
IRM Enforcement of Java Stack Inspection∗

Úlfar Erlingsson† Fred B. Schneider

deCODE Genetics Department of Computer Science

Lyngháls 1, 110 Reykjav́ık Cornell University

Iceland Ithaca, New York 14853

February 19, 2000

Abstract

Two implementations are given for Java’s stack-inspection access-
control policy. Each implementation is obtained by generating an in-
lined reference monitor (IRM) for a different formulation of the policy.
Performance of the implementations is evaluated, and one is found to
be competitive with Java’s less-flexible, JVM-resident implementation.
The exercise illustrates the power of the IRM approach for enforcing
security policies.

1 Introduction

Java was designed to support construction of applications that import and
execute untrusted code from across a network. The language and run-time
system enforce security guarantees for downloading a Java applet from one
host and executing it safely on another. In Sun’s Java implementation [11,

∗Supported in part by ARPA/RADC grant F30602-96-1-0317, AFOSR grant F49620-
94-1-0198, Defense Advanced Research Projects Agency (DARPA) and Air Force Research
Laboratory, Air Force Material Command, USAF, under agreement number F30602-99-
1-0533, National Science Foundation Grant 9703470, and a grant from Intel Corporation.
The views and conclusions contained herein are those of the authors and should not be in-
terpreted as necessarily representing the official policies or endorsements, either expressed
or implied, of these organizations or the U.S. Government.

†Work done while at the Department of Computer Science, Cornell University, Ithaca,
New York 14853.

An abbreviated version of this paper appears in Proceedings IEEE Symposium on Security

and Privacy (Oakland, California, May 2000), IEEE Computer Society, California.

1

13, 10], some of these security guarantees involve run-time checks by the
JVM (Java Virtual Machine), others involve load-time checks on the JVML
(Java Virtual Machine Language) bytecode files defining JVM classes—the
unit of JVM binary code and of Java object hierarchies—and still others
follow from the syntax of JVML and the Java programming language.

The JVM run-time checks enforce access-control policies that associate
access rights with the class that initiates the access. The sandbox policy of
early (pre Java 2) JVM implementations distinguishes between code residing
locally and code obtained from across the network. The more recent Java 2
stack inspection policy refines this. In Java 2, whether an access is permitted
can depend on the current nesting of method invocations. Enforcement
of the stack inspection access-control policy therefore relies on information
found on the JVM run-time call stack.

Changing which access-control policy is supported by the JVM requires
changing the JVM. Thus, programs expecting Java 2’s stack inspection pol-
icy to be enforced cannot execute on earlier-generation JVM implementa-
tions. On a JVM that enforces the stack inspection policy, applications
requiring other access-control policies might be ruled out altogether, might
require awkward constructions1, or might be forced to employ their own
application-level custom enforcement mechanisms. Finally, such a JVM in-
cludes mechanisms that may or may not be needed for executing any given
Java application. For embedded applications, where memory is at a pre-
mium, the size of the JVM footprint is crucial; there is considerable incentive
to omit unused enforcement mechanisms.

This paper describes an alternative to putting access-control enforcement
in a run-time environment, such as the JVM. We show how an in-lined

reference monitor (IRM) can be merged into Java applications to enforce
security policies like stack inspection. With the IRM approach, a trusted
rewriter instruments applications with checks that cannot be circumvented
and that cause execution to be monitored for violations of a specified security
policy.2 Two IRM implementations of stack inspection are reported—one
is a reformulation of security passing style proposed in [18, 19]; the other is
new and exhibits performance that is competitive with existing commercial
JVM-resident implementations.

1For example, certain access-control policies can be implemented with stack inspection
only by creating multiple copies of the same class in different code bases or by creating
multiple instances of identical class loaders.

2The IRM approach is capable of enforcing EM policies [15], an extremely rich class that
includes mandatory and discretionary access control, Chinese Wall, type enforcement, and
the Clark-Wilson commercial policy but that excludes certain information flow policies.

2

Java 2’s stack inspection policy is a particularly challenging one to en-
force with an IRM because state relevant to policy enforcement (the JVM
run-time call stack) is not directly accessible to Java applications. That we
are able to obtain a new implementation exhibiting competitive performance
reflects well on the practicality of the IRM approach. And having an IRM
implementation for stack inspection means that Java 2 programs can be run
on earlier generation JVM implementations, that variants of stack inspection
as well as entirely new security policies can be enforced on Java programs
without changing the JVM, and that unused enforcement mechanisms need
not bloat Java applications or the JVM.

We proceed as follows. Section 2 briefly summarizes our PoET/PSLang
toolkit for synthesizing IRMs; PoET/PSLang is a successor to our SASI
tool [7]. Section 3 reviews Java 2’s stack inspection policy and the primitives
that implement this policy. An IRM version of the security-passing style [18,
19] implementation of stack inspection is described in Section 4; an IRM
implementation for a new way to support Java 2’s stack inspection policy is
given in Section 5. Finally, Section 6 concludes with some remarks about the
IRM approach and about limitations we discovered in Java’s stack inspection
policy.

2 Inlined Reference Monitors

For a reference monitor [2] to enforce a security policy, (i) it must mediate
all events relevant to the policy being enforced, (ii) its integrity must be
protected from subversion by applications, and (iii) its presence must be
transparent to applications [14]. Address-space isolation has traditionally
been employed for ensuring the integrity of reference monitors, but other
approaches are also feasible.

With an in-lined reference monitor, a load-time, trusted rewriter merges
checking code into the application itself and uses program analysis and pro-
gram rewriting to protect the integrity of those checks. The application is
thus transformed by the rewriter into a secured application, which is guar-
anteed not to take steps violating the security policy being enforced. See
Figure 1.

Specifying an IRM involves defining

• security events, the policy-relevant operations that must be mediated
by the reference monitor;

• security state, information stored about earlier security events that is

3

Figure 1: IRM approach to security policy enforcement.

used to determine which security events can be allowed to proceed;
and

• security updates, program fragments that are executed in response
to security events and that update the security state, signal security
violations, and/or take other remedial action (e.g. block execution).

Policy Enforcement Toolkit (PoET) [6] implements IRMs for JVML ap-
plications. A primary concern in the design of PoET was the trusted com-
puting base. PoET comprises approximately 17,500 lines of Java source code
and thus increases the size of the trusted computing base by that amount.
Although the PoET rewriter does local optimizations on inserted code—to
delete (some) superfluous enforcement checks—it does not attempt global
program analysis because we feared further increases to the size and com-
plexity of the trusted computing base. In addition, PoET works at the level
of JVML (and not the Java programming language).3 Transforming Java
programs instead of JVML programs would make a Java compiler part of
the trusted computing base, an unwise choice given the size and complexity
of Java compilers. Moreover, by choosing to transform JVML programs, we
do not require that source code for an application be available at a site for
a security policy to be imposed by the site on that application.

Note that the PoET rewriter need not be run on the same computer as
the JVM or even as the Java compiler. Thus, PoET contributes to the size
of the trusted computing base without increasing the size of the run-time
environment used to execute Java applications. In most cases, PoET will
run on the same computer as the JVM, yet it is not difficult to imagine

3Currently, PoET does not process Java native methods—code written in native ma-
chine language—and this restricts what policies can be enforced by excluding some security
events. However, this is not a limitation of the IRM approach in general, as demonstrated
by x86 SASI [7], which implements IRMs on x86 machine-language applications.

4

mobile-code and other networked settings where security policies are added
to an application before that application is distributed to other sites for
execution.

The integrity of a PoET-inserted IRM’s security state and security up-
dates is protected by JVML type-safety guarantees, since the JVML type
system prohibits access to code and data not in the classes originally com-
prising an application. JVML type-safety also means that JVML applica-
tions are unaffected by the presence of checking code that PoET adds to
create an IRM. This is because JVML type-safety prevents code from being
viewed as data, so code inserted by the PoET rewriter cannot be directly
detected by the application that was modified. In addition, JVML type-
safety prevents a Java application from mentioning names and types not in
that application’s original namespace; the PoET rewriter chooses the names
and types for any checking code it adds accordingly.4

Security policies for PoET are specified using Policy Specification Lan-
guage (PSLang), an event-oriented, imperative language with Java-inspired
syntax. PSLang is a small subset of Java so that the PSLang compiler could
be small. In PSLang security policies, any JVM event that could occur dur-
ing execution of the original application—from method calls to arithmetic
operations—can be identified as a security event and, therefore, will trigger
execution of an associated security update. PSLang is expressive enough to
specify the EM policies of [15].5

To illustrate the syntax of PSLang, Figure 2 gives a policy to prevent
Java applications from opening more than 10 Java windows. The security
state is defined in the ADD SECURITY STATE block at the start of the spec-
ification. It consists of an integer variable (openWindows) and a mutual
exclusion lock (lock). Variable openWindows counts the number of open
windows; lock is used to protect openWindows from concurrent access. Se-
curity updates are introduced by PERFORM SECURITY UPDATE (two are in
Figure 2), and security events are identified by ON EVENT ... WHEN tags.
The two security events in the policy of Figure 2 specify that the IRM
executes security updates prior to method invocations for opening and clos-
ing Java windows. Whenever the application attempts to open a window,
the JVM executing the application is terminated (because HALT is invoked)
if 10 windows have already been opened (i.e., openWindows = 10); oth-

4The presence of an IRM for certain policies cannot be completely hidden. Reflection
and the measurement of execution timing can allow a Java application to detect added
code (but does not compromise security enforcement).

5To be precise, any security policy that can be specified using a security automaton
involving transition predicates that are JVM events can be formulated in PSLang.

5

IMPORT LIBRARY Lock;

ADD SECURITY STATE {
int openWindows = 0;

Object lock = Lock.create();

}
ON EVENT begin method

WHEN Event.fullMethodNameIs("void java.awt.Window.show()")

PERFORM SECURITY UPDATE {
Lock.acquire(lock);

if(openWindows = 10) {
HALT["Too many open GUI windows"];

}
openWindows = openWindows + 1;

Lock.release(lock);

}
ON EVENT begin method

WHEN Event.fullMethodNameIs("void java.awt.Window.dispose()")

PERFORM SECURITY UPDATE {
Lock.acquire(lock);

openWindows = openWindows - 1;

Lock.release(lock);

}

Figure 2: PSLang security policy that allows at most 10 open windows.

erwise, openWindows is incremented. And whenever a window is closed,
openWindows is decremented.

3 Review of Java 2’s Stack Inspection Policy

Java 2’s stack inspection access-control policy is based on policy files which
associate permissions with protection domains. The policy file read when
the JVM starts is what defines the access-control policy for applications then
executed by that JVM, as follows.

Protection domains. Each application initially is a sequence of bytes stored
outside the JVM. The bytes are fetched by a class loader and then exe-
cuted by the JVM. Prior to execution, the bytes are assigned to a pro-
tection domain in accordance with the source of the bytes (a network

6

Figure 3: Three Protection Domains.

address or a file name) and any attached cryptographic signature.6

Permissions. Each protection domain implies a set of permissions. This
set includes all those permissions associated with the protection do-
main by the policy file, as well as other implied permissions. The
definition of a permission—a class—states what permissions it implies
by implementing an implies method.

As an example, Figure 3 depicts three protection domains: Untrusted
Applet, GUI Library, and File System. Permissions associated with each
domain appear in the box below the name of the protection domain; psuedo-
code associated with that domain appears below the permissions. Notice
that file access permissions are given in the figure using patterns rather than
complete file names—the implies method would decode those patterns to
generate permissions for actual files in the expected way.

For a permission P , invoking the checkPermission(P) method of Java 2
throws a security exception if access should not be allowed to proceed; it
otherwise has no visible effect. Whether a security exception is thrown de-
pends on the protection domains assigned to the methods from which control
has not yet returned—methods having frames on the JVM call stack when
checkPermission(P) is invoked. Specifically, when checkPermission(P)
is invoked, the JVM call stack is traversed from top to bottom (i.e., starting

6The Java class loader used to fetch those bytes can also be involved in determining the
protection domain of those bytes [12]. Since new class loaders can be created at runtime,
protection domains can be created dynamically, thereby helping to overcome the static
nature of policy files.

7

with the frame for the method containing the checkPermission(P) invo-
cation) until either the entire stack is traversed or an invocation is found
within the scope of a doPrivileged block. In that traversal, the stack
frames encountered are checked to make sure their associated protection do-
mains imply permission P ; if some frame doesn’t, a security exception is
thrown.

Observe that doPrivileged supports a form of rights amplification.
Without doPrivileged or some equivalent, it would be impossible to in-
voke methods that require permissions not already held by the invoker. Such
rights amplification is crucial, for example, when untrusted code invokes a
system routine. A system routine is trusted to perform adequate checks
before exercising the power that comes with the more powerful permissions
in its associated protection domain; it should also be trusted to invoke only
methods that are similarly prudent. So, a construct like doPrivileged that
allows an invoked method to exercise permissions beyond those of its invoker
is both sensible and useful.

The psuedo-code in Figure 3 illustrates how doPrivileged is used.
display directly invokes the load method of File System and invokes the
use plain font method of GUI Library. Also note that use plain font

invokes load—loading a font may require loading a file that contains bit
maps for the font. We then have:

• In invoking load(’thesis.txt’), the checkPermission will throw a
security exception if protection domains File System (the frame at the
top of the stack) and Untrusted Applet (the next and bottom frame
on the stack) do not each imply the needed permissions for reading
that file. They do if thesis.txt resides in /home/ue.

• In invoking load(’Courier’) while executing in use plain font,
the checkPermission will throw a security exception if protection do-
mains File System (the frame at the top of the stack) and GUI Library
(the next frame on the stack) do not each imply the needed permissions
for reading that file. They do if Courier resides in /fonts. Untrusted
Applet is not checked for permissions, because the invocation of load
in GUI Library is within the scope of a doPrivileged.

Java’s stack inspection policy also handles dynamic creation of threads.
When a new thread T is created, T is given a copy of the existing run-time
call stack to extend. The success of subsequently evaluating checkPermission
in thread T thus involves permissions associated with the call stack (or some

8

other representation of the permissions implied by the call stack) when T is
created.

4 A Security-Passing Style IRM

The first work on modifying JVML programs to enforce stack inspection is
described in [18, 19]. There, an additional variable is introduced to replicate
information from the JVM run-time call stack. This variable is changed
upon invoking or returning from a method call as well as upon entering or
exiting the scope of a doPrivileged block; the variable is scanned when
checkPermission is evaluated. The resulting scheme is called security-

passing style (SPS) because the new variable is passed to method invocations
as an additional argument.

SPS is an example of the IRM approach, so it will be no surprise that we
were able to use PoET and build IRMSPS, an implementation of SPS. The
security updates that IRMSPS associates with each security event—method
call and return, checkPermission, doPrivileged, and thread creation—are
sketched in Table 1; the actual PSLang formulation appears in Appendix A.

In the PSLang that specifies IRMSPS, variable domainStack replicates
policy-relevant information from the JVM run-time call stack; this variable
is local to each thread (and is equivalent to the additional explicit argument
to method invocations employed in [18, 19]). It is worth noting exactly
how IRMSPS handles security updates associated with a method call from
A to B. Permissions for B could be added to security state domainStack

either inside method A or inside method B. But performing the update
inside method A turns out to be less desirable in part because when B is
a virtual method (the Java equivalent of a function pointer), a dynamic
lookup would be required to determine its permissions. Therefore, IRMSPS

does the security update inside method B.

Performance Overhead

In order to understand the performance of stack inspection implementations,
we must know the frequency and cost of relevant security events in actual
applications. We therefore measured four applications: the Jigsaw 2.01 web
server [3], Sun’s javac Java 1.1 compiler [11], the tar utility [5], and an
MPEG video player [1]. All were run using modern JVMs7 with garbage

7For JDK 1.1.7, we used Symantec Java! JustInTime Compiler Version 3.10.107(i); for
JDK 1.2, we used Sun’s distribution that employs Symantec Java! JustInTime Compiler

9

Method call/return: A → B

At start of B, look up protec-
tion domain PB for B’s code
and push PB on the thread-
local domainStack. At re-
turn from B (either normally
or by a thrown exception), pop
domainStack, removing PB .

doPrivileged {S}
Push a distinguished token
doPriv on domainStack,
at the beginning of the
doPrivileged, and pop the
token off at the end (whether
an exception was thrown or
not).

checkPermission(P)
Scan domainStack from top to
bottom (without modifying it),
and look at each protection do-
main p. Throw a security ex-
ception if p does not imply P ,
but accept if p = doPriv or
the bottom of domainStack is
reached.

Create thread: T

Set the domainStack of T to
contain a copy of the contents
of the domainStack of its par-
ent thread.

Table 1: IRMSPS implements security-passing style.

collection disabled on a 300Mhz Pentium II running Windows 98. Since
quantifying access-control overhead was of interest, the first three bench-
mark applications used the same set of 500 small synthetic Java source files
as their input.

Table 2(a) shows how many times the various stack inspection primitives
were invoked in the benchmarked applications. The cost of doPrivileged,
checkPermission, and thread creation can be relative to the size of the
JVM call stack, and—because checkPermission is dominant—we also re-
port the average number of accessed stack frames (“avg checked”) for that
operation. So that the numbers are less dependent on irrelevant imple-
mentation details, stack inspection primitives used in the construction of
permission objects have not been counted. For instance, not counted are
the doPrivileged invocations for creating each java.io.FilePermission

object in Sun’s implementation.
Table 2(b) shows the overhead, in microseconds, for the IRMSPS stack

inspection primitives. The values shown are averages from a synthetic bench-
mark of the primitives. The primitives in the last three columns were bench-

Version 3.00.078(x).

10

Method
calls

doPrivileged
checkPermission

count avg checked
New

threads

Jigsaw 2,476,731 1,002 5,333 18.7 71
javac 1,456,970 0 1,067 12.4 0
tar 19,580 0 6,509 8.6 0
MPEG 35.997.662 101 205 5.7 201

(a) Frequency of stack inspection primitives.

Method call doPrivileged checkPermission New thread

1.00µs 1.66µs 7.7µs 6.5µs

(b) Benchmarked cost of IRMSPS primitives (at stack depth 10).

JVM IRMSPS

Jigsaw 6.2% 20.1%
javac 2.9% 46.2%
tar 10.1% 3.0%
MPEG 0.9% 72.5%

(c) Overhead of JVM-resident and IRMSPS implementations.

Table 2: Assessing stack inspection performance.

11

marked using a stack depth of 10—each operation accessed 10 stack frames.
Table 2(c) compares the run-time overhead of Sun’s JVM-resident im-

plementation of stack inspection and IRMSPS. The column labeled JVM
gives the percentage overhead between running the application on Java 2’s
JVM with stack inspection enabled versus without stack inspection enabled;
the column labeled IRMSPS gives the percentage overhead between running
the application with IRMSPS on Java 1.18 versus without any IRM.

The measurements in Table 2 do not include the cost of constructing
permission objects or of executing their implies methods. This better
quantifies the relative differences in overhead between stack inspection im-
plementations. The numbers shown are based on the average execution time
for 15 runs of the synthetic benchmarks and the applications. Percentages
in Table 2(c) relate two of these averages. For each average we computed,
the standard deviation was found to be small enough to be ignored in inter-
preting the numbers.

The JVM-resident implementation is considerably cheaper for Jigsaw,
javac, and MPEG. This is not surprising because of the per method call cost
of IRMSPS and the large number of method calls each of these applications
makes. However, when an application has many permission checks relative
to the number of method calls, IRMSPS may exhibit less overhead than the
JVM-resident implementation. This is because IRMSPS can amortize the
cost of creating domainStack over a large number of checkPermission’s and
each checkPermission is likely to be as cheap, or cheaper, under IRMSPS.
The results for tar illustrate this benefit.

An Improved SPS Implementation Scheme

The overhead of an SPS stack inspection implementation would be improved
if the security state (i.e., domainStack) were not updated on each method
call. In fact, updates need to be made only when a method call crosses pro-
tection domains—method calls within the same protection domain repeat-
edly push the same permission onto domainStack, and checkPermission

is unaffected by replacing sequences of identical stack frames with a single
frame.

The implementation of [18, 19] exploits this insight. The implementa-
tion comprises 12,800 lines of Java code, of which 1700 lines implement an
analysis to determine whether invoked methods are in the same or different

8We employed Java 1.1’s JVM to measure the overhead of IRMSPS because the stack
inspection implementation already present in Java 2’s JVM would otherwise distort the
measurements.

12

protection domains as the invoker and 6900 lines are produced by JOIE, the
generic JVML rewriter [4]. With these optimizations, [18, 19] reports overall
security enforcement overheads of between 13% and 17% of total execution
time—still relatively high when compared to the overheads on the same
applications run under the JVM-resident implementation stack inspection.
Adding this optimization to IRMSPS did not seem worthwhile, given the
performance gains we achieve in other ways with the IRM implementation
of the next section.

5 A New IRM Stack Inspection Implementation

Sun’s implementation of stack inspection profits from having direct access to
the JVM call stack, because no overhead is then incurred at method calls in
order to keep track of nested invocations for subsequent checkPermission
evaluation. Since method calls are the common case, the performance ad-
vantages of this design should be obvious.

In order to specify such a scheme in PSLang, some facility is needed
for accessing the JVM run-time call stack. Fortunately, such can be found
in Java. First, Java provides an interface so that exceptions can print a
textual description of the JVM call stack when they are thrown; second,
the Java SecurityManager contains a protected method getClassContext

that returns a copy of the JVM call stack as an array of Class objects, each
a unique identifier for the code at that JVM call stack frame. The PoET
runtime makes this latter interface accessible to PSLang specifications (as
part of PoET’s System library) by extending the SecurityManager.

Table 3 sketches security events and updates for IRMLazy, an IRM
stack inspection implementation that uses the JVM call stack. The actual
PSLang formulation appears in Appendix B. Notice how work has been
moved from method call/return to the implementation of doPrivileged,
checkPermission, and new thread creation (which all must make a copy
of the call stack when they are invoked). doPrivileged pushes the frame
number for the stack frame at the top of the current JVM call stack onto a
separate thread-local variable, privStack. This frame number then serves
to bound the segment of the JVM call stack that must be traversed in eval-
uating checkPermission—stack frames appearing lower on that call stack
are not checked. For each thread, the relevant stack frames of parent threads
are stored in thread-local variable ancestralStack, since this information
cannot be derived from the current JVM call stack and it is needed in eval-
uating any checkPermission that does not terminate early by reaching a

13

Method call/return: A → B

Nothing.
doPrivileged {S}

At the beginning of the
doPrivileged push the cur-
rent JVM call stack frame
number onto privStack; at
the end pop it off (whether an
exception was thrown or not).

checkPermission(P)
Let bottom be the privileged
stack frame number on top of
privStack, or 0 if there is
none. Scan the current JVM
call stack from top to bottom

and find the protection do-
main p for each stack frame—
reject if ever p does not imply
P . If there was no privileged
stack frame, likewise scan the
ancestralStack.

Create thread: T

Let the ancestralStack of
T be either a copy of the
ancestralStack of its parent
thread, with the current JVM
call stack pushed on top, or—if
there’s a privileged stack frame
number on privStack—the top
portion of the current JVM
call stack up to that privileged
frame.

Table 3: IRMLazy uses the JVM call stack.

doPrivileged frame.
Table 4(a) shows the cost of the stack inspection primitives with IRMLazy.

As with Table 2(b), reported measurements are averages from a synthetic
benchmark that repeatedly performed the subject operation.

Notice that, except for method calls, the measured costs for each stack
inspection primitive in Table 4(a) are higher than the IRMSPS costs given
in Table 2(b). These higher costs arise because the entire stack is now be-
ing copied by the implementations of all but the method call/return stack
inspection primitives. Even so, for our benchmark applications, IRMLazy

exhibits overall performance that is superior to IRMSPS and that is com-
petitive with Sun’s JVM-resident implementation. This is seen in Table 4(b),
and it is a consequence of method call/return invocations dominating per-
formance of our benchmarks. Where IRMLazy performs better than the
JVM-resident implementation, it is because of optimizations in our PSLang
specification, which do a better job of eliminating redundant work in per-

14

Method call doPrivileged checkPermission New thread

0µs 23.4µs 22.4µs 29.8µs

(a) Benchmarked cost of IRMLazy primitives (at stack depth 10).

JVM IRMSPS IRMLazy

Jigsaw 6.2% 20.1% 6.4%
javac 2.9% 46.2% 2.0%
tar 10.1% 3.0% 5.4%
MPEG 0.9% 72.5% 0.4%

(b) Overhead of JVM-resident, IRMSPS, and IRMLazy implementations.

Table 4: Assessing the IRMLazy stack inspection implementation.

mission checking.9

6 Concluding Remarks

The idea of separating mechanism from the policy that directs this mech-
anism is advocated often. Java 2’s support for the stack inspection access-
control policy involves a mechanism (in the JVM) and the flexibility to
direct that mechanism through policy files, protection domains, and per-
mission classes (with their implies methods). Our IRM realizations of
stack inspection actually draw a somewhat different line between policy and
mechanism. With no JVM-resident mechanism, there is considerable flex-
ibility about what policies can be enforced using the IRM approach and
about when that choice of policy must be made.

This flexibility allows enforcement of policies that alter or extend what
the JVM implements today. One might now contemplate remedying the
various deficiencies in the Java 2 stack inspection access-control policy, al-
lowing

• changing protection domains, permissions, and the implies method
after execution of an application is commenced, enabling straightfor-
ward creation of new protection domains as execution proceeds;

9Similar optimizations are done in IRMSPS.

15

• the coupling between protection domains and bytecode origin to be re-
fined so that, for example, an application’s state is used in determining
the protection domain for code; and

• the operation of doPrivileged to be extended so that only a subset of
the privileges in a protection domain are amplified in a block of code.

It now even becomes possible to enforce different security policies on dif-
ferent Java applications, raising questions about detecting and resolving
incompatibilities between those policies. However, these questions about
policy composition are independent of whether or not the IRM approach is
being used to enforce policies.

The IRM approach is flexible because it allows security events and se-
curity updates to be associated with any application event. This degree
of flexibility can be only approximated by wrapping security enforcement
code around an interface, as done by Naccio [8] (for method calls) and
Generic Software Wrappers [9] (for system calls). Software-based fault iso-
lation (SFI) [17] enforces a memory protection policy by object-code edit-
ing, and recent work on distributed virtual machines also is concerned with
enforcing security policies by code rewriting [16]. Clearly, the set of enforce-
able security policies is restricted if, as in this related work, only some—not
all—potential security events can be monitored, only some security state
maintained, and only some types of security updates supported.

Flexibility is a double-edged sword. The IRM approach is not only flex-
ible enough to implement Java 2’s stack inspection (in multiple ways!) and
to implement a host of variants that address apparent limitations in the
policy, but it is also flexible enough to allow policies to be defined that have
unanticipated consequences or vulnerabilities. We have no way to guarantee
that the PSLang formulations of stack inspection in Appendices A and B are
indeed the policy supported by Sun’s distribution. To get such assurance,
we would need a formal specification of Sun’s stack inspection implementa-
tion and we would need a logic for PSLang specifications. Neither exists.
But PSLang could easily be given a formal semantics in terms of security
automata, and then it would not be difficult to reason about and/or simu-
late PSLang policies in order to gain confidence that they describe what is
intended.

Even without a logic for reasoning about PSLang specifications, the ex-
ercise of formulating stack inspection in PSLang, a formal language, did
prove enlightening. Writing the PSLang security updates forced us to ask
questions about what really happens when security events occur. Surprising
things about the semantics of stack inspection came to light:

16

• If a new thread is created from within a doPrivileged block then
that thread will continue to enjoy amplified privileges—even though
its code might not be within the scope of a doPrivileged block and
even after its creator has exited from within the doPrivileged. This
is because the new thread starts execution with a copy of its creator’s
call-stack (whose top frame is marked as being within the scope of a
doPrivileged).

• When a class B extends some class A but does not override A’s imple-
mentation of a method foo(), then the protection domain for A (and
not B) will always be used by checkPermission for foo’s stack frame.
Because B can extend A in ways that may affect the semantics of foo,
(such as by overriding other methods), one might argue that the wrong
protection domain is being consulted.10

Both of these “features” of stack inspection will become apparent to atten-
tive readers of the PSLang formulations in Appendices A and B.11 This is
not to say that there aren’t also surprises in our PSLang formulations or
there aren’t aspects of the Java 2 behavior that we missed in constructing
these formulations. But having—in just a few pages—a complete and rigor-
ous description of the policy being enforced seems like a necessary condition
for understanding that policy.

Acknowledgments

Discussions with Li Gong have been helpful as this work has evolved. We also
thank Andrew Myers, Andrew Bernard, Michal Cierniak, Robert Grimm,
and the program committee for comments on earlier drafts of this paper.

References

[1] Anders, J. Java MPEG Player. Fakultät für Informatik,
Technische Universität Chemnitz, Chemnitz, Germany,
http://rnvs.informatik.tu-chemnitz.de/.

10The rationale for the choice that was made is given in [10, §3.11.3].
11For example, in Appendix A, the security event ON EVENT begin method WHEN

appMethod() results in a security update that adds the protection domain for the current
method on the top of domainStack. This protection domain will not reflect inheritance,
since it is read from the class variable siDomain. Also in Appendix A, the domainStack for
a newly created thread is a direct copy of its creating thread’s domainStack—including
any doPriv tokens—and, therefore, the new thread may be privileged throughout its
lifetime.

17

[2] Anderson, J.P. Computer security technology planning study. Tech-
nical Report ESD-TR-73-51, U.S. Air Force Electronic Systems Divi-
sion, Deputy for Command and Management Systems, HQ Electronic
Systems Division (AFSC), Bedford, Massachusetts, October 1972, vol-
ume 2, 58–69.

[3] Baird-Smith, A. Jigsaw: An Object Oriented Server. W3C Note, World
Wide Web Consortium, MIT Laboratory for Computer Science, Cam-
bridge, Massachusetts, June 1996. http://www.w3.org/Jigsaw/.

[4] Cohen, G., J. Chase, and D. Kaminsky. Automatic program transfor-
mation with JOIE. Proceedings of 1998 Usenix Annual Technical Sym-

posium, (New Orleans, Louisiana, June 1998), 167–178.

[5] Endres, T. Java Tar Package. ICE Engineering, Inc., Lake Linden,
Michigan, http://www.ice.com/java/tar/.

[6] Erlingsson, Ú. The Inlined Reference Monitor Approach to Security Pol-

icy Enforcement, Ph.D. thesis, Cornell University, Ithaca, New York,
2000.

[7] Erlingsson, Ú. and F.B. Schneider. SASI Enforcement of Security Poli-
cies: A Retrospective. Proceedings 1999 New Security Paradigms Work-

shop (Caledon Hills, Canada, September 1999), ACM Press, New York.

[8] Evans, D. and A. Twyman. Policy-directed code safety. Proceedings

IEEE Symposium on Security and Privacy (Oakland, California, May
1999), IEEE Computer Society, California, 32–45.

[9] Fraser, T., L. Badger, M. Feldman. Hardening COTS Software with
Generic Software Wrappers. Proceedings IEEE Symposium on Security

and Privacy (Oakland, California, May 1999), IEEE Computer Society,
California, 2–16.

[10] Gong, L. Inside Java 2 Platform Security: Architecture, API Design,

and Implementation, Addison-Wesley, Menlo Park, California, 1999.

[11] Gosling, J., B. Joy, and G. Steele. The Java Language Specification,
Addison-Wesley, Menlo Park, California, 1996.

[12] Liang, S. and G. Bracha. Dynamic Class Loading in the Java Virtual
Machine. Proceedings of 1998 ACM Conference on Object-Oriented Pro-

gramming, Systems, Languages and Applications (Vancouver, Canada,
October 1998), SIGPLAN Notices 33(10), 36–44.

18

[13] Lindholm, T. and F. Yellin. The Java Virtual Machine Specification,
2nd edition. Addison-Wesley, Menlo Park, California, 1999.

[14] Saltzer J.H. and M.D. Schroeder. The Protection of Information in
Computer Systems. Proceedings of the IEEE 63, 9 (Sept. 1975), 1278–
1308.

[15] Schneider, F.B. Enforceable Security Policies. ACM Transactions on

Information and System Security 2, 4 (February 2000). To appear.

[16] Sirer, E.G., R. Grimm, A.J. Gregory, B.N. Bershad. Design and Imple-
mentation of a Distributed Virtual Machine for Networked Computers.
Proceedings of the 17th ACM Symposium on Operating Systems Prin-

ciples (Kiawah Island, SC, Dec. 1999), ACM, 202–216.

[17] Wahbe, R., S. Lucco, T.E. Anderson, and S.L. Graham. Efficient
Software-Based Fault Isolation. Operating System Review, 27(5), ACM
Press, 1993.

[18] Wallach, D.S. A New Approach to Mobile Code Security, Ph.D. thesis,
Princeton University, New Jersey, January 1999.

[19] Wallach, D.S. and E.W. Felten. Understanding Java Stack Inspection.
Proceedings 1998 IEEE Symposium on Security and Privacy (Oakland,
California, May 1998), IEEE Computer Society, California, 52–63.

19

A PSLang Formulation of IRMSPS

IMPORT LIBRARY JVML;

IMPORT LIBRARY System;

IMPORT LIBRARY Stack;

IMPORT LIBRARY Java2Permissions;

//
// define the default permissions and doPriv token
//
ADD SECURITY STATE {

Object doPrivToken = Lock.create();

Object defaultPerms = Java2Permissions.createAllDomain("");

}

//
// limit most rewriting to application classes and methods
//
FUNCTION boolean appClass() {

return ! JVML.strStartsWith(Reflect.className(Event.class()),"java/");

}
FUNCTION boolean appMethod() {

return appClass() && ! Event.methodNameIs("<clinit>");

}

//
// at load time, grant each loaded class the default permissions
//
ON EVENT load begin class WHEN appClass()

PERFORM SECURITY UPDATE {
State.classAddObject(Event.class(), "siDomain");

}
ON EVENT begin init class WHEN appClass()

PERFORM SECURITY UPDATE {
State.classSetObject(defaultPerms, "siDomain");

}

//
// create the domainStack at the start of the application
//
ON EVENT load begin class

WHEN Event.classNameIs("java/lang/Thread")

PERFORM SECURITY UPDATE {
State.classAddObject(Event.class(), "domainStack");

}
ON EVENT begin program

PERFORM SECURITY UPDATE {
Object stack = Stack.create();

Object thread = JVML.typeCast(System.currentThread(),"java/lang/Thread");

State.instanceSetObject(thread, stack, "java/lang/Thread/domainStack");

System.useSecurityManager();

}

//
// Maintain domainStack at method calls
//

20

ON EVENT begin method WHEN appMethod()

PERFORM SECURITY UPDATE {
Object thread = JVML.typeCast(System.currentThread(),"java/lang/Thread");

Object stack = State.instanceGetObject(thread,"java/lang/Thread/domainStack");

Stack.push(stack, State.classGetObject("siDomain"));

}
ON EVENT end method WHEN appMethod()

PERFORM SECURITY UPDATE {
Object thread = JVML.typeCast(System.currentThread(),"java/lang/Thread");

Object stack = State.instanceGetObject(thread,"java/lang/Thread/domainStack");

Object discard = Stack.pop(stack);

}

//
// on doPrivileged, push the doPriv token onto the domainStack
//
FUNCTION boolean doPrivilegedCall(Object instr) {

return Event.instructionIs("invokestatic")

&& JVML.strEq(Reflect.instrRefStr(instr),JVML.strCat(

"java/security/AccessController/doPrivileged",

"(Ljava/security/PrivilegedAction;)Ljava/lang/Object;"));

}
ON EVENT begin instruction

WHEN doPrivilegedCall(Event.instruction())

PERFORM SECURITY UPDATE {
Object thread = JVML.typeCast(System.currentThread(),"java/lang/Thread");

Object stack = State.instanceGetObject(thread,"java/lang/Thread/domainStack");

Stack.push(stack, doPrivToken);

}
ON EVENT end instruction

WHEN doPrivilegedCall(Event.instruction())

PERFORM SECURITY UPDATE {
Object thread = JVML.typeCast(System.currentThread(),"java/lang/Thread");

Object stack = State.instanceGetObject(thread,"java/lang/Thread/domainStack");

Object discard = Stack.pop(stack);

}

//
// Check the domainStack on a checkPermission
//
FUNCTION boolean checkPermissionCall(Object instr) {

return Event.instructionIs("invokestatic")

&& JVML.strEq(Reflect.instrRefStr(instr),JVML.strCat(

"java/security/AccessController/checkPermission",

"(Ljava/security/Permission;)V"));

}
ON EVENT begin instruction

WHEN checkPermissionCall(Event.instruction())

PERFORM SECURITY UPDATE {
Object permissionToCheck = State.methodGetObject("$instrArg1");

Object thread = JVML.typeCast(System.currentThread(), "java/lang/Thread");

Object stack = State.instanceGetObject(thread,"java/lang/Thread/domainStack");

Object stackCopy = Stack.clone(stack);

boolean finished = false;

Object prevDomain = null;

21

while(!finished && !Stack.empty(stackCopy)) {
Object domain = Stack.pop(stackCopy);

if(domain == doPrivToken) {
finished = true;

if(!Stack.empty(stackCopy)) {
domain = Stack.pop(stackCopy);

}
}
if(domain != null

&& domain != prevDomain

&& ! Java2Permissions.implies(domain, permissionToCheck))

{
HALT[JVML.strCat4("DOMAIN ",domain,

"DOESN’T IMPLY ",permissionToCheck)];

}
prevDomain = domain;

}
}

//
// clone the domainStack whenever a thread is created
//
FUNCTION boolean newThreadCreation(Object instr) {

return Event.instructionIs("invokespecial")

&& JVML.strEq(Reflect.instrRefClassName(instr), "java/lang/Thread")

&& JVML.strEq(Reflect.instrRefName(instr), "<init>");

}
ON EVENT normal end instruction

WHEN newThreadCreation(Event.instruction())

PERFORM SECURITY UPDATE {
Object newThread = State.methodGetObject("$instrArg1");

Object oldT = JVML.typeCast(System.currentThread(), "java/lang/Thread");

Object oldS = State.instanceGetObject(oldT,"java/lang/Thread/domainStack");

Object newStack = Stack.clone(oldS);

State.instanceSetObject(newThread, newStack,"java/lang/Thread/domainStack");

}

22

B PSLang Formulation for IRMLazy

IMPORT LIBRARY JVML;

IMPORT LIBRARY System;

IMPORT LIBRARY Association;

IMPORT LIBRARY Stack;

IMPORT LIBRARY Tuple;

IMPORT LIBRARY Java2Permissions;

DEFINE CONSTANT {
int stackSkipPart = 2; // ignore top two stack frames

}
ADD SECURITY STATE {

Object classToDomain = Association.create();

Object defaultPerms = Java2Permissions.createDomain("",

"java.lang.RuntimePermission:createClassLoader");

Object domainPerms = Java2Permissions.createAllDomain("");

}

//
// Add thread-local security state to java.lang.Thread
//
ON EVENT load begin init class

WHEN Event.classNameIs("java/lang/Thread")

PERFORM SECURITY UPDATE {
// is this thread a security-relevant thread, i.e., not a deamon thread?
State.instanceAddInt(Event.class(), "notDeamon");

// stack of call stacks of ancestral threads, at thread-creation time
State.instanceAddObject(Event.class(), "parentStacks");

// stack of doPriv call-frames, always relative to curr thread call stack
State.instanceAddObject(Event.class(), "privStack");

// ”collapsed” parentStacks, lazily computed at first checkPermission
State.instanceAddObject(Event.class(), "parentTuple");

}

//
// add domain state for each class at load time, init to correct domain
//
FUNCTION boolean appClass() {

return ! JVML.strStartsWith(Reflect.className(Event.class()),"java/");

}
ON EVENT begin init class WHEN appClass()

PERFORM SECURITY UPDATE {
Object class = JVML.getClassByName(Reflect.className(Event.class()));

Association.put(classToDomain, class, domainPerms);

}

//
// set the initial empty stack when the program begins
//
ON EVENT begin program

PERFORM SECURITY UPDATE {
// this is a security-relevant thread
Object thread = JVML.typeCast(System.currentThread(), "java/lang/Thread");

23

State.instanceSetInt(thread, 1, "java/lang/Thread/notDeamon");

// empty ancestral call stack
Object parents = Stack.create();

State.instanceSetObject(thread, parents, "java/lang/Thread/parentStacks");

// empty doPriv stack
Object privs = Stack.create();

State.instanceSetObject(thread, privs, "java/lang/Thread/privStack");

// use security manager
System.useSecurityManager();

}

//
// Create parentStacks for child thread: copy parentStacks & add curr stack
//
PROCEDURE Object childParentStacks(Object parentStacks, Object thisStack)

{
Object ret = Stack.clone(parentStacks);

Stack.push(ret, thisStack);

return ret;

}
//
// Create parentStacks for a child thread constructed inside a doPriv block
//
PROCEDURE Object computePrivChildParentStacks(int first, Object thisStack)

{
// get privileged part of stack---keep PoET part of stack: it’s expected
int privSize = Tuple.size(thisStack) - first + 1;

Object privStack = Tuple.create(privSize); {
for(int i = 0; i < privSize; i = i+1) {

Tuple.put(privStack, i, Tuple.get(thisStack, i));

}
}
// return a stack of one elementStack
Object newDads = Stack.create();

Stack.push(newDads, privStack);

return newDads;

}
//
// combine ancestral ”stack of stacks” into one tuple of parent stack frames
//
PROCEDURE Object computeParentTuple(Object parentStacks) {

// compute size of collapsed stack, always ignoring PoET at each bottom
Object reverseStacks = Stack.create();

int size = 0; {
while(! Stack.empty(parentStacks)) {

Object elementStack = Stack.pop(parentStacks);

size = size + Tuple.size(elementStack) - stackSkipPart;

Stack.push(reverseStacks, elementStack);

}
}
// copy into return tuple, and re-create parentStacks from reverseStacks
Object ret = Tuple.create(size); {

int pos = size - 1;

while(! Stack.empty(reverseStacks)) {
Object elementStack = Stack.pop(reverseStacks);

24

int elementSize = Tuple.size(elementStack);

for(int i = elementSize-1; i >= stackSkipPart; i=i-1) {
Tuple.put(ret, pos, Tuple.get(elementStack, i));

pos = pos - 1;

}
Stack.push(parentStacks, elementStack);

}
}
return ret;

}

//
// clone threadStack whenever a thread is created
// NOTE: This follows Sun’s Java2 implementation so a thread created inside
// doPriv block is privileged for all of its lifetime
// NOTE: A thread created inside a doPriv never has to check its parents’
// stack frames before the doPriv, hence we trim that prefix away
//
FUNCTION boolean newThreadCreation(Object instr) {

return Event.instructionIs("invokespecial")

&& JVML.strStartsWith(Reflect.instrRefStr(instr), "java/lang/Thread/<init>");

}
ON EVENT normal end instruction

WHEN newThreadCreation(Event.instruction())

PERFORM SECURITY UPDATE {
// get security state in current thread
Object this = JVML.typeCast(System.currentThread(),"java/lang/Thread");

Object dads = State.instanceGetObject(this,"java/lang/Thread/parentStacks");

Object privs = State.instanceGetObject(this,"java/lang/Thread/privStack");

// create and initialize security state in new thread
Object child = State.methodGetObject("$instrArg1");

Object newPrivs = Stack.create();

State.instanceSetObject(child, newPrivs, "java/lang/Thread/privStack");

State.instanceSetInt(child, 1, "java/lang/Thread/notDeamon");

// compute child’s parentStacks---use only curr stack if we’re in doPriv
Object thisStack = System.stackTrace();

if(Stack.empty(privs)) {
Object ndads = childParentStacks(dads, thisStack);

State.instanceSetObject(child, ndads, "java/lang/Thread/parentStacks");

} else {
int privEnd = JVML.toInt(Stack.peek(privs));

Object ndads = computePrivChildParentStacks(privEnd, thisStack);

State.instanceSetObject(child, ndads, "java/lang/Thread/parentStacks");

}
}

//
// Check permissions
//
FUNCTION boolean checkPermissionCall(Object instr) {

return Event.instructionIs("invokestatic") &&

JVML.strEq(Reflect.instrRefStr(instr),JVML.strCat("java/security/",

"AccessController/checkPermission(Ljava/security/Permission;)V"));

25

}
ON EVENT begin instruction

WHEN checkPermissionCall(Event.instruction())

PERFORM SECURITY UPDATE {
// get thread-local data
Object this = JVML.typeCast(System.currentThread(), "java/lang/Thread");

int notDeamon = State.instanceGetInt(this,"java/lang/Thread/notDeamon");

if(notDeamon > 0) {
Object privs = State.instanceGetObject(this,"java/lang/Thread/privStack");

// get arguments
Object curr = System.stackTrace();

int currSize = Tuple.size(curr);

Object toCheck = State.methodGetObject("$instrArg1");

// if not privileged, do normal check on current & ancestral stacks
if(Stack.empty(privs)) {

checkStack(curr, stackSkipPart, currSize, toCheck);

Object d = State.instanceGetObject(this,"java/lang/Thread/parentTuple");

if(d == null) { // lazily compute collapsed version of dads
d = State.instanceGetObject(this, "java/lang/Thread/parentStacks");

d = computeParentTuple(d);

State.instanceSetObject(this, d, "java/lang/Thread/parentTuple");

}
int dadSize = Tuple.size(d);

if(dadSize > 0) {
checkStack(d, 0, dadSize, toCheck);

}
}
// if privileged, do simple check on the current stack only
else {

int privEnd = currSize - JVML.toInt(Stack.peek(privs)) + 1;

checkStack(curr, stackSkipPart, privEnd, toCheck);

}
}

}
// HALT inside a doPriv block, so we are sure to have exitVM privilege
//
PROCEDURE void stackFail(Object domain, Object permissionToCheck) {

Object this = JVML.typeCast(System.currentThread(), "java/lang/Thread");

Object privs = State.instanceGetObject(this,"java/lang/Thread/privStack");

int privStackFrameNumber = Tuple.size(System.stackTrace()) - stackSkipPart;

Stack.push(privs, JVML.intToObject(privStackFrameNumber));

HALT[JVML.strCat4("DOMAIN ",domain,"DOESN’T IMPLY ",permissionToCheck)];

}
// Check the permissions of all domains
//
PROCEDURE void checkStack(Object stack, int first, int last, Object

toCheck) {
Object prevDomain = null; // skip domain and class repetitions
Object prevClass = null;

for(int i = first; i < last; i=i+1) {
Object class = Tuple.get(stack,i);

if(class != prevClass) {
if(verbose) {

Object className = JVML.getNameOfClass(class);

System.printStr(className);

26

}
Object domain = Association.get(classToDomain, class);

if(domain != null {
&& domain != prevDomain

&& ! Java2Permissions.implies(domain, toCheck))

{
stackFail(domain,toCheck);

}
prevClass = class;

prevDomain = domain;

}
}

}

//
// push a privileged bit on doPriv calls
//
FUNCTION boolean doPrivilegedCall(Object instr) {

return Event.instructionIs("invokestatic") &&

JVML.strEq(Reflect.instrRefStr(instr),

JVML.strCat("java/security/AccessController/doPrivileged",

"(Ljava/security/PrivilegedAction;)Ljava/lang/Object;"));

}
ON EVENT begin instruction

WHEN doPrivilegedCall(Event.instruction())

PERFORM SECURITY UPDATE {
Object this = JVML.typeCast(System.currentThread(), "java/lang/Thread");

int notDeamon = State.instanceGetInt(this,"java/lang/Thread/notDeamon");

if(notDeamon > 0) {
Object privs = State.instanceGetObject(this,"java/lang/Thread/privStack");

int privStackFrameNumber = Tuple.size(System.stackTrace()) - stackSkipPart;

Stack.push(privs, JVML.intToObject(privStackFrameNumber));

}
}
ON EVENT end instruction

WHEN doPrivilegedCall(Event.instruction())

PERFORM SECURITY UPDATE {
Object this = JVML.typeCast(System.currentThread(), "java/lang/Thread");

int notDeamon = State.instanceGetInt(this,"java/lang/Thread/notDeamon");

if(notDeamon > 0) {
Object privs = State.instanceGetObject(this,"java/lang/Thread/privStack");

Object discard = Stack.pop(privs);

}
}

27

