model satisfies the given liveness property.

We will now illustrate our approach using a very simple example (which can
be programmed on our coinductive LP implementation). Consider the model
shown in Figure 3, consisting of four states. The system starts off in state s0,
enters state s1, performs a finite amount of work in state s1 and then exits to
state s2, from where it transitions back to state s0, and repeats the entire loop
again, an infinite number of times. The system might encounter an error, causing
a transition to state s3; corrective action is taken, followed by a transition back
to s0 (this can also happen infinitely often). The system is modeled by the Prolog
code shown in Figure 3.

work - coninductive state/2.
state(s0,[s0,is1|T]):-enter, work,
state(s1,T).
state(sl,[s1|T]):-exit, state(s2,T).
state(s2,[s2|T]):-repeat, state(sO,T).
state(s0,[sO|T]):-error, state(s3,T).
state(s3,[s3|T]):-repeat, state(sO,T).

work :- work.

wor k.

enter. repeat .
exit. error.

Fig. 3. Nested Automata

This simple example illustrates the power of co-logic programming (co-LP,
for brevity, that contains both inductive and coinductive LP) when compared
to purely inductive or purely coinductive LP. Note that the computation rep-
resented by the state machine in the example consists of two stratified loops,
represented by recursive predicates. The outer loop (predicate state/2) is coin-
ductive and represents an infinite computation (hence it is declared as coin-
ductive as we are interested in its gfp). The inner loop (predicate work/0) is
inductive and represents a bounded computation (we are interested in its 1fp).
The semantics therefore evaluates work/0 using SLD resolution and state/2
using co-SLD resolution.



The property that we would like to verify is that the computation in the
state s1 represented by work always terminates. In order to do so, we require
the fairness property: “if the transition enter occurs infinitely often, then the
transition exit also occurs infinitely often”. The stratified alternating fixed-
point semantics ensures that this fairness constraint holds by computing the
minimal model of the inductive program represented by the predicate state/1
and then composing it with the coinductive program. The resulting program is
then composed with the property, “the state s2 is not present in any trace of
the infinite computation,” which is the negation of the given liveness property.
The negated property is represented by the predicate absent/2. Thus, given the
program above, the user will pose the query:

| ?- state(s0,X), absent(s2,X).
where absent/2 is a coinductive predicate that checks that the state s2 is not
present in the (infinite) list X infinitely often (it is the negated version of the
coinductive comember predicate described earlier). The co-LP system will re-
spond with a solution: X = [s0, s3 | X], a counterexample which states that
there is an infinite path not containing s2. One can see that this corresponds to
the (infinite) behavior of the system if error is encountered.

5 Applications to Non-Monotonic Reasoning

We next consider application of coinductive LP to non-monotonic reasoning,
in particular its manifestation as answer set programming (ASP) [5,14]. ASP
has been proposed as an elegant way of introducing non-monotonic reasoning
into logic programming [3]. ASP has been steadily gaining popularity since its
inception due to its applications to planning, action-description, Al, etc.

We believe that if one were to add negation as failure to coinductive LP then
one would obtain something resembling answer set programming. To support
negation as failure in coinductive LP, we have to extend the coinductive hypoth-
esis rule: given the goal not (G), if we encounter not (G’) during the proof, and G
and G’ are unifiable, then not (G) succeeds. Since the coinductive hypothesis rule
provides a method for goal-directed execution of coinductive logic programs, it
can also be used for goal-directed execution of answer set programs. As discussed
earlier, coinduction is a technique for specifying unfounded set; likewise, answer
set programs are also recursive specifications (containing negation as failure) for
computing unfounded sets. Obviously, coinductive LP and ASP must be related.

All approaches to implementing ASP are based on bottom up execution of
finitely grounded programs. If a top-down execution scheme can be designed
for ASP, then ASP can be extended to include predicates over general terms.
We outline how this can be achieved using our top-down implementation of
coinduction. In fact, a top-down interpreter for ASP (restricted to propositions
at present) can be trivially realized on top of our implementation of coinductive
LP. Work is in progress to implement a top-down interpreter for ASP with
general predicates [15].



5.1 A Top-Down Algorithm for Computing Answer Sets

In top-down execution of answer set programs, given a (propositional) query
goal Q, we are interested in finding out all the answer sets that contain Q, one by
one, via backtracking. If Q is not in any answer set or if there are no answer sets
at all, then the query should fail. In the former case, the query not(Q) should
succeed and should enumerate all answer sets which do not contain Q, one by
one, via backtracking.

The top down execution algorithm is quite simply realized with the help of
coinduction. The traditional Gelfond-Lifschitz (GL) method [3] starts with a
candidate answer set, computes a residual program via the GL-transformation,
and then finds the Ifp of the residual program. The candidate answer set is
an answer set, if it equals the Ifp of the residual program. Intuitively, in our
top down execution algorithm, the propositions in the candidate answer set are
regarded as hypotheses which are treated as facts during top-down coinductive
execution. A call 1s said to be a positive call if it is in the scope of even number
of negations, similarly, a call is said to be a negatiwve call if it is in the scope of
odd number of negations.

The top down algorithm works as follows: suppose the current call (say, p)
is a positive call, then it will be placed in a positive coinductive hypothesis set
(PCHS), a matching rule will be found and the Prolog-style expansion done. The
new resolvent will be processed left to right, except that every positive call will
be continued to be placed in the positive hypothesis set, while a negative call
will be placed in the negative coinductive hypothesis set (NCHS). If a positive
call p is encountered again, then if p is in PCHS, the call immediately succeeds;
if it 18 in NCHS, then there is an inconsistency and backtracking takes place. If
a negative call (say, not(p)) is encountered for the first time, p will be placed
in the NCHS. If a negative proposition not(p) is encountered later, then if p
is in NCHS, not(p) succeeds; if p is in PCHS, then there is an inconsistency
and backtracking takes place. Once the execution is over with success, (part of)
the potential answer set can be found in the PCHS. The set NCHS contains
propositions that are not in the answer set.

Essentially, the algorithm explicitly keeps track of propositions that are in
the answer set (PCHS) and those that are not in the answer set (NCHS). Any
time, a situation is encountered in which a proposition is both in the answer set
and not in the answer set, an inconsistency is declared and backtracking ensues.

We still need one more step. ASP can specify the falsification of a goal via
constraints. For example, the constraint p := ¢, not p. restricts q (and p) to
not be in the answer set (unless p happens to be in the answer via other rules).
For such rules of the form

p :—- B.
if not (p) is reachable via goals in the body B, we need to explicitly ensure that
the potential answer set does not contain a proposition that is falsified by this
rule.

Given an answer set program, a rule p :- B. is said to be non-constraint
rule (NC-rule) if p is reachable through calls in the body B through an even



number of negation as failure calls, otherwise it is said to be a constraint rule
(C-rule). Thus, given the ASP program:

p:i-—a,notq. ... (1)
q:-b,notr. ... (i1)
r:-c,notp. ... (iii)
q:-d, notp. ... (iv)

rules (i), (ii) and (iii) are C-rules, while (i) and (iv) are NC-rules. A rule can be
both an NC-rule as well as a C-rule (such as rule (i)). NC-rules will be used to
compute the potential answers sets, while C-rules will only be used to reject or
accept potential answer sets. Rejection or acceptance of a potential answer set is
accomplished as follows: For each C-rule of the form r; :- B, where B directly
or indirectly leads to not(r;), we construct a new rule:

chk_r; :- not(r;), B.

Next, we construct a new rule:

nmr_check :- not(chk.r;), not(chkrs), ..., not(chkr;),

Now, the top level query, 7-Q, is transformed into: ?- Q, nmr_check. Q will
be executed using only the NC-rules to generate potential answer sets, which
will be subsequently either rejected or accepted by the call to nmr_check. If
nmr_check succeeds, the potential answer set is an answer set. If nmr_check
fails, the potential answer set is rejected and backtracking occurs.

For simplicity of illustration, we assume that for each NC-rule, we construct
its negated version which will be expanded when a corresponding negative call
is encountered (in the implementation, however, this is done implicitly). Thus,
given an NC-rule for a proposition p of the form:

p :—- B;.
p :— Ba.
p :—- B;.

its negated version will be:

not_p :- not(B;), not(By), ..., not(B;),

If a call to not(p) 1s encountered, then this negated not_p rule will be used to
expand it.

Note, finally, that the answer sets reported may be partial, because an answer
set may be a union of multiple independent answer subsets, and the other subsets
may not be deducible from the query goal due to the nature of the rules. The
top-down algorithm for computing the (partial) answer set of an ASP program
can be summarized as follows.

1. Initialize PCHS and NCHS to empty (these are maintained as global vari-
ables in our implementation of top-down ASP atop our coinductive YAP
implementation). Declare every proposition in the ASP as a coinductive
proposition.

2. Identify the set of C-rules and NC-rules in the program.

3. Assert chk_r; rule for every C-rule with r; as head and build the nmr_check
rule; append the call nmr_check to the initial query.



4. For each NC-rule, construct its negated version.

5. For every positive call p: if p € PCHS, then p succeeds coinductively and
the next call in the resolvent is executed, else if p € NCHS, then there is an
inconsistency and backtracking ensues, else (p is not in PCHS or in NCHS)
add p to PCHS and expand p using NC-rules that have p in the head (create
a choice-point if there are multiple matching rules).

6. For every negative call of the form not(p): if p € NCHS, then not(p) suc-
ceeds coinductively and the next call in the resolvent is executed, else if p
€ PCHS, then there is an inconsistency and backtracking ensues, else (p is
not in PCHS or in NCHS) add p to NCHS and expand not(p) using the
negated not_p rule for p.

Next, let’s consider an example. Consider the following program:

p :- not(q).
q :- not(r).
r :- not(p).
q :- not(p).

After, step 1-4, we obtain the following program.

:- coinductive p/0, q/0, r/0.

p :- not(q).
q :- not(r).
r :- not(p).
q :- not(p).

chk_p :- not(p), not(q).
chk_q :- not(q), not(r).
chk_r :- not(r), not(p).

not_p :- q.
not_q :- r,p.
not_r :- p.

nmr_chk :- not(chk_p), not(chk_q), not(chk_r).

The ASP program above has {q,r} as the only answer set. Given the trans-
formed program, the query: ?- q will produce {q} as the answer set (with p
known to be not in the answer set). The query ?- r will produce the answer set
{q,r} (with p known to be not in the answer set). It is easy to see why the first
query ?- q will not deduce r to be in the answer set: there is nothing in the
NC-rules that relates q and r.



5.2 Correctness of the Top-down Algorithm

We next outline a proof of correctness of the top-down method. First, note that
the above top down method corresponds to computing the greatest fix point of
the residual program rather than the least fix point. Second, we argue that the
Gelfond-Lifschitz method for checking if a given set is an answer set [5] should
compute the greatest fix point of the residual program instead of the least fixed
point. A little thought will reflect that circular reasoning entailed by rules such
as

P = p.

is present in ASP through rules of the form:
p :- not(q).
q :- not(p).

If we extend the GL method, so that instead of computing the Ifp, we compute
the gfp of the residual program, then the GL transformation can be modified to
remove positive goals as well. Given an answer set program, whose answer set is
guessed to be A, the modified GL transform then becomes as follows:

1. Remove all those rules whose body contains not (p), where p € A.

2. Remove all those rules whose body contains p, where p ¢ A.

3. From body of each rule, remove all goals of the form not (p), where p & A.
4. From body of each rule, remove all positive goals p, where p € A.

After application of this transform, the residual program is a set of facts. If
this set of facts is the same as A, then A is an answer set. It is easy to see that
our top-down method mimics the modified GL-transformation (note, however,
that our top-down algorithm can be easily modified to work with the original
GL method which computes the Ifp of the residual program: we merely have to
disallow making inference from positive coinductive loops of the formp :- p.).

In the top down algorithm, whenever a positive (resp. negative) predicate
is called, it is stored in the positive (resp. negative) coinductive hypothesis set.
This is equivalent to removing the positive (resp. negative) predicate from the
body of all the rules, since a second call to predicate will trivially succeed by the
principle of coinduction. Given a predicate p (resp. not(p)) where p is in the
positive (resp. negative) coinductive hypothesis set, if a call is made to not (p)
(resp. p), then the call fails. This amounts to ‘removing the rule’ in GL transform
[2].

The top down method described above can also be extended for deducing
answers sets of programs containing first order predicates [15].

6 Conclusions

In this paper we gave an introduction to coinductiive logic programming. Prac-
tical applications of coinductive LP to verification and model checking and to
non-monotonic reasoning were also discussed. Coinductive reasoning can also be
included in first order theorem proving in a manner similar to coinductive LP
[15].
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