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Abstract—A stand-alone built-in self-test architecture mainly
consists of three components: a stimulus generator, measurement
acquisition sensors, and a measurement processing mechanism
to draw out a straightforward Go/No-Go test decision. In this
paper, we discuss the design of a neural network circuit to
perform the measurement processing step. In essence, the neural
network implements a non-linear classifier which can be trained
to map directly sensor-based measurements to the Go/No-Go test
decision. The neural network is fabricated as a single chip and
is put to the test to recognize faulty from functional RF LNA
instances. Its decision is based on the readings of two amplitude
detectors that are connected to the input and output ports of the
RF LNA. We discuss the learning strategy and the generation of
information-rich training sets. It is shown that the hardware
neural network has comparable learning capabilities with its
software counterpart.

I. INTRODUCTION

The seemingly ever-increasing data rates and complexity
of RF devices intensify the test effort that must be spent to
guarantee the correct functioning of each manufactured part.
Hundreds of sequential tests are carried out in practice to
ensure the compliance with the specifications. This procedure
demands sophisticated test equipment and results in long test
times, which escalate significantly the overall manufacturing
cost. As RF devices have become a ubiquitous part of our ev-
eryday lives, there is a great incentive to reduce the implicated
test costs, while maintaining the highest possible quality and
reliability of the parts that pass the test.

In the past decade, there has been an enhanced focus
on alternative test strategies with the aim to simplify and
standardize the test equipment and to increase the throughput,
i.e. the number of parts tested in a given unit of time.
These alterative test strategies can be broadly categorized as
structural test, built-off test (BOT), built-in test (BIT), and
implicit test. Structural tests aim to generate signatures that
discriminate between faulty and functional circuits [1], [2].
They are devised specifically to detect a list of faults that result
from a prior inductive fault analysis. This approach presents
a high potential to reduce test costs, but further research is
required on fault modeling. BOT relies on relatively simple
circuits to convert RF signals to DC signals [3], [4]. These
circuits are placed on the device load-board, thus allowing the
interface of the device under test (DUT) to an inexpensive
tester. BIT is a more aggressive approach. It consists of
building a miniature tester on-chip [5], [6], reconfiguring the
DUT in an easily testable form [7], and extracting on-chip

informative measurements based on sensors [8], [9], [10],
[11], [12], [13]. Implicit test is a generic technique which
aims to infer the outcome of the standard tests based on low-
cost measurements. This inference relies on statistical models
that are built off-line using a representative training set of
instances of the DUT. Different types of statistical models can
be used, namely regression functions, in which case we can
predict individually the high-level performances (this approach
is known as alternate test [14], [15], [16], [17]), or classifiers,
in which case we can make directly a Go/No-Go test decision
[18].

In this paper, we explore the possibility of integrating a
hardware version of a non-linear classifier along with the
DUT, in order to execute a Go/No-Go BIT. The task of
the classifier is to map on-chip measurements to a one-bit
output, which simply indicates whether the DUT complies to
its specifications or not. Furthermore, a true built-in self-test
(BIST) is possible if the test stimuli are also generated on-chip.
In particular, the classifier can replace the off-chip extraction
and post-processing of measurements since it compacts the
measurements to a binary Go/No-Go test response. Such a
stand-alone BIST can then be performed on-line in the field of
operation, in order to detect malfunctions due to environmental
impact and wear. Thereby, it is of vital importance for devices
that are deployed in safety-critical applications (e.g. avionics,
medicine, nuclear reactors), sensitive environments (e.g. space
operations), and remote-controlled systems.

To this end, we present the design of an analog neural
network classifier as a single chip. The chip has been fabri-
cated using a 0.5 µm digital CMOS process available through
MOSIS and it is put to the test to learn to classify RF low
noise amplifier (LNA) instances based on a BIT measurement
pattern. This pattern is obtained by exercising the RF LNA
with two single-tone sinusoidal stimuli of different powers and
by recording the outputs of two amplitude (or peak or power)
detectors that are placed at the input and output ports of the RF
LNA [12]. The data sets that are used to train the chip and to
validate its generalization capability on previously unseen RF
LNA instances are generated using the technique in [19]. This
technique enhances a real data set with the aim to generate
synthetic data that populate the area around the classification
boundary and, thereby, to improve training. In addition, with
this technique we can generate an arbitrarily large validation
set and, thereby, we can assess the classification rate with
parts per million (PPM) accuracy. We demonstrate that the
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Fig. 1. BIST architecture.

hardware classifier achieves similar classification rates to its
ideal software counterpart.

The paper is structured as follows. The following section
discusses the complete BIST architecture and clarifies the
focus of our work in this context. In section III, we discuss
the design of the neural network classifier, its learning strategy,
and we provide details of the fabricated chip. In section IV, we
present the case study, namely the DUT and the corresponding
BIT measurement pattern. In section V, we explain the pro-
cedure to generate the training and validation sets. In section
VI, we put the chip to the test to classify BIT measurement
patterns and we demonstrate its effectiveness compared to an
ideal software classifier. In section VII, we discuss limitations
and we point to future work. Finally, section VIII concludes
the paper.

II. BIST ARCHITECTURE AND OVERVIEW

The BIST architecture is illustrated in Fig. 1. In an off-
line training phase, the neural network classifier learns to map
a measurement pattern to an one-bit output, which indicates
whether this measurement pattern is a valid or invalid code-
word, that is, whether the DUT complies to its specifications
or not. Training is carried out on a sample set of fabricated
chips, which is enhanced if necessary using the technique in
[19]. The training phase results in an appropriate topology
for the neural network and it also determines the weights of
the internal synapses which are stored in a local memory.
During the test phase, the weights are downloaded to the
neural network. Next, the DUT is connected to the stimulus
generator which enables a self-excitation of the DUT. The on-
chip sensors monitor the DUT and provide the measurement
pattern which is presented to the neural network. The neural
network classifies the DUT by processing the measurement
pattern and examining its footprint with respect to the learned
classification boundary.

This approach presents a number of challenges. More
specifically, the peripheral circuits that are dedicated to test
should (a) incur low area overhead to minimize the extra die
size cost (this would also imply a lower probability of fault
occurrence within the test circuitry), (b) be non-intrusive, i.e
they should have minimal interference with the DUT, (c) be

more insensitive to process, voltage, and temperature (PVT)
variations than the DUT itself, (d) make a prudent use of ex-
ternal pins, and (e) consume low power (this is crucial only for
concurrent test or when test needs to be performed in the field
in frequent idle times). Assuming that the above objectives
are met, the overall success of this approach depends on the
separation of the footprints of faulty and functional circuits
when they are projected in the space that is formed by the
selected measurements. If the faulty and functional classes are
separable, the classifier will provide an accurate test decision.
However, if the measurements do not perfectly discriminate
between the two classes, that is, if the two classes overlap to
some extent, then the classifier will inevitably misclassify the
DUTs whose footprint falls in the ambiguous area. In effect,
the misclassification rate is proportional to the volume of the
ambiguous area. To reduce misclassification, the ambiguous
area can be guard-banded with the option to retest the DUTs
that lie in it [18].

The scope of this paper is to demonstrate a hardware clas-
sifier that can learn an optimal non-linear separation boundary
given a measurement pattern. In other words, herein, we do
not discuss the stimulus generation and the identification of
discriminative measurements (which are both DUT-specific
problems). Instead, we consider an LNA and a specifically
related to it BIT measurement pattern as our case study. Our
primary objective was to design a reconfigurable and flexible
hardware classifier so as to study classification boundaries of
various orders and gain insight into their performance and
limitations compared to their software counterparts.

III. NEURAL NETWORK DESIGN

A. Background

Neural networks have an appealing silicon implementa-
tion. Synapses and computational elements can be densely
interconnected to achieve high parallel distributed processing
ability, which enables them to successfully solve complex
cognitive tasks. Neural networks also provide a high degree
of robustness and fault tolerance since they comprise numer-
ous nodes that are locally connected, distributing knowledge
among the numerous synapses. Thus, intuitively, damage to
a few nodes does not impair performance. We are interested
primarily in analog implementations of neural networks as,
in comparison to a digital implementation, they have superior
time response and computational density in terms of silicon
mm2 per operations per second and, in addition, they consume
extremely low power.

In designing an analog neural network one has to consider
a number of important factors. Appropriate connectionist
topologies, training algorithms, long-term weight storage are
among the most crucial. Furthermore, one has to consider
implications of the technology in which a network is to be
implemented. Digital CMOS processes, which are becoming
more popular for analog/RF circuits, are plagued by process
variation, mismatch, noise, environmental factors, etc. There is
a large body of literature discussing these factors and various
architectural considerations [20], [21], [22], [23]. The network
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Fig. 2. 2-layer network diagram.

Fig. 3. Neuron and synapse models.

presented herein was designed with two key objectives in
mind: reconfigurability, to explore various network models for
a given application, and simplicity of training. The first was
achieved by utilizing control bits to program the connectivity
of the network, while the second by using digital weight
storage in local RAM cells.

B. System Architecture

The chosen model for the neural classifier is a 2-layer
network, as shown in Fig. 2. The network is feed-forward
since it does not contain feedback loops, that is, each layer
receives connections only from inputs or previous layers. The
first layer has M units which receive the inputs X1, · · · , XN

(e.g. the sensor-based measurements) and a constant X0 = 1.
The second layer has c units which receive the outputs of the
first layer z1, · · · , zM and a constant z0 = 1. The units in the
first layer are called hidden units since they are not treated as
output units. Similarly, the first layer is called hidden layer.
Each unit in this network is a linear perceptron which has a
simple mathematical model, as shown in Fig. 3. A synapse
can be considered as a multiplier of an input signal value by
the stored weight value. A neuron sums the output values of
the connected synapses and passes the resulting sum through

Fig. 4. Reconfigurable network architecture.

a nonlinear sigmoid activation function

g(α) =
1

1 + e−α
. (1)

An explicit expression for the complete function represented
by the diagram of Fig. 2 is

yk = g

(
M∑
i=0

w
(2)
ki zi

)
(2)

zi = g

 N∑
j=0

w
(1)
ij Xj

 , (3)

where w(k)
ij denotes the weight of input j for unit i in layer k

and w(k)
i0 denotes the bias for unit i in layer k. Such a network

with 2 layers is capable of approximating any continuous
functional mapping and can separate an arbitrary dichotomy
(e.g. a given set of data points which have been labeled as
belonging to one of two classes).

Fig. 4 illustrates the block-level schematic of a circuit
implementation of a 2-layer network that can be reconfigured
into any one-hidden-layer topology within the given number of
inputs and neurons. The circuit consists of a matrix of synaptic
blocks (S) and neurons (N). The synapses represent mixed-
signal devices, in the sense that they conduct all computations
in analog form while their weights are implemented as digital
words stored in a local RAM memory. Multiplexers before
each synapse are used to program the source of its input: either
the primary input (for the hidden layer) or the output of a
hidden unit (for the output layer). The results of synapse mul-
tiplication are summed and fed to the corresponding neuron,
which performs a squashing function and produces an output
either to the next layer or the primary output. The architecture
is very modular and can easily be expanded to any number of
neurons and inputs within the available silicon area. Therefore,
the efficient implementation of the synapse and neuron circuits
is essential for large networks. The output multiplexer is
introduced to reduce the number of pins and ADCs. The signal
encoding takes different forms: the outputs of the neurons are
voltages, while the outputs of the synapses are currents. In

Paper 23.2 INTERNATIONAL TEST CONFERENCE 3



Fig. 5. Synapse circuit schematic.

Fig. 6. Current sources control circuit.

addition, all signals are in differential form, thereby increasing
the input range and improving noise resilience.

C. The Synapse Circuit

The basic function of a synapse is multiplication. Linear
multiplication, as dictated by the mathematical model, is area
expensive when implemented with analog circuitry. As a
result, it is often the case that much simpler circuits exhibiting
only approximate multiplication behavior are preferred. The
effect of nonlinearity in synapse circuits can be addressed in
various ways, with the solutions ranging from specially tai-
lored backpropagation algorithms [20] to training algorithms
independent of synapse and neuron transfer characteristics
[24].

The synapse circuit chosen for this design is a simple
multiplying DAC [25], which represents a differential pair with
programmable tail current, as shown in Fig. 5. A differential
input voltage is multiplied by the tail current producing a
differential output current which is collected on the summing
nodes common to all synapses connected to each neuron. The
core of the circuit is a differential pair N10−N11 perform-
ing a two-quadrant multiplication, while the four switching
transistors P0 − P3 controlled by bit B5 steer the current
between the two summing nodes, thus defining the sign of the
multiplication. The tail current is digitally controlled by the
five switch transistors N5−N9 connecting the corresponding
binary weighted current sources N0 − N4 to the tail node.

Thus, the tail current as a function of a digital weight word
(bits B4−B0) can be represented by

Itail =
4∑
i=0

Bi · Ii =
4∑
i=0

Bi · Ibias · 2i−4 = Ibias ·W, (4)

where Bi are the bits of a weight word, Ii is the current
corresponding to the i-th bit, Ibias is the external biasing
current, and W is the weight value. The biasing voltages V bi
for the current sources of all synapses are supplied by a single
biasing circuit shown in Fig. 6. The external biasing current
Ibias sets the MSB current component, while the other currents
are generated internally using the ratioed current mirrors.

The functional relation between input variables of the
synapse circuit depends on the region of operation of the
differential pair. For the saturation region, using the first order
transistor models, this relation takes the following form

∆Iout = KN∆Vin

√
IbiasW

KN
− (∆Vin)2, (5)

where ∆Vin is the differential input voltage and KN is
the transconductance coefficient. Linear multiplication is only
valid for a narrow range of differential input voltages. As can
be seen from the above equation, this range depends on both
the tail current and the transconductance coefficient. Since
synapses account for the major part of power consumption, the
tail current was kept minimum, yet enough for the differential
pair to operate in saturation. The external biasing current
during actual experimentation was about 1.5 µA producing
the LSB current of about 90 nA, which corresponds to the
weak inversion. In view of the small operating currents, the
relatively wide input range (about 800 mV for maximum
weight) was achieved by selecting input transistors with long
channels (14 µm). A proper choice of the common mode
input voltage alleviates the problem of the large gate-to-source
voltage drops at the input transistors and keeps the current
sources in saturation. The rest of the transistors were kept at
minimum size.

D. The Neuron Circuit

The main function of a neuron circuit is to convert the sum
of differential currents from its synapses into a differential
voltage. Two issues need to be taken into account when
designing this circuit. First, if the output voltage is propagated
to the next layer, it should be compatible with the input
requirements of the synapses, i.e. it should have high com-
mon mode. Second, the circuit should handle relatively large
dynamic range of input currents. While the useful information
is contained in the difference, the common mode current
may vary significantly depending on the number of connected
synapses, as well as on their weight values. In our design,
the common mode current ranges from 90 nA (one synapse,
minimum weight value) to 30 µA (10 synapses, maximum
weight values).

A circuit satisfying these requirements is shown in Fig. 7.
The central part of the circuit is responsible for common mode
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Fig. 7. Neuron circuit schematic.

Fig. 8. Neuron sigmoid transfer function.

cancellation by subtracting the input currents from each other
and producing a positive difference. The output currents of
the transistors N0 and N7 can be expressed as max(0, (I−in−
I+
in)) and max(0, (I+

in − I−in)), respectively. Thus, only one
of the transistors can sink non-zero current at a time. The
second stage is a simple current-to-voltage converter composed
of two p-channel MOSFETs. It can be shown that, when the
transistors are identical, such circuit exhibits a linear to the
first degree characteristic of the following form

V = Vdd −
I

2KP (Vdd − 2VTP )
, (6)

where KP is the transconductance coefficient, VTP is the
threshold voltage, and Vdd is the supply voltage. The circuit
also provides a limiting function when the input current
exceeds the internal current flowing through the circuit, thus
introducing nonlinearity to the neuron characteristic. Notice
from the formula above that the slope of the characteristic
depends on the KP , which is set at the design stage by
specifying transistor sizes. Finally, the output of the converter
is shifted upwards to meet the requirements of the high
common mode input voltage for the synapses in the following
layer. This level shifter is a simple source follower circuit
where the amount of shift is controlled by Vbias. A shift of
1V is used in this design. Fig. 8 shows the simulated transfer
characteristic of the entire circuit and represents the activation
function of the neuron.

E. Training Setup

When dealing with analog implementations the choice of
training algorithms is generally limited. While on-chip imple-
mentations of backpropagation training exist, they suffer from
the problems of limited precision and large area overhead. The
practical scope is usually limited to either perturbation-based
or optimized gradient-descent-based algorithms. In this work
we pursue the former approach. It is particularly attractive
since it requires little or no on-chip support resulting in a
compact solution. The chip is trained by a computer program
which uses the network’s response to guide the search in
the weight space. The gradient of the error surface cannot
be calculated, since the model of the network is unknown
in addition to the weights being non-continuous. Instead,
we can probe different directions in the weight space by
perturbing the weights and observing a change in the error
function. Such weight perturbation-based algorithms are well
suited for analog implementations, because they make no
assumption about the network model, i.e. the synapse and
neuron characteristics.

For this design we employed a popular algorithm called
parallel stochastic weight perturbation [24]. In this algorithm,
all weights are perturbed simultaneously by a random vector.
Then the mean squared error is evaluated on the entire training
set. If the error decreases, the new vector of weights is
accepted; otherwise, it is discarded. This algorithm, however,
suffers from high likelihood of convergence to a local mini-
mum. Thus, training may need to be performed several times
before a good solution is found. To decrease the probability
of being stuck in a local minimum, this algorithm has been
augmented with the simulated annealing technique, which is
known to be efficient in avoiding local minima since it allows
the state of the network to move “uphill”. The main difference
from the original algorithm consists in its ability to accept
weight changes resulting in an increase of the error, however,
with a certain probability. This probability depends on the
magnitude of the error change and the “temperature” of the
system T , i.e. p ' exp(−∆E/T ). Higher temperatures at
the initial stages favor the exploration of the whole search
space. A cooling schedule is used to adjust the temperature and
magnitude of weight perturbations as the training progresses.
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Fig. 9. Chip photograph.

TABLE I
CHIP KEY FEATURES.

Implementation method mixed-signal
Network topology reconfigurable 2-layer
IC process 0.5 µm CMOS
Core area 1× 1.2 mm2

Neurons 10
Synapses 100
Weight resolution 6 bit
Response time < 1 ms
Power supply 3.3 V
Max. current per synapse 3 µA

As will be shown later, this training approach applied to the
hardware network has shown very similar performance in
comparison to software neural networks.

F. Chip Fabrication

The chip has been fabricated using a 0.5 µm digital CMOS
process available through MOSIS. Fig. 9 shows a photograph
of the chip and Table I summarizes its key features. The
training algorithm runs in MATLAB and communicates with
the chip via a layer of two PCB boards, as shown in Fig. 10.
The top layer is a custom-built PCB board that houses the
chip, as well as two DACs, an ADC, and biasing circuits.
The DACs produce differential input voltages to the network
inputs, while the ADC is used to record the network response.
The bottom layer is a commercial FPGA board that was used
for communication with the PC and for programming the on-
chip memory, the DACs, and the ADC.

IV. CASE STUDY

For our experiment, we selected the DUT to be a standard
source-degenerated LNA. Its topology is shown in Fig. 11. The
initial design targeted the set of nominal performances listed in
Table II. The LNA is integrated along with two RF amplitude
detectors that are placed at its input and output ports. The
amplitude detectors provide DC signals proportional to the
RF power seen at their inputs. These DC signals comprise
the BIT measurement pattern that is finally presented to the

Fig. 10. Test board.

Fig. 11. LNA schematic.

TABLE II
LNA FEATURES.

Performance Nominal
Central frequency (in GHz) 1.575

NF (in dB) 2
S11 (in dB) -10
Gain (in dB) 15

IIP3 (in dBm) -5
S22 (in dB) -10

Power consumption (in mW) 18

classifier. The objective is to have very simple sensor structures
with small area and power overhead, such that they qualify for
a BIST application. The schematic of the selected amplitude
detector is presented in Fig. 12 and its key features are
summarized in Table III. The circuits were designed in the
TSMC 0.18 µm CMOS process and were integrated into a
single die as shown in Fig. 13.

A set of 1000 instances reflecting manufacturing process
variations is generated through a Monte Carlo post-layout
simulation. The parameter distribution and mismatch statistics
were provided by the design kit. The amplitude detectors
undergo the same process variations as the LNA. Next, each
instance is fully characterized using standard test benches to
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Fig. 12. Differential topology amplitude detector.

TABLE III
POWER DETECTOR FEATURES.

Frequency band (in GHz) 1.575
Dynamic Range (in dB) 50

Power consumption (in µW) 6.66
Area overhead (in µm2) 42 × 80

obtain the set of performance parameters. In addition, we
obtain a four-dimensional BIT measurement pattern (e.g. the
test signature) by applying to the LNA two test stimuli of
powers -10 and 0 dBm consisting of a single tone at 1.575
GHz. It should be noted that the power levels of these test
stimuli are much higher than that of typical signals expected
during a real application. This is because the input amplitude
detector does not have enough gain to detect small incoming
signals, in response to which its output is likely to be hidden
below the noise level.

For the original sample of fully characterized devices we
set the specification limits to Mean ± 3·StdDev (where + or
− depends on whether the performance has a lower or upper
limit). The Mean and StdDev of individual performances are
computed across the set of 1000 devices. Our choice of speci-
fications resulted in 8 faulty devices out of 1000. Fig. 14 illus-
trates the distribution of nominal and faulty devices projected
onto a 2-dimensional subspace of the measurement pattern. In
particular, the horizontal and vertical axes correspond to the
normalized input and output amplitude detector readings when
excited by -10 dBm signal. The 8 faulty devices fall in the tail
of the distribution which is sparsely populated. For training
the classifier, however, it is preferable to have a balanced
data set, such that one class does not overshadow the other.
Furthermore, sparsely populated areas produce randomness in
the curvature of the separation boundary and, thereby, can
deteriorate the classification. Therefore, the training set must
be populated with many marginal devices whose footprint lies
in close proximity to the boundary. Similarly, we would like
to evaluate the classification rate using a larger validation set.
In the following section, we briefly discuss a technique to
generate the desired training and validation sets.

V. DATA SET GENERATION

A Monte Carlo simulation samples with priority the statis-
tically likely cases. Therefore, it is typically required to go
through many passes so as to assemble a training set with
an adequate number of marginal devices. Notice that a few

Fig. 13. LNA and amplitude detectors layout.

simulations targeting only process and environmental corners
do not suffice because they do not account for the actual
statistics. To alleviate the computational effort, we adopt the
technique in [19].

The main idea is to use the available set of 1000 devices
to estimate the joint probability density function of the per-
formances and the measurement pattern. Subsequently, the
estimated density can be sampled to obtain new observations
that correspond to synthetic devices following the original
distribution. Sampling can be performed very fast, in particular
1 million observations can be obtained in 25 minutes.

To build the training set, we sample iteratively devices
from the density with the aim to generate three equal sets,
a set of faulty devices, i.e. devices with at least one per-
formance falling outside the 3·StdDev specification limit, a
set of marginally-in-the-specifications devices, i.e. devices that
have at least one of their performances falling between the
2·StdDev and 3·StdDev specification limits, and a set of func-
tional devices whose performances fall within the 2·StdDev
specification limit. The generated training set is illustrated in
Fig. 15, which shows a marked contrast to Fig. 14 that contains
the original devices. The generated training set contains 900
devices, of which 1/3 are faulty, 1/3 are marginally functional,
and 1/3 are functional close to the nominal design. Now the
boundary can be better approximated since the area around it
is populated with many samples.

Notice that this training set is “biased” in the sense that it
is enhanced with a large number of faulty devices. In contrast,
the trained classifier is validated using a large validation set of
devices (e.g. 1 million) that is produced by “natural” sampling
of the density. In this way, the validation set emulates a large
set of devices that will be seen in production. As an example,
Fig. 16 illustrates the original set of 1000 devices together
with 104 randomly generated synthetic devices. This technique
allows us to decompose the classification error into test escape
(e.g. probability of a faulty device passing the test) and yield
loss (e.g. probability of a functional device failing the test)
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Fig. 14. Original data set consisting of 1000 devices generated through the
Monte-Carlo simulation.

Fig. 15. Synthetic training set derived through resampling of the original
distribution. It is equally represented by faulty, marginally functional, and
functional devices. The decision boundary is generated by the hardware
classifier.

and express these test metrics with PPM accuracy. Formally,
let Cg and Tp denote the event that a device is functional and
that a device passes the test, respectively, and let Ccg and T cp
denote the complementary events, i.e. a device is faulty and
a device does not pass the test, respectively. Given a large
sample of one million devices, test escape (TE) and yield loss
(YL) estimates can be derived using relative frequencies [26]:

T ∗E =
NCc

g

⋂
Tp

NTp

(7)

Y ∗
L =

NCg
⋂
T c

p

NCg

, (8)

where NX denotes the count of event X .

Fig. 16. Original and synthetic devices shown together. One million of
synthetic devices comprise the validation set.

TABLE IV
CLASSIFIER PERFORMANCE.

Number of hidden neurons 2 4 8
Software network

Training error, % 5.82 4.91 4.88
Validation error, % 0.566 0.548 0.581

Hardware network
Training error, % 6.82 5.53 5.75
Validation error, % 0.727 0.435 0.491

VI. EXPERIMENTAL RESULTS

We experiment with three different neural network config-
urations that consist of a single hidden layer with 2, 4, and
8 neurons, respectively. The training is repeated 5 times for
each network configuration to average out the randomness due
to stochastic nature of the training algorithm. For comparison
purposes, the same experiments are repeated with software
neural networks of identical topologies using the Matlab
Neural Networks toolbox. The software training is carried out
using the resilient backpropagation algorithm.

The results on the training and validation sets are presented
in Table IV. A large discrepancy between the training and
validation errors is the result of having a “biased” training
set with many marginal devices and a “natural” validation
set where the majority of devices is distributed around the
nominal point. In terms of training error, the software classifier
consistently outperforms the hardware classifier by about 1%.
However, the validation errors, representing the true accuracy
of classification, are similar for both networks (the difference
is < 0.2%). The hardware version achieves even smaller error
for the models with more than 2 hidden neurons. In fact, the
best performance is shown by the hardware network with 4
hidden neurons resulting in the error of 0.435% or equivalently
4350 misclassified PPM.

The validation error can be decomposed into TE and YL.
Since TE is more undesirable than YL, the decision boundary
can be biased to favor YL over TE , i.e. to accept fewer faulty
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Fig. 17. Training error decomposed into false positives and false negatives for
biased boundaries. Larger values of the parameter shift the boundary towards
the functional class resulting in lower ”faulty-to-nominal” error.

Fig. 18. Test escape and yield loss error for biased boundaries obtained on
the validation set.

devices at the expense of rejecting more functional devices.
To this end, the hardware network with 4 hidden neurons
is repeatedly trained for different values of a parameter that
regulates the positioning of the boundary. Larger values of
the parameter correspond to higher penalties imposed on TE
and cause the boundary to shift towards the functional class.
The results on the training set are illustrated in Fig. 17, which
shows the reduction of misclassification of faulty devices as
we gradually increase the value of the parameter (the value 1
corresponds to an “unbiased” boundary, see Table IV). Fig. 18
illustrates the trade-off between TE and YL obtained on the
validation set. When the parameter value equals 3 we obtain
YL ≈ 10 · TE . This trade-off point corresponds to the rule-
of-ten, which suggests that it is 10 times more expensive
to accept a faulty device than rejecting a functional one.
The absolute numbers for TE and YL are 1062 and 10063
PPM, respectively. While these numbers are rather large, we

emphasize that the primary purpose of this work was to
demonstrate the equivalence of the hardware classifier to its
software counterpart. More discriminative measurements or a
larger measurement pattern are needed to reduce this error to
industry acceptable levels.

VII. DISCUSSION

The learning capability of our hardware neural network was
assessed in comparison to software neural networks of iden-
tical topologies. As is evident from the error on the training
set, the hardware network falls short of the ideal software
network in terms of its classification accuracy. We believe
that this is due to its limited capacity resulting from the high
nonlinearity in synapse multiplication, the limited resolution
and dynamic range of weight values, and the limitations of the
training algorithm. The dynamic range limitation, for instance,
exhibited itself as saturation of weights to their maximum
values, which was often observed during the experiments.

The problem of limited dynamic range can be addressed
by designing synapses with adjustable gain and executing
gain change whenever a weight becomes either too small or
saturates. Alternatively, the dynamic range of all synapses con-
nected to one neuron can be effectively adjusted by changing
the gain of this neuron [27]. The problem of weight resolution
is more subtle, especially in presence of high nonlinearity. The
minimum number of bits required depends on the network
architecture and is generally problem-specific. Comparing
the training outcomes of the software network performed
in double precision arithmetic with the hardware version
suggests that 6 bits might be insufficient. However, increasing
weight resolution with minimum size devices is limited by the
inherent mismatch and parameter variation [28]. The problem
is compounded by the fact that the effective resolution due to
nonlinear weights/multiplication is inevitably lower. Finally,
the training algorithm itself affects the performance of the
classifier in terms of training time and its ability to find
a global solution. In the course of experiments, the simu-
lated annealing-based parallel weight perturbation algorithm
demonstrated good convergence properties and low variance of
the final error with the only drawback being lengthy training
time. A more elaborate training will incorporate the gradient
information leading to significant speedup.

The issue of weight storage is central to an analog neural
network implementation. It is usually addressed by using
local digital memory, storing weights as capacitor charge, or
using non-volatile memory. The digital memory employed in
this design is a fast and convenient way to explore training
algorithms and network performance. However, in a BIST
application, this would require an external memory to store
the weights permanently. An attractive solution to non-volatile
weight storage can be offered by floating gate transistors,
which can be implemented in standard CMOS [29], [30].
Unlike digital FLASH memories, however, such transistors are
primarily intended for storing analog values quantified by the
amount of charge on their floating gates. In addition, they
can be used as a part of the computational circuit leading to
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significant reduction in area overhead. Successful application
of the floating gate technology will require resolving several
issues, such as precision programming schemes, high voltage
handling, unidirectional weight update, etc., yet this is the
direction of choice for continuing this work.

Finally, a critical issue for the overall success of on-line
BIST, though not directly related to the hardware implemen-
tation, is the generation of a representative training set. When
obtained by post-production characterization of a number of
chips, it faithfully reflects the manufacturing process statistics,
thus it is well suited for production testing. However, it still has
to be investigated whether this scheme adequately represents
the effects of degradation during the lifetime of the device,
and, if not, what corrections to the data generation process
would be required.

VIII. CONCLUSIONS

In this paper, we discussed an analog hardware implemen-
tation of a neural network which can be employed to map
sensor-based measurements to a compact Go/No-Go test deci-
sion. This mapping function is useful in the context of a stand-
alone BIST for manufacturing testing or for in-field testing.
We discussed in detail the design of the basic blocks of the
neural network, namely the synapse and the neuron, as well as
its learning strategy. We demonstrated its capacity to perform
pattern recognition using a data set from LNA instances.
Finally, we discussed its limitations compared to an identical
software version and we pinpointed the improvements that can
be made to arrive at a cost-effective implementation.
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