Co-Logic Programming: Extending Logic Programming
with Coinduction

L. Simon, A. Mallya, A. Bansal, G. Gupta
Department of Computer Science
The University of Texas at Dallas
Richardson, TX

ABSTRACT

Traditional logic programming with its minimal Herbrand
model semantics is useful for declaratively defining finite
data structures and properties, while coinductive logic pro-
gramming' allows for logic programming with infinite data
structures and properties. In this paper we present the
paradigm of co-logic programming (co-LP for brevity). that
combines both inductive and coinductive logic programming
and presents its theory and applications. Co-LP allows pred-
icates to be annotated as coinductive; by default, unanno-
tated predicates are assumed to be inductive. Coinductive
predicates can call inductive predicates and wvice versa, the
only exception being that no cycles are allowed through al-
ternating calls to inductive and coinductive predicates. Co-
LP is a natural generalization of logic programming and
coinductive logic programming, which in turn generalizes
other extensions of logic programming, such as infinite trees,
lazy predicates, and concurrent communicating predicates.
The declarative semantics for co-LP is defined, and a cor-
responding top-down, goal-directed operational semantics is
provided in terms of alternating SL.D) and co-SLD semantics.
Co-LP has applications to rational trees, verifying infinitary
properties, lazy evaluation, concurrent logic programming,
model checking, bisimilarity proofs, Answer Set Program-
ming (ASP), etc., some of which are discussed. An outline
of a prototype implementation realized by modifying YAP
Prolog’s engine at the WAM level is also described.

1. INTRODUCTION

The traditional semantics for logic programming (LP) is
inadequate for various programming practices such as pro-
gramming with infinite data structures and corecursion [3].
While such programs are theoretically interesting, their prac-

"Note that coinductive LP is not at all related to inductive
LP, the common term used to refer to LLP systems for learn-
ing rules [17]. In fact, throughout this paper we use the
term inductive LP to refer to traditional SLD (or OLDT)
resolution-based LP.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

tical applications include improved modularization of pro-
grams as seen in lazy functional programming languages,
rational terms, and model checking. For example, we would
like programs such as the following program, which describes
infinite binary streams, to be semantically meaningful, i.e.
not semantically null.

bit(0).
bit(1).
bitstream([HIT]) :- bit(H), bitstream(T).
| 7= X =1[0, 1, 1, 0 | X], bitstream(X).

We would like the above query to have a finite derivation
and return a positive answer; however, aside from the bit
predicate, the least fixed-point (lfp) semantics of the above
program is null, and its evaluation using SLD resolution
lacks a finite derivation. The problems are two-fold. The
Herbrand universe does not allow for infinite terms such as
X and the least Herbrand model does not allow for infinite
proofs, such as the proof of bitstream(X); yet these con-
cepts are commonplace in computer science, and a sound
mathematical foundation exists for them in the field of hy-
perset theory [3]. Therefore, we must not exclude these
concepts from logic programming, just because they break
with tradition. The traditional declarative semantics of L.P
must be extended in order to reason about infinite and cyclic
structures and properties. This has indeed been done and
the paradigm of coinductive logic programming defined [26]
and its declarative and operational semantics given. In the
coinductive LLP paradigm the declarative semantics of the
predicate bitstream/1 above is given in terms of infinitary
Herbrand universe, infinitary Herbrand base, and mazimal
models. The operational semantics is given in terms of the
coinductive hypothesis rule which states that during execu-
tion, if the current resolvent R contains a call C’ that unifies
with a call C encountered earlier, then the call C’ succeeds;
the new resolvent is R'§ where § = mgu(C,C’) and R’ is ob-
tained by deleting C’ from R. With this extension a clause
such as p([1]T]) :- p(T) and the query p(Y) will produce
an infinite answer Y = [1]Y].

Applications of purely coinductive logic programming to
fields such as model checking, concurrent logic program-
ming, real-time systems, etc., can also be found in [26].
There are problems for which coinductive LP is better suited
than traditional inductive LP. Conversely, there are prob-
lems for which inductive LP is better suited than coinduc-
tive LP. But there are even more problems where both coin-
ductive and inductive logic programming paradigms are si-
multaneously useful. In this paper we examine the com-
bination of coinductive and inductive LLP. We christen the

new paradigm co-logic programming. However, such a com-
bination is not straightforward as cyclical nesting of induc-
tive and coinductive definitions results in programs to which
proper semantics cannot be given. Co-logic programming
combines traditional and coinductive logic programming by
allowing predicates to be optionally annotated as being coin-
ductive; by default, unannotated predicates are interpreted
as inductive. In our formulation of co-LP, coinductive pred-
icates can call inductive predicates and vice versa, with the
only exception being that no cycles are allowed through al-
ternating calls to inductive and coinductive predicates. This
results in a natural generalization of logic programming and
coinductive logic programming, which in turn generalizes
other extensions of logic programming, such as infinite trees,
lazy predicates, and concurrent communicating predicates.
In this paper the declarative semantics for co-LP is defined,
and a corresponding top-down, goal-directed operational se-
mantics is provided in terms of alternating SL.D and co-SLD
semantics. Applications of Co-LP are also discussed. Co-
LP has applications to rational trees, verifying infinitary
properties, lazy evaluation, concurrent logic programming,
model checking, bisimilarity proofs, Answer Set Program-
ming (ASP), etc. (not all applications are discussed in this
paper due to lack of space). Finally, an outline of a proto-
type implementation of co-LLP realized by modifying YAP
Prolog’s engine at the WAM level is also described.

Our work can be thought of as developing a practical and
reasonable top-down operational semantics for computing
the alternating least and greatest fixed-point of a logic pro-
grams. The rest of the paper is organized as follows. Section
2 gives co-LLP programs meaningful declarative and opera-
tional semantics along with a proof that both semantics are
equivalent. Section 3 discusses related work. Section 4 de-
scribes an implementation of co-L.P based on modifying YAP
Prolog’s engine [22], followed by section 5 which presents ap-
plications of co-LLP to model checking, lazy evaluation, etc.
Finally, section 6 discusses future work for extending co-L.P
and its applications. We have tried to keep the paper self-
contained, however, knowledge of coinduction [?, 26] will be

helpful.

2. SYNTAX AND SEMANTICS

Traditionally, declarative semantics for logic programming
has been given using the notions of Herbrand universe, Her-
brand base, and the minimal model. Each is defined as a
least fixed-point, and the set is manifested in traditional set
theory. The declarative semantics of co-LLP, on the other
hand, takes the dual of each of these notions, in hyperset
theory with the aziom of plenitude [3], and allows both no-
tions to be interleaved.

This section formally defines co-L.P programs, but first it
presents a standard account of set theoretic induction and
coinduction in section 2.1. Next, a standard account is given
for the abstract syntax of co-LLP programs. Then the declar-
ative semantics is defined in section 2.3, and the operational
semantics is formally defined in section 2.4. Finally, these
are demonstrated to be equivalent in section 2.6. After that,
in section 4, a real world implementation of the operational
semantics is described.

2.1 Induction and Coinduction

A naive attempt to prove a property of the natural num-
bers involves demonstrating the property for 0, 1, 2, In

order for such a proof to be comprehensive, it must be infi-
nite. However, an infinite proof cannot be explicitly written;
the principle of proof by induction can be used to represent
such an infinite proof in a finite form. This is precisely what
co-LLP does as well. That is, co-LLP uses the principle of
proof by coinduction for representing infinite proofs in a fi-
nite form. The difference between induction and coinduction
is made more obvious later.

Following the account given in Barwise [3] and Pierce [18],
we briefly review the set theoretic notions of induction and
coinduction, which are defined in terms of monotonic func-
tions on sets and least and greatest fixed-points, which exist
and are unique according to Theorem 2.1. For the remaining
discussion, it is assumed that all objects such as elements,
sets, and functions are taken from the universe of hypersets
with the axiom of plenitude. Details can be found in [3].

Definition 2.1 A functionT" on sets is monotonicif S C T
implies I'(S) C T'(T). Such functions are called generating
functions.

Generating functions can be thought of as a definition for
creating objects, such as terms and proofs. The following
example demonstrates one such definition.

Example 2.1 LetT'x be a function on sets: T'xr(S) = {0}U
{succ(z) | z € S}. Obviously, I'x is a monotonic function,
and intuitively, it defines the set of natural numbers, as will
be demonstrated below.

Definition 2.2 Let S be a set.
1. S isT-closed if T'(S) C S;
2. S is -justified if S C T(S);
8. S is a fixed-point of I' if S is both I'-closed and justified.

A set S is ['-closed when every object created by the gen-
erator ['is already in S. Similarly, a set S is I'-justified when
every object in S is created or justified by the generator.

One of the purposes of mathematics is to provide unam-
biguous means for defining concepts. Theorem 2.1 shows
that a generating function I' can be used for giving a precise
definition of a set of objects in terms of the least or great-
est fixed-point of I', as these fixed-points are guaranteed to
exist, and are unique.

Theorem 2.1 (Knaster-Tarski) Let " be a generating func-
tion. The least fired-point of T' is the intersection of all I'-
closed sets. The greatest fized-point (gfp) of I' is the union
of all I'-justified sets.

Since these fixed-points always exist and are unique, it is
customary to define unary operators u and v for manifesting
either of these fixed-points.

Definition 2.3 ul denotes the lfp of I', and v1" denoties the
9fp.

Example 2.2 Let 'y be defined as in example 2.1. The
definition of the natural numbers N can now be unambigu-
ously invoked via theorem 2.1, as N = ul'nr, which is guar-
anteed to exist and be unique. Note that this definition is
equivalent to the standard “inductive” definition of the nat-
ural numbers, which is written: Let N be the smallest set
such that0 € N and if v € N, thenx+1 € N.

Hence what is sometimes referred to as an inductive defini-
tion, is subsumed by definition via least fixed-point. This is
further generalized by creating the dual notion of a defini-
tion by greatest fixed-point, termed a coinductive definition.

Example 2.3 'y from example 2.1 also unambiguously de-
fines another set, that is, N' = vT'xy = N U {w}, where
w = succ(w), that is, w = succ(succ(suce(...))) an infinite
application of succ.

Corollary 2.2 The principle of induction states that if S
is I'-closed, then ul' C S, and the principle of coinduction
states that if S is I'-justified, then S C vI'.

Definition 2.4 Let Q(z) be a property. Proof by induction
demonstrates that the characteristic set S = {z | Q(z)} isT'-
closed, and then invokes the principle of induction to prove
that every element x of uI" has the property Q(z).

Similarly, proof by coinduction demonsitrates that the char-
acteristic set S is I'-justified, and then invokes the principle
of coinduction to prove that every element x that has prop-
erty Q(z) is also an element of V.

Example 2.4 The familiar proof by induction can be in-
stantiated with regards to the set N defined in the previous
example. Let Q(x) be some property, and let S = {z | Q(z)}.
In order to show that every element x in N has property
Q(z), by induction it is sufficient to show that T'xr(S) C S,
which is equivalent to showing that0 € S, and ifz € S, then
succ(z) € S.

Like proof by induction, proof by coinduction is used in
many aspects of computer science. e.g., bisimilarity proofs
for process algebras such as the w-calculus. Section 2.6
demonstrates another example of proof by coinduction: the
soundness proof of the operational semantics of co-LP.

2.2 Syntax

A co-LLP program P is syntactically identical to a tradi-
tional, that is, inductive logic program as demonstrated by
the following account of syntax. In the following, it is impor-
tant to distinguish between an idealized class of objects and
the syntactic restriction of said objects. Elements of syntax
are necessarily finite, while many of the semantic objects
used by co-LP are infinite. It is assumed that there is an
enumerable set of variables, an enumerable set of constants,
and for all natural numbers n, there are an enumerable set
of function and predicate symbols of arity n.

Definition 2.5 The set of terms is vI' and the set of syn-
tactic terms is ul', where t € T'(S) whenever one of the
following is true:
1. t is a variable.
2. t is a constant.
3. t=f(t1,...,tn), wherety,..
symbol of arity n.

., tn € S and f is a function

Definition 2.6 An atom is an expression of the form p(?),
where p is a predicate symbol of arity n and t is shorthand
for a sequence of terms t1,...,tn. A syntactic atom is an
atom containing only syntactic terms.

Definition 2.7 A definite clause is a logical inference rule
of the form C + D where C is an atom and D is shorthand
for a sequence Dy, ..., D, of atoms. A syntactic definite
clause is a definite clause containing only syntactic atoms.

Definition 2.8 A ierm, atom, or clause is said to be ground
if it does not contain any variables.

Definition 2.9 A definite program is a finite set of syntac-
tic definite clauses.

Again, note that a definite program is a finite object. The
following defines a program that is almost a co-L.P program.

Definition 2.10 A pre-program is a definite program paired

with a mapping of predicate symbols to the token coinductive
or the token tnductive. A predicate is said to be coinductive

(resp. inductive) if the partial mapping maps the predicate

to coinductive (resp. inductive). Similarly, an atom is

said to be coinductive (resp. inductive) if the underlying

predicate is coinductive (resp. inductive).

Not every pre-program is a co-LLP program. Co-LP programs
do not allow for any pair of inductive and coinductive pred-
icates to be mutually recursive, that is, programs must be
stratified with regards to alternating induction and coinduc-
tion. An inductive predicate can call, directly or indirectly,
a coinductive predicate and visa versa, but both such pred-
icates cannot be mutually recursive.

Definition 2.11 In some pre-program P, we say that a
predicate p depends on a predicate q if and only if p = q
or P contains a clause C < Dq,..., Dy such that C con-
tains p and some D; contains q. The dependency graph of
program P has the set of its predicates as vertices, and the
graph has an edge from p to q if and only if p depends on q.

Co-LLP programs are simply pre-programs that obey the
stratification restriction.

Definition 2.12 A co-LP program is a pre-program such
that for any strongly connected component G in the depen-
dency graph of the program, every predicate in G is either
mapped to coinductive or every predicate in G is mapped
to inductive.

2.3 Declarative Semantics

The declarative semantics of a co-LLP program is a strat-
ified interleaving of the minimal co-Herbrand model [2, 15]
and the maximal co-Herbrand model semantics [26]. Hence

co-LP strictly contains logic programming with rational trees [13]

as well as coinductive logic programming [25, 26]. This al-
lows the universe of terms to contain infinite terms, in ad-
dition to the traditional finite terms. Finally, co-LP also
allows for the model to contain ground goals that have ei-
ther finite or infinite proofs.

The following definition is necessary for defining the model
of a co-LLP program. Intuitively, a reduced graph is de-
rived from a dependency graph by collapsing the strongly
connected components of the dependency graph into single
nodes. The graph resulting from this process is acyclic.

Definition 2.13 The reduced graph for a co-LP program
has vertices consisting of the strongly connected components
of the dependency graph of P. There is an edge from vy to
vy in the reduced graph if and only if some predicate in vy
depends on some predicate in v2. A vertex in a reduced graph
is said to be coinductive (resp. inductive) if it contains only
coinductive (resp. inductive) predicates.

A vertex in a reduced graph of a program P is called a stra-
tum, as the set of predicates in P is stratified into a collection
of mutually disjoint strata of predicates. The stratification
restriction states that all vertices in the same stratum are of
the same kind, i.e., every stratum is either inductive or coin-
ductive. A stratum v depends on a stratum v’, when there is
an edge from v to v’ in the reduced graph. When there is a
path in the reduced graph from v to v’, v is said to be higher
than v’ and v’ is said to be lower than v, and the case when
v # v’ is delineated by the modifier “strictly”, as in “strictly
higher” and “strictly lower”. This restriction allows for the
model of a stratum v to be defined in terms of the models of
the strictly lower strata, upon which v depends. However,
before we can define the model of a stratum, we must define
a few basic sets.

Definition 2.14 Let P be a definite program. Let A (P) be
the set of constants in P, and let F,(P) denote the set of
function symbols of arityn in P. The co-Herbrand universe

of P, denoted U°°(P) = v®p, where

Op(S) = A(PYU{f(tr,... tn) | f € Fa(P)Aly,... tn € S}

Intuitively, this is the set of terms both finite and infinite
that can be constructed from the constants and functions in
the program. Hence unification without occurs check has a
greatest fixed-point interpretation, as rational trees are in-
cluded in the co-Herbrand universe. The Herbrand universe
is simply pu®p.

Definition 2.15 Let P be a definite program. The co-Her-
brand base also known as the infinitary Herbrand base, wril-
ten B°°(P), is the set of all ground atoms that can be formed
from the atoms in P and the elements of U°(P). Also,
let G°°(P) be the set of ground clauses C + Di,..., Dy
that are a ground instance of some clause of P such that

C,Dy,...,D, € B®(P).

Now we can define the model of a stratum, i.e., the model
of a vertex in the reduced graph of a co-L.P program. The
model of each stratum is defined using what is effectively
the same T monotonic operator used in defining the min-
imal Herbrand model [2, 15], except that it is extended so
that it can treat the atoms defined as true in lower strata
as facts when proving atoms containing predicates in the
current stratum. This is possible because co-LLP programs
are stratified such that the reduced graph of a program is
always a DAG and every predicate in the same stratum is
the same kind: inductive or coinductive.

Definition 2.16 The model of a stratum v of P equals uTp
if v is inductive and vTp if v is coinductive, such that R is
the union of the models of the strata that are strictly lower
than v and

TE(S) = Ru{q (£) |lgevnlg(F) « D eG°(P)AD € 5}

Since any predicate resides in exactly one stratum, the def-
inition of the model of a co-LLP program is straightforward.

Definition 2.17 The model of a co-LP program P, written
M (P), is the union of the model of every stratum of P.

Obviously co-LP’s semantics subsumes the minimal co-Her-
brand model used as the semantics for logic programming
with rational trees, as well as the maximal co-Herbrand
model used as the semantics for coinductive logic program-
ming.

Definition 2.18 An atom A is true in program P if and
only if the setl of all groundings of A with substitutions rang-
ing over the U®°(P), is a subset of M(P).

Example 2.5 Let Py be the following program.
:— coinductive from/2.
from(N, [N|T]) :- from(s(N), T).
| ?2- from(0, _).

The model of the program, which is defined in terms of an
alternating fixed-point is as follows. The co-Herbrand Uni-
verse is U (Py) = NU QU L where N = {0, s(0), s(s(0)), ...},
Q ={s(s(s(...)))}, and L is the set of all finite and infinite
lists of elements in N, €, and even L. Therefore the model
M(P1) = {from(t,[t,s(t),s(s(t)),...]) | t € U°°(P1)}, which
is the meaning of the program and is obviously not null, as
was the case with traditional logic programming. Further-
more from(0,[0,s(0),s(s(0)),...]) € M(P1) implies that
the query returns “yes”. On the other hand, if the directive
on the first line of the program was removed, call the result-
ing program P, then the program’s only predicate would by
default be inductive, and M(P{) = 0. This corresponds to
the traditional semantics of logic programming with infinite
trees. Examples involving multiple strata of different kinds,
i.e., mixing inductive and coinductive predicates, are given
in sections 2.5 and 5.

The model characterizes semantics in terms of truth, that
is, the set of ground atoms that are true. This set is defined
via a generator, and in section 2.6, we will need to talk
about the manner in which the generator is applied in order
to include an atom in the model. For example, the generator
is only allowed to be applied a finite number of times for any
given atom in a least fixed-point, while it can be applied an
infinite number of times in the greatest fixed-point. We
capture this by recording the application of the generator in
the elements of the fixed-point itself. We call these objects
“idealized proofs.” In order to define idealized proofs, it is
first necessary to define some formalisms for trees.

Definition 2.19 A path © is a finite sequence of positive
integers 1. The empty path is written €, the singleton path is
written 1 for some positive integer 1, and the concatenation
of two paths is written © - ©'. A tree of S, also called an
S-tree, is formally defined as a partial function from paths
to elements of S, such that the domain is non-empty and
prefiz-closed. A node in a tree is unambiguously denoted by
a path. So a tree t is described by the paths ™ from the root
t(e) to the nodes t(m) of the tree, and the nodes of the tree
are labeled with elements of S.

A child of node © in tree t is any path w -1 that is in
the domain of t, where 1 is some positive integer. If w is

in the domain of t, then the subtree of t rooted at w, wril-
ten t \ m, is the partial function t'(x') = t(x - ©'). Also,
node(L, Ty, ...,Ty,) denotes a constructor of an S-tree with
root labeled L. and subtrees T;, where L. € S and each T; is
an S-tree, such that 1 <1 < n, node(L,T1,...,Tn)(e) = L,
and node(L, Ty, ..., Tp)(i- m) = Ti(x).

Idealized proofs are trees of ground atoms, such that a par-
ent is deduced from the idealized proofs of its children.

Definition 2.20 The set of idealized proofs of a stratum of
P equals uX% if v is inductive and v¥'% if v is coinductive,
such that R is the union of the sels of idealized proofs of the
strata strictly lower than v and

Th(S) = RU{node(q (t),Th,...,Tn) la€vATi € SA
lq (¥) « D1,...,Dn] € G°(P)ATi(e) = Di}

Note that these definitions mirror the definitions defining
models, with the exception that the elements of the sets
record the application of the program clauses as a tree of
atoms.

Definition 2.21 The set of idealized proofs generated by a
co-LP program P, written Xp, is the union of the sets of
tdealized proofs of every stratum of P.

Again, this is nothing more than a reformulation of M(P),
which records the applications of the generator in the ele-
ments of the fixed points, as the following theorem demon-
strates.

Theorem 2.3 Let S ={A | 3T € Zp.A is the root of T},
then S = M(P).

Hence any element in the model has an idealized proof and
anything that has an idealized proof is in the model. This
formulation of the declarative semantics in terms of idealized
proofs will be used in section 2.6 in order to distinguish
between the case when a query has a finite derivation, from
the case when there are only infinite derivations of the query,
in the operational semantics.

24 Operational Semantics

This section defines the operational semantics for co-LP.
This requires some infinite tree theory. However, this section
only states a few definitions and theorems without proof.
The details of infinite tree theory can be found in [7].

The operational semantics given for co-LP is defined as
an interleaving of SLD [15] and co-SLD [26]. Where SLD
uses sets of syntactic atoms and syntactic term substitutions
for states, co-SLD uses finite trees of syntactic atoms along
with systems of equations. Of course, the traditional goals
of SLD can be extracted from these trees, as the goal of a
forest is simply the set of leaves of the forest. Furthermore,
where SLLD only allows program clauses as state transition
rules, co-SLD also allows a special coinductive hypothesis
rule for proving coinductive atoms [26].

Definition 2.22 A iree is rational if the cardinality of the
set of all its subtrees is finite. An object such as a term,
atom, or idealized proof is said to be rational if it is modeled
as a rational tree.

Definition 2.23 A substitution is a finite mapping of vari-
ables to terms. A substitution is syntactic if it only substi-
tutes syntactic terms for variables. A substitution is said to
be rational if it only substitutes rational terms for variables.

Definition 2.24 A term unification problem is a finite set
of equations between terms. A unifier for a term unification
problem is a substitution that satisfies every equation in the
problem. o is a most general unifier (mgu) for a term uni-
fication problem, if any other solution o’ can be defined as
the composition ¢” o o.

Note that terms are possibly infinite. So it is possible for a
unification problem to lack a syntactic unifier, while at the
same time the problem has a solution: a rational unifier.
However, objects of an operational semantics should be fi-
nite. Hence we define a standard finite representation of a
rational substitution called a system of equations.

Definition 2.25 A system of equations F is a term unifi-
cation problem where each equation is of the form X = t,
s.t. X is a variable and t a syntactic term.

Theorem 2.4 (Courcelle) Every system of equations has a
mgu that is rational.

Theorem 2.5 (Courcelle) For every rational substitution o
with domain V| there is a system of equations E, such that
the most general unifier o' of E is equal to o when restricted
to the domain V.

Without loss of generality, the previous two theorems allow
for a solution to a term unification problem to be simultane-
ously a substitution as well as a system of equations. Note
that given a substitution specified as a system of equations
E, and a term A, the term E(A) denotes the result of ap-
plying the substitution £ to A.

Now the operational semantics can be defined. The se-
mantics implicitly defines a state transition system. Sys-
tems of equations are used to model the part of the state
involving unification. The current state of the pending goals
is modeled using a forest of finite trees of atoms, as it is nec-
essary to be able to recognize infinite proofs, for coinductive
queries. However, an implementation that uses a policy of
executing goals in the current resolvent from left to right (as
in standard LP), only needs a single stack (see Section 4).

Definition 2.26 A state S is a pair (F, E), where F is a fi-
nite multi-set of finite trees, i.e., a forest of syntactic atoms,
and E is a system of equations.

Definition 2.27 A iransition rule R of a co-LP program P
18 an instance of a clause in P, with variables standardized
apart, t.e., consistently renamed for freshness, or R is a
coinductive hypothesis rule of the form v(rw, '), where = and
7' are both paths, such that 7 is a proper prefiz of ©’.

Before we can define how a transition rule affects a state, we
must define how a tree in a state is modified when an atom
is proved to be true. This is called the unmemo function,
and it removes memo’ed atoms that are no longer necessary.
Starting at a leaf of a tree, the unmemo function removes
the leaf and the maximum number of its ancestors, such that

the result is still a tree. This involves iteratively removing
ancestor nodes of the leaf until an ancestor is reached, which
still has other children, and so removing any more ancestors
would cause the result to no longer be a tree, as children
would be orphaned. When all nodes in a tree are removed,
the tree itself is removed.

Definition 2.28 The unmemo function § takes a tree of
atoms T', a path = in the domain of T', and returns a forest.
Let p(T, - 1) be the partial function equal to T, except that
it is undefined at © - 1. 6(T,) is defined as follows:

5(T,m) = {T} , if @ has children in T
5(T,e) =] ,ifeisaleafinT
T,y = 68(p(T,7),«") ,ifn=n"-1isaleafinT

The intuitive explanation of the following definition is that
(1) a state can be transformed by applying the coinductive
hypothesis rule v(w, '), whenever in some tree, 7 is a proper
ancestor of #’, such that the two atoms unify. Also, (2)
a state can be transformed by applying an instance of a
definite clause from the program. In either case, when a
subgoal has been proved true, the forest is pruned so as
to remove unneeded memos. Also, note that the body of an
inductive clause is overwritten on top of the leaf of a tree, as
an inductive call need not be memo’ed, since the coinductive
hypothesis rule can never be invoked on a memo’ed inductive
predicate. When the leaf of the tree is also the root, this
causes the old tree to be replaced with, one or more singleton
trees. Coinductive subgoals, on the other hand, need to be
memo’ed, in the form of a forest, so that infinite proofs can
be recognized.

The state transition system may be nondeterministic, de-
pending on the program, that is, it is possible for states to
have more than one outgoing transition as the following def-
inition shows (implementations typically use backtracking
to realize non-deterministic execution; see Section 4). We
write S — z to denote the multi-set obtained by removing an
occurrence of z from S.

Definition 2.29 Let T € F. A stale (F, E) transitions to
another state (F —T)UF', E') by transition rule R of pro-
gram P whenever:

1. R is an instance of the coinductive hypothesis rule of
the form v(m, 7'), p is a coinductive predicate, = is
a proper prefix of #’, which is a leaf in T, T(x) =
p(tl, ..., t), T(x") = p(t1,...,ts), E' is the most
general unifier for {{ = ¢,...,t, = t,,} UE, and
F'=§(T,w").

2. R is a definite clause of the form
p(tl, ..., tn) < Bi,...,Bm, mis aleal in T, T(x) =
p(t1,...,tn), E' is the most general unifier for {¢; =
t1,..,tn = tp} U E, and the set of trees of atoms
F' is obtained from 7' according to the following case
analysis of m and p:

(a) Case m =0: F' =6(T,).

(b) Case m > 0 and p is coinductive: F' = {T'}
where T" is equal to T except at 7-1, & T'(7-1) =
B;, for 1 <1< m.

(c) Case m > 0 and p is inductive: If # = € then F' =
{node(B;) | 1 < i < m}. Otherwise, 7 = 7' - j
for some positive integer j. Let 7" be equal to T
except at 7’ - k for all k, where T is undefined.
Finally, F' = {T"} where T" is equal to T" except
at 7' -1, where T'(7' - 1) = Bj, for 1 <1 < m, and
T'(x' - (m+k))=T(x" - k), for k # j.

Definition 2.30 A iransition sequence in program P con-
sists of a sequence of states S1 5z, ... and a sequence of tran-
sition rules Ry, Ra> ..., such that S; transitions to Siy1 by
rule R; of program P.

A transition sequence denotes the trace of an execution. Ex-
ecution halts when it reaches a terminal state: either all
atoms have been proved or the execution path has reached

a dead-end.

Definition 2.31 The following are two distinguished termi-
nal states:

1. An accepting state is a state of the form (), E), where
? denotes the empty set.

2. A failure state is a non-accepting state lacking any
outgoing transitions.

Finally we can define the execution of a query as a transition
sequence through the state transition system induced by the
input program, with the start state consisting of the initial

query.

Definition 2.32 A derivation of a state (F, E) in program
P is a state transition sequence with the first state equal to
(F,E). A derivation is successful if it ends in an accept-
ing state, and a derivation has failed if it reaches a failure
state. We say that a list of syntactic atoms A1, ..., Ay, also
called a goal or query, has a derivation in program P, if

({node(A;) | 1 < i < n},0) has a derivation in P.

An implementation will use backtracking search in order to
find a successful derivation.

25 Examples

In this section we illustrate co-LP via examples. In addi-
tion to allowing infinite terms, the operational semantics of
co-L.P allows for an execution to succeed when it encounters
a subgoal that unifies with an ancestor subgoal (coinductive
hypothesis rule). Note that while this is somewhat similar to
tabled logic programming in that called atoms are recorded
so as to avoid unnecessary redundant computation, the dif-
ference 1s that co-LLP’s memo’ed atoms represent a coinduc-
tive hypothesis, while tabled logic programming’s table rep-
resents a list of results for each called goal in the traditional
inductive semantics. Hence the memo’ed atoms in co-LLP
correspond to a dynamic generated coinductive hypothesis.

Infinite Streams: The following example involves a com-
bination of an inductive predicate and a coinductive predi-
cate. By default, predicates are inductive, unless indicated
otherwise. Consider the execution of the following program,
which defines a predicate that recognizes infinite streams of
natural numbers. Note that only the stream/1 predicate is
coinductive, while the number/1 predicate is inductive.

:— coinductive stream/1.

stream([H | T]) :- number(H), stream(T).
number (0).

number (s(N)) :- number(N).

| ?- stream([0, s(0), s(s(0)) | T 1).

The following is an execution trace, for the above query, of
the memoization of calls by the operational semantics. Note
that calls of number/1 are not memo’ed because number/1
is inductive.

MEMO: stream([0, s(0), s(s(0)) | T 1)
MEMO: stream([s(0), s(s(0)) | T 1)
MEMO: stream([s(s(0)) | T 1)

The next goal call is stream(T), which unifies with the
first memo’ed ancestor, and therefore immediately succeeds.
Hence the original query succeeds with

T=1[0, s(0), s(s(0)) | T]1]

The user could force a failure here, which would cause
the goal to be unified with the next two matching memo’ed
ancestor. If no remaining memo’ed elements exist, the goal
is memo’ed, and expanded using the coinductively defined
clauses, and the process repeats—generating additional re-
sults, and effectively enumerating the set of (rational) in-
finite lists of natural numbers that begin with the prefix
[0,5(0),s(s(0))].

stream(T) is true whenever T is some list of natural num-
bers. If number/1 was also coinductive, then stream(T)
would be true whenever T is a list containing either nat-
ural numbers or w, i.e., infinity, which is represented as an
infinite application of successor s(s(s(...))). Such a term
has a finite representation as w=s(w), which quite simply
states that infinity plus one equals infinity.

Note that excluding the occurs check is necessary as such
structures have a greatest-fixed point interpretation and are
in the co-Herbrand Universe. This is in fact one of the ben-
efits of co-LP. Unification without occurs check is typically
more efficient than unification with occurs check, and now
it is even possible to define non-trivial predicates on the in-
finite terms that result from such unification, which are not
definable in LLP with rational trees. Traditional logic pro-
gramming’s least Herbrand model semantics requires SLD
resolution to unify with occurs check (or lack soundness),
which adversely affects performance in the common case.
Co-LP, on the other hand, has a declarative semantics that
allows unification without doing occurs check, and it also al-
lows for non-trivial predicates to be defined on infinite terms
resulting from such unification.

List Membership: This example illustrates that some pred-
icates are naturally defined inductively, while other pred-
icates are naturally defined coinductively. The member/2
predicate is an example of an inherently inductive predicate.

member (H, [H | -1).
member(H, [_ | T]) :- member(H, T).

If this predicate was declared to be coinductive, then
member (X, L) is true whenever X i1s In L or whenever L
is an infinite list, even if X is not in L! The definition above,
whether declared coinductive or not, states that the desired
element is the last element of some prefix of the list, as
the following equivalent reformulation of member/2, called
membera/2 demonstrates, where drop/3 drops a prefix end-
ing in the desired element and returns the resulting suffix.

:— drop(X, L, _).

membera(X, L)

drop(H, [H | T1, T).
drop(H, [- | T1, T1) :- drop(H, T, T1).

When the predicate is inductive, this prefix must be finite,
but when the predicate is declared coinductive, the prefix
may be infinite. Since an infinite list has no last element, it
is trivially true that the last element unifies with any other
term. This explains why the above definition, when declared
to be coinductive, is always true for infinite lists regardless
of the presence of the desired element.

A mixture of inductive and coinductive predicates can be
used to define a variation of member/2, called comember/2,
which is true if and only if the desired element occurs an
infinite number of times in the list. Hence it is false when
the element does not occur in the list or when the element
only occurs a finite number of times in the list. On the other
hand, if comember/2 was declared inductive, then it would
always be false. Hence coinduction is a necessary extension.

:— coinductive comember/2.
comember(X, L) :- drop(X, L, L1),
comember{ X, L1).

7-X=1[1, 2,3 | X1, comember(2, X).
Answer: yes.
?-X=01, 2, 3,1, 2, 3], comember(2, X).
Answer: no.
?-X=1[1, 2,3 | X1, comember(Y, X).
Answer: Y = 1;
Y = 2
Y = 3;

Note that drop/3 will have to be evaluated using OLDT
tabling for it not to go into an infinite loop for inputs such
as X = [1,2,3[Xx].
Coinductive append: Co-L.P subsumes logic programming
with rational trees [13, 5]. This is demonstrated by the tra-
ditional definition of append, which, when executed with
coinductive semantics, allows for calling the predicate with
infinite arguments. This is illustrated below.

append([1, X, X).

append([H|T], Y, [HIZ]) :- append(T, Y, Z).

Not only can the above definition append two finite input
lists, as well as split a finite list into two lists in the reverse
direction, it can also append infinite lists under coinductive
execution. It can even split an infinite list into two lists that
when appended, equal the original infinite list. For example:

| - Y= 1[4, 5, 6, | Y], append([1, 2, 3], Y, Z).

Answer: Z =1[1, 2, 3| Y], Y=1[4,5, 6, | Y]

If we also allow the possibility of expanding the variant
call using its definition (and apply the coinductive hypothe-
sis rule in the variant that will arise subsequently), then we
will enumerate more values for Y:

Y=1[4,5, 6, 4, 5, 6,

| Y
Y=1[4,5, 6, 4, 5, 6, 4,

]
5, 6, | Y]

More generally, the coinductive append has interesting
algebraic properties. When the first argument is infinite, it
doesn’t matter what the value of the second argument is, as
the third argument is always equal to the first. However,
when the second argument is infinite, the value of the third
argument still depends on the value of the first. This is
illustrated below:

?-X=1[1,2,3, | X1, Y=10[3, 41 1Y],
append(X, Y, Z).
Answer: Z = [1, 2, 3 | Z]
?-Z=1[1, 2 | Z], append(X, Y, Z).
Answers: X =[], Y=1[1, 2| Z];
X=1[11,Y=1[21] Z];
X=10I1,2],Y=2

As noted earlier, more solutions (e.g.,X = [1, Y = [1,2,1,2]Y

for the second query) can be generated by expanding the
variant (coinductive) call to append using its definition, and
applying the coinductive hypothesis rule to the subsequent
variant calls.

Sieve of Eratosthenes: Co-LP also allows for lazy evalu-
ation to be elegantly incorporated into Prolog. Lazy evalua-
tion allows for manipulation of, and reasoning about, cyclic
and infinite data structures and properties. In the presence
of coinductive LP, if the infinite terms involved are rational,
then given the goal p(X), q(X) with coinductive predicates
p/1 and q/1, then p(X) can coinductively succeed and ter-
minate, and then pass the resulting X to q(X). If X is bound
to an infinite irrational term during the computation, then
p and q must be executed in a coroutined manner to pro-
duce answers. That is, one of the goals must be declared
the producer of X and the other the consumer of X, and
the consumer goal must not be allowed to bind X. Consider
the (coinductive) lazy logic program for the sieve of Eratos-
thenes:

:- coinductive sieve/2, filter/3, comember/2.
primes(X) :- generate_infinite_list(I),
sieve(I,L), comember (X, L).
sieve([HIT], [HIR]) :- filter(H,T,F), sieve(F,R).
filter(H,[1,[1).
filter (H, [KIT],[KIT1]) :- R is K mod H, R > 0,
filter(H,T,T1).
filter (H, [KIT],T1) :- O is K mod H,
filter(H,T,T1).

In the above program filter/3 removes all multiples of
the first element in the list, and then passes the filtered list

recursively to sieve/2. If the predicate generate_infinite list (L), del checking
1

binds I to an inductive or rational list (e.g., X = [2, ...,
20]J or X = [2, .., 20 | X1, then filter can be completely
processed in each call to sieve/2. However, in contrast, if
I is bound to an irrational infinite list as in:

:— coinductive int/2.
int (X, [X|Y]) :- X1 is X+1, int (X1, Y).
generate_infinite_1ist(I) :- int(2,I).

then in the primes/1predicate, the calls sieve/2, comember/2,
and generate_infinite list/1 should be co-routined, and,
likewise, in the sieve/2 predicate, the calls filter/3 and
the recursive call sieve/2 must be coroutined. From the
above, one can also observe that co-LLP can be the basis
of providing elegant declarative semantics to concurrent L.P
[24]. Details are omitted due to lack of space.

2.6 Correctness

We next prove the correctness of the operational seman-
tics by demonstrating its correspondence with the declar-
ative semantics via soundness and completeness theorems.
Completeness, however, must be restricted to atoms that
have a rational proof. Section 6 mentions an extension of

the operational semantics, so as to improve its completeness.
The soundness and completeness theorems are stated below,
their proofs are relegated to Appendix I.

Theorem 2.6 (soundness) If the query Ai,..., A, has a
successful derivation in program P, then E(A1,...,Ay) is
true in program P, where E is the resulting variable bindings
for the derivation.

Theorem 2.7 (completeness) Let Ay,..., A, € M(P). If
each A1, ..., An has a rational idealized proof, then the query
A1,...,An has a successful derivation in program P.

3. RELATED WORK

Most of the work in the past has been focused on allowing
for infinite data structures in LP. However, most of these
stop short of including infinite proofs. Logic programming
with rational trees [5, 6, 13] allows for finite terms as well
as infinite terms that are rational trees, that is, terms that
have finitely many distinct subterms. Co-LP as defined in
Section 2, on the other hand, allows for finite terms, ratio-
nal infinite terms, but unlike LLP with rational trees, co-LP
also allows for irrational infinite terms. Furthermore, the
declarative semantics of LLP with rational trees corresponds
to the minimal co-Herbrand model. On the other hand, co-
LP’s declarative semantics is the stratified alternating fixed-
point co-Herbrand model, which strictly contains the mini-
mal co-Herbrand model. Also, the operational semantics of
LP with rational trees is simply SLD extended with rational
term unification, while the operational semantics of co-LP
interleaves SLLD with rational term unification and co-SLD,
yielding an operational semantics that strictly contains both
SLD and co-SLD. Thus, LP with rational trees does not al-
low for infinite proofs while co-LLP does. Finally, LLP with
rational trees can only create infinite terms via unification
(without occurs check), while co-LP can create infinite terms
via unification (without occurs check) as well as via user-
defined corecursive clauses.

Jaffar et al’s coinductive tabling proof method [12] uses
coinduction as a means of proving infinitary properties in
as opposed to using it in defining the se-
mantics of a new declarative programming language, as is
the case with co-L.P presented in this paper. Jaffar et al’s
coinductive tabling proof method itself is analogous to coin-
ductive LP’s co-SLD operational semantics described in [26],
in that both use the principle of coinduction to prove infini-
tary properties with some form of a finite derivation. How-
ever, Jaffar et al’s coinductive tabling proof method is not
assigned formal declarative, model-theoretic semantics, as
is the case with coinductive logic programming presented
in this paper, which has a declarative semantics, an opera-
tional semantics, and a correctness proof showing the cor-
respondence between the two. Co-LP, when extended with
constraints, can be used for the same applications as Jaffar
et al’s coinductive tabling proof method [26].

Lazy functional LP (e.g., [8, 11]) also allows for infinite
data structures, but it encodes predicates as Boolean func-
tions, while in comparison, co-LP defines predicates via Horn
clauses. The difference in semantics is even more pronounced.
Predicates in lazy functional LLP tend to have a mostly op-
erational semantics in terms of lazy narrowing, which means
that an instance of a predicate is true when the argument
terms of the corresponding predicate can be instantiated in

such a way that the function evaluates to true. However, if
the property is infinitary and has an infinite idealized proof,
then the corresponding function will not evaluate to true
because it will have an infinite evaluation. In co-LP, on the
other hand, a predicate with an infinite idealized proof is
defined as true, when the predicate is coinductive, and the
operational semantics allow for the finite derivation via the
use of a dynamic coinductive hypothesis. Therefore, predi-
cates in lazy functional logic programming are semantically
different from those in co-LP.

The Horn p-calculus of Charatonik et al. [4] and the alter-
nation-free variant of Talbot [29] extend Horn logic with
least and greatest fixed-points and provide declarative se-
mantics in a manner similar to co-LLP. The Horn p-calculus
does not have the stratification restriction found in co-LP,
while the alternation-free restriction does. The Horn p-
calculus requires predicate symbols to be labeled with an
integer priority, which is used in the definition of the lan-
guage’s semantics. Co-LP does not require predicates to
have a specified priority, which is semantically unambiguous
thanks to the stratification restriction. Aside from respec-
tively defining the syntax and semantics for these variants
of the Horn p-calculus, both Charatonik et al. and Tal-
bot only consider a non-Turing-complete restriction to “uni-
form” programs. These uniform programs are then used to
model reactive systems. Hence Charatonik et al. and Talbot
don’t provide a top-down, goal-direction operational seman-
tics, let alone an efficient implementation for the full Horn
p-calculus or the full alternation-free Horn p-calculus, as
they only consider the restricted class of uniform programs
as a means of statically analyzing reactive systems, not as a
general purpose programming language. Co-logic program-
ming has a much more ambitious goal of unifying seemingly
disparate logic programming concepts into a simple and ef-
ficient general purpose declarative programming language.

Coinductive logic programming, developed by us earlier
[26], does not allow the definition of strictly inductive pred-
icates as found in traditional logic programming, let alone
the mixing of inductive and coinductive predicates as found
in co-LP. Hence, co-LP strictly subsumes coinductive logic
programming.

4. IMPLEMENTATION

A prototype implementation of co-LP is being developed
by modifying the YAP Prolog system [22] (in fact, we use the
version of YAP extended with tabling called YAPTAB). The
formal operational semantics described in section 2.4 allows
for a coinductively recursive call to terminate (coinductively
succeed) if it unifies with an ancestor call. However, in the
current prototype, a coinductive call terminates only if it
is a wvartant of an ancestor call. Additionally, in the cur-
rent prototype, coinductive calls can produce infinite-sized
output but cannot consume infinite-sized inputs (this is pri-
marily due to limitations in the YAP implementation). Our
current implementation effort is focused on fixing both these
limitations.

The implementation of co-LP is reasonably straightfor-
ward, and is based on the machinery used in the YAP sys-
tem for realizing OLDT style tabling [22]. The inductive
predicates are realized by the syntax and semantics of nor-
mal Prolog predicates in the YAP system. A predicate is
declared via a directive of the form

:- coinductive p/n.

where p is the predicate name and n its arity. All other
predicates are treated as inductive by default. When a coin-
ductive call is encountered for the first time, it is recorded
in the memo-table that YAPTAB [22] uses for implementing
standard tabled LP. The call is recorded again in the table
after head unification, but this time it is saved as a solution
to the tabled call. The variables in the recorded solution
are interpreted w.r.t. the environment of the coinductive
call (so effectively the closure of the call is saved). When
a variant call is encountered later, it is unified with the so-
lution saved in the table and made to succeed. (In reality,
a choice point is created whose first alternative corresponds
to the variant call succeeding by the coinductive hypothesis
as just described; the remaining alternatives in the choice-
point correspond to call expansion using the matching rules
as in normal Prolog execution. Allowing the expansion of
the call as an alternative allows for the solutions beginning
with the prefix [0, s(0), £(s(0))] to be reported in the
stream example in Section 2.5 and for additional solutions
to be generated in the append example.) Note that every-
thing recorded in the memo-table for a specific coinductive
predicate p will be deleted, when execution backtracks over
the first call of p. Consider the example program:

i~ coinductive p/1.

p(£(X)) :- p(X).

| 7= p(Y).

When the call p(Y) is made, it is first copied (say as p(4))
in the table as a coinductive call. Next, a matching rule is
found and head unification performed (Y is bound to £ (X)).
Next, p(Y) (i.e., p(£(X))) is recorded as a solution to the
call p(4). The variable X in the solution refers to the X in
the rule matching the coinductive call (i.e., it points to the
variable X in the environment allocated on the stack). When
the coinductive call p(X) is encountered in the body of the
rule, it is determined to be a variant of the call p (4) stored in
the memo-table, and unified with the solution p (£ (X)). This
results in X being bound to f£(X), i.e., X = £(X), producing
a solution £¥ (..).

One can see from the description above that much of the
machinery for OLDT tabling present in YAPTAB can be re-
used for implementing co-LLP. However, because YAPTAB
uses tries [21], which do not support rational trees, pred-
icates that take rational terms as input arguments cannot
be coinductively interpreted in the current implementation.
Thus, coinductive member/2 and append/3 predicates will
not currently work in our system. Our current implementa-
tion is, however, adequate to run constraint LP based imple-
mentations of somewhat complex applications (e.g., timed
automata). Work is in progress to extend tries in YAPTAB
to support rational terms.

5. APPLICATIONS

Co-LLP augments traditional logic programming with in-
finite terms and infinite proofs. These concepts generalize
the notions of rational trees and lazy predicates. Co-LP has
practical applications in concurrent LP, bisimilarity, model
checking, timed automata and many other areas. Further-
more, it appears that the concept of ancestors in the co-SLD
semantics can be used to give a top-down operational seman-
tics to a restricted form of ASP programs. Some of these
applications have been expounded elsewhere [26], however,
most of them rely solely on the coinductive LLP part of co-L.P
so we do not reproduce them here. In this section we de-

scribe an application from model checking that needs both
the traditional SLLD as well as co-SLD. We show how co-1.P
allows us to elegantly verify liveness properties.

Model checking is a common technique used for verify-
ing hardware and software systems. It involves construct-
ing a model of the system, in terms of a finite state Kripke
structure and then determining if the model satisfies various
properties specified as temporal logic formulas. The verifi-
cation is performed by means of systematically searching the
state space of the Kripke structure for a counterexample to
the given property. Most properties that are to be verified
can be classified into

1. Safety properties—which intuitively assert that “noth-
ing bad will happen”

2. Liveness properties—these properties assert that “some-
thing good will eventually happen.”

A number of techniques for verifying safety properties
have been developed over the years. Most of these tech-
niques use some variation of reachability analysis, i.e, if a
counterexample to the property exists, it can be finitely
determined by enumerating all the reachable states of the
Kripke structure. This procedure consists of specifying a
counterexample to the property in terms of a least fixed-
point formula and then evaluating this formula over the state
space of the model by means of traditional inductive tabling
[20].

However, it is well known that reachability-based induc-
tive techniques are not suitable for verifying liveness prop-
erties [19]. Further, it is also well known that, in general,
verification of liveness properties can be reduced to verifi-
cation of termination under the assumption of fairness [30]
and that fairness properties can be specified in terms of al-
ternating fixed-point temporal logic formulas [14]. In previ-
ous work [26], we introduced a technique for verifying a class
of liveness properties in the absence of fairness constraints.
Here, we develop a method for verifying the more general
class of all liveness properties that can only be verified with
the presence of fairness constraints. Therefore this method
subsumes our previous work [26, 16].

Essentially, our approach demonstrates that if a model
satisfies the fairness constraint then, it also satisfies the live-
ness property. This is achieved by composing a program
P, which encodes the model, with a program Pg, which
encodes the fairness constraint and a program Pyp, which
encodes the negation of the liveness property, to obtain a
composite program P,. We then compute the stratified al-
ternating fixed-point of the logic program P, as described
in section 2.3 and check for the presence of the initial state
of the model in the stratified alternating fixed-point. If the
alternating fixed-point contains the initial state, then that
implies the presence of a valid counterexample that violates
the given liveness property. On the other hand, if the al-
ternating fixed-point is empty, then that implies that no
counterexample can be constructed, which in turn implies
that the model satisfies the given liveness property.

We will now illustrate our approach using a very simple
example. Consider the model shown in 1. It consists of four
states s0, 81, 82 and s3. The system starts off in state s0,
enters state s1, performs a finite amount of work in state s1
and then exits to state s2, from where it transitions back
to state s0, and repeats the entire loop again, an infinite

work

Figure 1: Example Automata

number of times. The system might encounter an error,
causing a transition to state s3. Corrective action is taken,
followed by a transition back to 0. The system is modeled
by the following Prolog code.

:— coinductive state/2.

state(s0,[s0,is1|T])
state(s1,T).
state(s1,[s1]|T]) :- exit, state(s2,T).
state(s2,[s2|T]) :- repeat, state(s0,T).
state(s0,[s0|T]) :- error, state(s3,T).
state(s3,[s3|T]) :- repeat, state(s0,T).
work :- state(isi),

enter.
exit.
repeat.
error.
state(is1)
state(isi).

:— enter, work,

:— state(isl).

This simple example illustrates the power of co-LP when
compared to purely inductive or coinductive logic program-
ming. Note that the computation represented by the state
machine in the example consists of two stratified loops, rep-
resented by recursive predicates. The outer loop (predicate
state/2) is coinductive and represents an infinite computa-
tion (hence it is declared as coinductive as we are interested
in its gfp). The inner loop (predicate state/2) is induc-
tive and represents a bounded computation (we are inter-
ested in its Ifp). The call graph consisting of the predicate
state/2 represents a coinductive computation, whereas the
call graph consisting of the predicate state/1 represents an
inductive computation. The semantics therefore evaluates
state/1 using SLD resolution and state/2 using co-SLD
resolution.

The property that we would like to verify is that the com-
putation in the state g1 represented by the transition work
always terminates. In order to do so, we require the fairness
property: “if the transition enter occurs infinitely often,
then the transition exit also occurs infinitely often”. The
stratified alternating fixed-point semantics ensures that this
fairness constraint holds by computing the minimal model of
the inductive program represented by the predicate state/1
and then composing it with the coinductive program. The
resulting program is then composed with the property, “the
state 82 is not present in any trace of the infinite compu-
tation,” which is the negation of the given liveness prop-
erty. The negated property is represented by the predicate

absent/2. Thus, given the program above, the user will
pose the query:
| 7- state(s0,X), absent(s2,X).

where absent/2 is a coinductive predicate that checks that
the state s2 is not present in the (infinite) list X infinitely
often (it is the negated version of the coinductive comem-
ber predicate described earlier). The co-LP system will re-
spond with a solution: X = [s0, s3 | X], a counterexam-
ple which states that there is an infinite path not containing
s2. One can see that this corresponds to the behavior of the
system if error is encountered.

6. CONCLUSIONSAND FUTURE WORK

In this paper we presented a comprehensive theory of co-
LP, demonstrated its practical applications as well as re-
ported on its preliminary implementation on top of YAP
Prolog. Current work involves extending co-L.P’s opera-
tional semantics with alternating OLDT and co-SLD [27],
so that the operational behavior of inductive predicates can
be made to more closely match their declarative semantics.
Current work also involves extending the operational seman-
tics of co-LP to allow for finite derivations in the presence
of irrational terms and proofs, that is, infinite terms and
proofs that do not have finitely many distinct subtrees. Our
current approach is to allow the programmer to annotate
predicate definitions with pragmas, which can be used to
decide at run-time when a semantic cycle in the proof search
has occurred, however, in the future we intend to infer these
annotations by using static analysis.

We are also working on incorporating coinductive rea-
soning in our quest of developing a single LLP system that
combines tabled LP, constraints, parallelism, ASP and co-
routining [10]. Additionally, we are also working on apply-
ing the coinduction principle to Hereditary Harrop formu-
las, resolution theorem proving, machine learning (coinduc-
tive learning), non-monotonic reasoning (ASP), and nega-
tion [28].

Acknowledgments: We are grateful to Vitor Santos Costa
and Richardo Rocha for help with YAP, and Srividya Kona

for comments.

7. REFERENCES

[1] R. Alur, D.L. Dill. A theory of timed automata. TCS
126:183-235, 1994.

[2] Krzysztof R. Apt. Logic programming. Ch. 15.
Handbook of Theoretical Computer Science, 493-574.
MIT Press, 1990.

[3] J. Barwise, L. Moss. Vicious Circles: On the
Mathematics of Non-Wellfounded Phenomena. CSLI
Publications, 1996.

[4] Charatonik, McAllester, Niwinski, Podelski, and
Walukiewicz. The horn mu-calculus. In LICS: IEFE
Symposium on Logic in Computer Science, 1998.

[5] A. Colmerauer. Prolog and infinite trees. In Clark &
Tarnlund, editors, Logic Progr., pp. 231-251. 1982.

[6] Alain Colmerauer. Equations and inequations on finite
and infinite trees. In Proc. FGCS-84: pages 85-99,
Tokyo, 1984.

[7] B. Courcelle. Fundamental properties of infinite trees.
TCS, pp:95-212, 1983.

[8] E. Giovannetti, G. Levi, et al. Kernel-LEAF: A logic
plus functional language. JCSS, 42(2):139-185, 1991.

[9] G. Gupta. Verifying Properties of Cyclic
Data-structures with Tabled Unification. Internal
Memo. New Mexico State University. February 2000.

[10] G. Gupta. Next Generation of Logic Programming
Systems. Technical Report UTD-42-03, University of
Texas, Dallas. 2003.

[11] M.Hanus. Integration of functions into LP. J. Logic
Prog., 19 & 20:583-628, 1994.

[12] J. Jaffar, A. E. Santosa, R. Voicu. A CLP proof
method for timed automata. In RTSS, pages 175-186,
2004.

[13] J. Jaffar, P. J. Stuckey. Semantics of infinite tree LP.
TCS, 46(2-3):141-158, 1986.

[14] X. Liu, C.R. Ramakrishnan, S.A. Smolka, Fully local
and efficient evaluation of alternating fixed-points,
TACAS ’98, LNCS, 1384, Springer-Verlag, 1998.

[15] J.W. Lloyd. Foundations of LP. Springer, 2nd.
edition, 1987.

[16] A. Mallya. Deductive Multi-valued Model Checking,
ICLP’05, Springer LNCS 3368. pp. 297-310.

[17] S. Muggleton, editor. Inductive Logic Programming.
Academic Press, 1992.

[18] B. Pierce. Types and Programming Languages. MIT
Press, Cambridge, MA, 2002.

[19] A. Podelski, A. Rybalchenko, Transition Predicate
Abstraction and Fair Termination, POPL ’05, pp.
132-144, ACM Press, 2005.

[20] Y. S. Ramakrishna et al. Efficient Model Checking
Using Tabled Resolution. in Proc. CAV 1997. pp.
143-154.

[21] 1. V. Ramakrishnan et al. Efficient Access Mechanisms
for Tabled Logic Programs. J. Logic Programming
38(1):31-54 (1999).

[22] R. Rocha, et al. Theory and Practice of Logic
Programming 5(1-2). 161-205 (2005) Tabling Engine
That Can Exploit Or-Parallelism. ICLP 2001: 43-58

[23] V. Schuppan, A. Biere. Liveness Checking as Safety
Checking for Infinite State Spaces. ENTCS 149(1):
79-96 (2006)

[24] E. Shapiro. Concurrent Prolog: Collected Works. MIT
Press. 1987.

[25] Luke Simon. Coinductive LP. Internal memo, UT
Dallas, March 2004.

[26] Luke Simon, Ajay Mallya, Ajay Bansal, and Gopal
Gupta. Coinductive Logic Programming. Technical
Report UTDCS-11-06, University of Texas, Dallas,
2006. Submitted to ICLP’06. Available at
http://www.utdallas.edu/ gupta/colp.pdf.

[27] Luke Simon, Ajay Mallya, Ajay Bansal, and Gopal
Gupta. Combining Tabling and co-Tabling. Internal
memo, UT Dallas, 2006.

[28] Luke Simon, Ajay Mallya, Ajay Bansal, and Gopal
Gupta. Coinductive Extensions of Theorem Proving,
Machine Learning, and Hereditary Harrop Formulas.
Internal memo, UT Dallas, 2006.

[29] Jean-Marc Talbot. On the alternation-free Horn
p-calculus. LNCS, 1955:418-435, 2000.

[30] M. Vardi, Verification of Concurrent Programs: The
Automata-Theoretic Framework, LICS ’87, pp.
167-176, IEEE, 1987.

Appendix I: Correctness Proof

Note: included for the convenience of reviewers.

This section proves the correctness of the operational se-
mantics by demonstrating a correspondence between the
declarative and operational semantics via soundness and
completeness theorems. Completeness, however, must be
restricted to atoms that have a rational proof, as termina-
tion cannot be guaranteed for atoms with only irrational
proofs. Section 6 discusses an extension of the operational
semantics, so as to improve its completeness.

lemma 7.1 If (A, E1) has a successful derivation in pro-
gram P, with final state (0, E>), then (A, Es) has a successful
derivation of the same length, in program P, where F> C Es,
with each state of the derivation of the form (F, Es) for some
forest F' of finite trees of atoms.

PRrROOF. Let (A, E1) have a successful derivation in pro-
gram P ending with state (@, £2). In the sequence of states,
the system of equations monotonically increases, and so
the monotonicity of unification with infinite terms implies
(A, E3) has a successful derivation in program P, where
F> C FEs, with each state of the derivation of the form
(F, E3) for some forest F' of finite trees of atoms. [

lemma 7.2 If A has a successful derivation in program P,
which first transitions to the second state by applying clause
A' « Bi,..., By, such that E(A) = E(A'), then each (B, E)

also has a successful derivation in program P.

PROOF. Let A have a successful derivation in program P,
which first transitions to the next state by applying clause
A’ « Bi,..., By, such that E(A) = E(A’). A derivation
for (B;, E) can be created by mimicking each transition that
modifies the (sub)tree rooted at B; in the original deriva-
tion, except for the transitions which are of the form v(n, 7'),
which are no longer correct derivations because the parent of
Bi, that is, A, no longer exists. In the case that 7 = 1-7y and
7’ = 4. m; for some number i and path 7, instead apply the
transition rule l/(7r07 7r1) to the corresponding leaf to which
the original derivation would have applied v(w,n'). Other-
wise, when © = ¢, a coinductive transition rule cannot be
applied to the corresponding leaf. Instead, recursively mimic
the transitions of the entire original derivation of A. [

lemma 7.3 If (A, E) has a successful derivation in program
P, then E'(E(A)) is true in program P, where (0, E') is the
final state of the derivation.

PRrROOF. Since the model of P consists of the union of the
models of the strata of P, it is sufficient to show that if
(A, E) has a successful derivation in program P, then all
groundings of E’(E(A)) are included in the model for the
stratum in which A resides.

The proof proceeds by induction on the height of the
strata of P. Let @, be the set of all groundings ranging
over the U°(P) of all such E'(E(A)) that are either in the
same stratum v or some lower stratum. We prove by induc-
tion on the height of v that @, is contained in the model for
v.

Consider the case when the stratum v is coinductive. We
show that Q, C vTp. The proof proceeds by coinduction.
Let A" € Q., then A" = FEi(F2(E3(A))), where E is a

grounding substitution for E;(Es(A)) and (A, Es) has a suc-
cessful derivation ending in (§, E2). By lemma 7.1, (A, E)
has a successful derivation, where £ = F1UFE>2UFE5. The case
when F(A) unifies with a fact is trivial, and the case when
E(A) is in alower stratum than v follows by induction on the
height of strata. Now, consider the case where the deriva-
tion begins with an application of a program clause A"
By, ..., By, resulting in the state (node(A, [B1, ..., Byn]), E),
where E(A) = E(A"”). By lemma 7.2 each state (B, F)
has a successful derivation. Let E’ be a grounding sub-
stitution for the clause E(A" <« Bi,...,By), such that
C = E'(E(A” + Bi,...,By)) € G°°(P), then C = A’ «
E"(B1),...,E"(By), where £ = E' U E. By lemma 7.1,
each (Bji, E") has a successful derivation, and the stratifi-
cation restriction implies that each E”(Bi) is In a stratum
equal to or lower than v. Hence E"(B;) € Q,. Therefore,
by the principle of coinduction, @, C vTp.

Now consider the case when the stratum v is inductive.
It is sufficient to prove that Q, C uTp. Let A’ € Q,, then
A’ = Er1(E2(F5(A))), where E is a grounding substitution
for E2(Es(A)) and (A, Es) has a successful derivation ending
in (0, E2). By lemma 7.1, (A, E) has a successful derivation,
where E = FE; U E5 U E;. The case when A’ is in a lower
stratum than v follows by induction. Now consider the case
when A’ does not occur in a stratum lower than v, that is,
A’ is an inductive atom. The proof proceeds by induction
on the length of the derivation A’. When the derivation con-
sists of just one transition, then A’ unifies with a fact A in
program P, and hence A’ € pT%. Finally, consider the case
when the derivation is of length & > 1. Then the deriva-
tion begins with an application of a program clause A"
Bi,...,Bn, where E(A) = E(A"). By lemma 7.2 each state
(Bi, F) has a successful derivation. Let £’ be a grounding
substitution for the clause E(A” < Bi,..., By), such that
C = BE'(E(A” + Bi,...,By)) € G*°(P), then C = A’ «
E"(B1),...,E"(By), where £ = E' U E. By lemma 7.1,
each (Bj, E") has a successful derivation of length k' < k,
and the stratification restriction implies that each E"(B;)
is in a stratum equal to or lower than v. If E"(B;) is in a
strictly lower stratum than v, then by induction on strata
E'"(B;) € uTp, and if E"(B;) is not in a lower stratum,
then since it has a derivation of length k' < k, by induction
on the length of the derivation, E"(B;) € uTp. Therefore,
AleuTp. O

Theorem 7.4 (soundness) If the query Ai,..., A, has a
successful derivation in program P, then E(Ai,...,Ay) is
true in program P, where F is the resulting variable bindings
for the derivation.

Proor. If the goal A1, ..., A, has a successful derivation
in program P, with F as the resulting variable bindings for
the derivation, then each E(A;) independently has a suc-
cessful derivation in program P. By lemma 7.3, each E(A;)
is true in program P. [

Theorem 7.5 (completeness) Let Ay,..., A, € M(P). If
each A1, ..., An has a rational idealized proof, then the query
A1,..., Ay has a successful derivation in program P.

Proor. Without loss of generality, we only consider the
case when the query is a single atom, i.e., n = 1, as the
case for n = 0 is trivial and the case for n > 1 follows by
simply composing the individual derivations of each atom of
the original query.

Let A € M(P) have a rational idealized proof 7. The
derivation is constructed by recursively applying the clause
corresponding to each node encountered along a depth-first
traversal of the idealized proof tree to the corresponding leaf
in the current state. In order to ensure that the derivation is
finite, the traversal stops at the coinductive root 7 = 7’ - 7"
of a subtree that is identical to a subtree rooted at a proper
coinductive ancestor 7’. Then the derivation applies a tran-
sition rule of the form (', 7) to the leaf corresponding to
R in the current state, and finally the depth-first traversal
continues traversing starting at a node in the idealized proof
tree corresponding to some leaf in the current state of the
derivation.

The fact that T is rational implies that the set of all sub-
trees of 7' is finite in cardinality. Furthermore, the strati-
fication restriction prevents a depth-first traversal from en-
countering the same subtree twice along the same path, such
that the subtree has an inductive atom at its root. Only
subtrees rooted at coinductive atoms can repeat in such a
fashion. So the maximum depth of the traversal in the ide-
alized proof tree is finite. Combined with the fact that all
idealized proofs are finitely branching, this implies that the
traversal always terminates. So the constructed derivation
is finite.

It remains to prove that the final state of the constructed
derivation is a success state. The traversal stops going deeper
in the idealized proof tree due to two cases: the traversal
reaches a leaf in the idealized proof tree or the traversal
encountered a subtree identical to an ancestor subtree. In
either case, the derivation removes the corresponding leaf
in the current state, as well as the maximal number of an-
cestors of the corresponding leaf such that the result is still
a tree. So a leaf only remains in the state when its cor-
responding node in the proof tree has yet to be traversed.
Since every node in the idealized proof tree corresponding
to a leaf in the state is traversed at some point, the final
state’s tree contains no leaves, and hence the final state has
an empty forest, which is the definition of an accept state.
Therefore, A has a successful derivation in program P. [

