
Where’s the FEEB?
The Effectiveness of Instruction Set Randomization

Ana Nora Sovarel David Evans Nathanael Paul

University of Virginia, Department of Computer Science

http://www.cs.virginia.edu/feeb

Abstract

Instruction Set Randomization (ISR) has been proposed as a promising defense against code injection attacks. It

defuses all standard code injection attacks since the attacker does not know the instruction set of the target machine.

A motivated attacker, however, may be able to circumvent ISR by determining the randomization key. In this

paper, we investigate the possibility of a remote attacker successfully ascertaining an ISR key using an incremental

attack. We introduce a strategy for attacking ISR-protected servers, develop and analyze two attack variations, and

present a technique for packaging a worm with a miniature virtual machine that reduces the number of key bytes an

attacker must acquire to 100. Our attacks can break enough key bytes to infect an ISR-protected server in about six

minutes. Our results provide insights into properties necessary for ISR implementations to be secure.

1. Introduction

In a code injection attack, an attacker exploits a

software vulnerability (often a buffer overflow vulnera-

bility) to inject malicious code into a running program.

Since the attacker is able to run arbitrary code on the

victim’s machine, this is a serious attack which grants

the attacker all the privileges of the compromised

process.

In order for the injected code to have the intended

effect, the attacker must know the instruction set of the

target. Hence, a general technique for defusing code

injection attacks is to obscure the instruction set from

the attacker. Instruction Set Randomization (ISR) is a

technique for accomplishing this by randomly altering

the instructions used by a host machine, application, or

execution. By changing the instruction set, ISR defuses

all code injection attacks. ISR does not prevent all con-

trol flow hijacking attacks, though; for example, the

return-to-libc attack [18] does not depend on knowing

the instruction set. Much work has been done on the

general problem of mitigating code injection attacks,

and ISR is one of many proposed approaches. Previous

papers have discussed the advantages and

disadvantages of ISR relative to other defense

strategies [3, 12, 4]. In this paper, we focus on

evaluating ISR’s effectiveness in protecting a network

of vulnerable servers from a motivated attacker and

consider properties necessary for an ISR

implementation to be secure.

Several implementations of ISR have been proposed.

Kc et al.’s design emphasized the possibility of an effi-

cient hardware implementation [12]. They considered a

processor in which a special register stores the

encryption key. When an instruction is loaded into the

processor, it is decrypted by XORing it with the value

in the key register. The processor provides a special

privileged instruction for writing into the key register

and a different encryption key is associated with each

process. The code section of target executable is

encrypted with a random key, which is stored in the

executable header information so it can be loaded into

the key register before executing the program. Kc et al.

evaluated their design using the Bochs emulator

simulating an x86 processor with a 32-bit key register.

Barrantes et al.’s design, RISE, is not constrained by

the need for an efficient hardware implementation [3].

Instead of using an encryption key register, they use a

key that can be as long as the program text and encrypt

each byte in the code text by XORing it with the

corresponding key byte. Encryption is done at load

time with a generated pseudo-random key, so each

process will have its own, arbitrarily long key. Their

implementation used an emulator built on Valgrind [16]

to decrypt instruction bytes with the corresponding key

bytes when they are executed.

Existing code injection attacks assume the standard

instruction set so they will fail against an ISR-protected

server. This paper presents a strategy a motivated

attacker who is aware of the defense may be able to use

to circumvent ISR by determining the key. Our attack

is inspired by Shacham et al.’s attack on memory

address space randomization [17]. Like ISR, memory

address space randomization attempts to defuse a class

of attacks by breaking properties of the target program

on which the attacker relies (in this case, the location

of data structures and code fragments in memory).

Shacham et al. demonstrated that the 16-bit key space

used by PaX Address Space Layout Randomization

[15] could be quickly compromised by a guessing

attack.

Many of the necessary conditions for our attack are

similar to the conditions needed for Shacham et al.’s

memory randomization attack. However, since the key

space used in ISR defenses is too large for a brute force

search, we need an attack that can break the key

incrementally. Kc et al. mention the possibility that an

attacker might be able to guess parts of the key

independently based on the fact that some useful

instructions in x86 architecture have only one or two

bytes [12]. Our attacks exploit this opportunity.

The key contributions of this paper are:

1. The first quantitative evaluation of the effective

security provided by ISR defenses against a

motivated adversary.

2. An identification of an avenue of attack available to

a remote attacker attempting to determine the en-

cryption key used on an ISR-protected server.

3. Design and implementation of a micro-virtual

machine that can be used to infect an ISR-protected

server using a small number of acquired key bytes.

4. An evaluation of the effectiveness of two types of

attack on a prototype ISR implementation.

5. Insights into the properties necessary for an ISR

implementation to be secure against remote attacks.

Next, we describe our incremental key guessing

approach. Section 3 provides details on our attack and

analyzes its efficiency. Section 4 describes how an

attacker could use our attack to deploy a worm on a

network of ISR-protected servers. Section 5 discusses

the impact of our results for ISR system designers.

2. Approach

The most difficult task in guessing a key incrementally

is to be able to notice a good partial guess. Suppose we

correctly guess the first two bytes of a four byte key.

We would not be able to determine whether or not the

guess is correct if the random instruction in the next

two bytes executes and causes the program to crash.

The result would be indistinguishable from an incorrect

guess of the first two bytes. Even if the next random

instruction is harmless, there is a high probability that a

subsequently executed instruction will cause the

program to crash in a way that is indistinguishable from

an incorrect guess.

Our approach to distinguish correct and incorrect

partial guesses is to use control instructions. We

attempt to inject a particular control instruction with all

possible randomization keys. When the guess is correct

the execution flow changes in a way that is remotely

observable. For an incremental attack to work, the

attacker must be able to reliably determine if a partial

guess is correct.

For each attempt, there are four possible outcomes:

Apparently

Correct

Behavior

Apparently

Incorrect

Behavior

Correct Guess Success False Negative

Incorrect Guess False Positive Progress

Ideally, a correct guess would always lead to

distinguishably “correct” behavior, and an incorrect

guess would always lead to distinguishably “incorrect”

behavior. Given sufficient knowledge of the target

system, we should be able to construct attacks where a

correct guess never produces an apparently incorrect

execution (barring exogenous events that would also

make normal requests fail). However, it is not possible

to design an attack with perfect recognition: some

incorrect guesses will produce behavior that is remotely

indistinguishable from that produced by a correct guess.

For example, an incorrect guess may decrypt to a

harmless instruction, and some subsequently executed

instruction may produce the apparently correct

execution behavior.

We present attacks based on two different control

instructions: return, a one-byte instruction, and jump, a

two-byte instruction. For both attacks, if the guess is

incorrect, there is a high probability that executing

random instructions will cause the process to crash. If

the guess is correct, the attacker will observe different

server behavior: recognizable output for the return

attack and an infinite loop for the jump attack.

Next we describe conditions necessary for the attacks

to succeed, explain how each attack is done, and how

an incremental attack can be carried out on a large key.

For both attacks, there are situations where an incorrect

guess produces the same behavior as a correct guess

and complications that arise in guessing larger keys. In

Section 3, we discuss those issues in more detail and

analyze the expected number of attempts required for

each attack.

2.1 Requirements

In order for the attack to be possible, the attacker must

have some way of injecting code into the target system.

We assume the application is vulnerable to a simple

stack-smashing buffer overflow attack, although our

attack does not depend on how code is injected into the

randomized program. It depends only on a vulnera-

bility that can be exploited to inject and execute code in

the running process.

Our attack is only feasible for vulnerabilities where the

attacker can inject code to a fixed memory location. In

a normal stack-smashing attack, the attacker sometimes

cannot determine the exact location where code will be

inserted because of variations in system libraries,

operating system patches and configurations [13]. A

common solution is to pad the injected code with nop

instructions, often referred to as a nop sled [2]. The

attack will succeed as long as the return address is

overwritten with an address that is in the range of

injected nop instructions. When building an attack

against an application protected by ISR, the attacker

cannot use this approach because the encryption masks

for the positions where nop instructions should be

placed are unknown. Another technique, called a

register spring [7], overwrites the return address with

the address of an instruction found in the application or

a library that will indirectly transfer control to the

buffer, such as jmp esp or call eax. These instructions

are not likely to appear normally in the code, but it is

sufficient for an attacker to locate one of the

instructions as operand bytes or overlapping bytes in

the code segment. Sapphire used a register spring

technique by jumping to a jmp esp found in sqlsort.dll

[10].

The 32-bit or longer key typically used for ISR is too

large for a practical brute force attack, so we must

determine the key incrementally. The attacker must be

able to acquire enough key bytes to inject the malicious

code before the target program is re-randomized with a

different key. Since our attack will necessarily crash

processes on the target system, it requires either that

application executions use the same randomization key

each time the target application is restarted, or that the

target application uses the same key for many processes

it forks. A typical application that exhibits this

property is a server that forks a process to serve each

client’s request. Since failed guess attempts will

usually cause the executing process to crash, the

attacker must have an opportunity to send many

requests to a server encrypted with the same key. Many

servers create separate processes to handle

simultaneous requests. For example, Apache (since

version 2.0), provides configuration options to allow

both multiple processes and multiple threads within

each process to handle simultaneous requests [1].

Since our attack depends on being able to determine the

correct key mask from observing correct guesses, the

method used to encrypt instructions must have the

property that once a ciphertext-plaintext pair is learned

it is possible to determine the key. The XOR

encryption technique used by RISE [3] trivially satisfies

this property. Kc et al. suggest two possible

randomization techniques: one uses XOR encryption

and the other uses a secret 32-bit transposition [12].

The XOR cipher, which is what their prototype

implements, is vulnerable to our attack. Our attack

would not work without significant modification on the

32-bit transposition cipher. Learning one ciphertext-

plaintext pair would reduce the keyspace considerably,

but is not enough to determine the transposition. Thus,

several known plaintext-ciphertext pairs would be

needed to learn the transposition key.

The final requirement stems from the remote attacker’s

need to observe enough server behavior to distinguish

between correct and incorrect guesses. If the attack

program communicates with the server using a TCP

connection it can learn when the process handling the

request crashes because the TCP socket is closed. If

the key guess is incorrect, the server process will

(usually) crash and the operating system will close the

socket. Hence, the server must have a vulnerability

along an execution path where normal execution keeps

a socket open so the remote attacker can distinguish

between the two behaviors. If the normal execution

flow would close the connection with the client before

returning from the vulnerable procedure, the attacker is

not able to easily observe the effects of the injected

code. The return attack has additional requirements,

described in the next section. In cases where those

requirements are not satisfied, the (slower) jump attack

can be used.

2.2 Return Attack

The return attack uses the near return (0xc3) control

instruction [11]. This is a one byte instruction, so it can

be found with at most 256 guesses.

Figure 1 shows the stack layout before and after the

attack. The attack string preserves the base pointer,

replaces the original return address with the target

address where the injected code is located, and places

the original return address just below the overwritten

address. When the routine returns it restores the base

pointer register from the stack and jumps to the

overwritten return address, which is now the injected

instruction. If the guess is correct, the derandomized

injected code is the return instruction. When it

executes, the saved return address is popped from the

stack and the execution continues as if the called

routine returned normally.

There is one important problem, however. When the

guess is correct, the return statement that is executed

pops an extra element from the stack. In Figure 1, the

star marks the position of the top of the stack in normal

case (left) and after the injected code is executed

successfully (right). After returning from the

vulnerable routine, the stack is compromised because

the top of the stack is now one element below where it

should be. This means the server is likely to crash soon

even after a correct guess since all the values restored

from the stack will be read from the wrong location.

Thus, the return attack can only be used to exploit a

vulnerability at a location where code that sends a

response to the client will execute before the compro-

mised stack causes the program to crash. Otherwise,

the attacker will not be able to distinguish between

correct and incorrect guesses since both result in server

crashes. An obvious problem is caused by a

subsequent return. At the next return instruction, cor-

responding to the return from the method that called the

vulnerable method, the actual return address is one

element up the stack from the location that will be used.

It is very likely that the element on the stack interpreted

as the return address will be an illegal memory

reference. Even when the memory reference is legal, it

is unlikely to jump to a location that corresponds to the

beginning of a valid instruction.

So, the return attack can only be used effectively for

vulnerabilities in which observable server activity (such

as a message back to the attack client) occurs between

the guessed return and the first instruction that would

cause the server to crash (which at the latest, occurs at

the end of the called vulnerable routine, but often

occurs earlier). We suspect situations where the return

attack can be used are rare, but an attacker who is

fortunate enough to find such a vulnerability can use it

to break an ISR key very quickly.

2.3 Jump Attack

For vulnerabilities where the return attack cannot

succeed, we can use the jump attack instead. The

advantage of the jump attack is it can be used on any

vulnerability where normal behavior keeps a socket

open to the client. However, it requires guessing a

two-byte instruction, instead of the one-byte return

instruction. Another disadvantage of the jump attack is

that it produces infinite loops on the server. This slows

down server processing for further attack attempts (and

may also be noticed by a system administrator). We

will present techniques for substantially reducing both

the number of guess attempts required and the number

of infinite loops created in Section 3.2.

The jump attack is depicted in Figure 2. As with the

return attack, the jump attack overwrites the return

address with an address on the stack where a jump

instruction encrypted with the current guess is placed.

The injected instruction is a near jump (0xeb) instruc-

tion with an offset -2 (0xfe). If the guess is correct it

Figure 1. Return attack.

*

Normal Stack Layout Stack Layout After Attack

*

bottom of the stack (higher address)bottom of the stack (higher address)

...

...

saved return address

overwritten return address

saved base pointer

...

saved return address

saved base pointer

encrypted return intruction

local bufferlocal buffer

......

...

top of the stacktop of the stack

Figure 2. Jump attack.

bottom of the stack (higher address) bottom of the stack (higher address)

Stack Layout After AttackNormal Stack Layout

...

saved return address overwritten return address

...

... ...

offset (0xfe)

short jump (0xeb)

local bufferlocal buffer

...

top of the stack top of the stack

...

will jump back to itself, creating an infinite loop. The

attacker will see the socket open but receive no

response. After a timeout has expired, the attacker

assumes the server is in an infinite loop. Usually, an

incorrect guess will cause the process handling the

request to crash. This is detected by the attacker

because the socket is closed before the timeout expires.

2.4 Incremental Key Breaking

After the first successful guess, the attacker has

obtained the encryption key for one (return attack) or

two (jump attack) memory locations. Since other

locations are encrypted with different key bits,

however, finding one or two key bytes is not enough to

inject effective malicious code.

The next step is to change the position of the guessed

key byte. For the return attack, we just advance to the

next position and repeat the attack using the next

position as the return address. With the jump attack,

the attacker needs up to obtain the first two key bytes at

once, but can proceed in one byte at a time thereafter.

On the first attack, shown in the left side of Figure 3,

the positions base and base+1 of the attack string are

occupied by the jump instruction. On the second

attack, we attempt to guess the key at location base–1.

Since we already know the key for location base, we

can encode the offset value -2 at that location, and can

guess the key for the jump opcode with at most 28

attempts.

During the incremental phase of the attack, we

decrement the return address placed on the stack for

each memory location we guess. At some point the last

byte of the address will be zero. This address cannot

be injected using a buffer overflow exploit, because it

will terminate the attack string before the other bytes

can be injected. To deal with this case we introduce an

extra jump placed in a position where we already know

the encryption key and whose address does not contain

a null byte. The return address will point to this jump,

which will then jump to the position for which we are

trying to guess the key.

When a repeated 32-bit randomization key is used (as

in [12]), the number of attempts required to acquire the

key using the straightforward attacks would be at most

1024 (4×28) for the return attack and 66,048 (216+2×28)

for the jump attack (extra attempts may be needed to

distinguish between correct guesses and false positives,

as explained in the next section). For ISR implementa-

tions, such as RISE [3], that do not use short repeated

keys the attacker may need to obtain many key bytes

before the malicious code can be injected. This cannot

be done realistically with the approach described here.

Section 3 describes techniques that can be used to make

incremental key breaking more efficient. Section 4

explains how many key bytes an attacker will need to

compromise to inject and propagate an effective worm.

3. Attack Details and Analysis

The main difficulty in getting the attack to work in

practice is that an incorrect guess may have the same

behavior as the correct guess. In order to determine the

key correctly, the attacker needs to be able to identify

the correct key byte from multiple guesses with the

same apparently correct server behavior. The next two

subsections explain how false positives can be elimina-

ted with the return and jump attacks respectively.

Section 3.3 describes an extended attack that can be

used to break large keys.

3.1 Return Attack

There are three possible reasons a return attack guess

could produce the apparently correct behavior:

1. The correct key was guessed and the injected

instruction decrypted to 0xc3.

2. An incorrect key was guessed, but the injected

instruction decrypted to some other instruction

that produced the same observable behavior as a

near return.

3. The injected instruction decrypted to an

instruction that did not cause the process to

crash, and some subsequently executed instruc-

tion behaved like a near return.

The first case will happen once in 256 guess attempts.

There are several guesses that could produce the second

outcome. The most likely is when the injected

instruction decrypts to the 3-byte near return and pop

instruction, 0xc2 imm16. The near return and pop has

the same behavior as the near return instruction, except

it will also pop the value of its operand bytes off the

stack. Hence, if the current stack height is less than the

Figure 3. Incremental jump attack.

overwritten return address overwritten return address

...

... ...

...

offset (0xfe)

short jump (0xeb) offset (0xfe)

short jump (0xeb)

...

...

First Two Bytes Next Byte

base−1

base+1

base

decrypted value of the the next two bytes on the stack,

the observed behavior after a 0xc2 instruction may be

indistinguishable from the intended 0xc3 instruction.

In the worst case, the stack is high enough for all

values to be valid and we will have a false positive

corresponding to 0xc2 once every 256 guess attempts.

There are two other types of instructions that can also

produce the apparently correct behavior: calls and

jumps. In order to produce the near return behavior,

the 4-byte offset of the call or jump instruction must

jump to the return address. The probability of encoun-

tering such a false positive is extremely remote

(approximately 2-36). Thus, we ignore this case in our

analysis and implementation; this has not caused prob-

lems in our experiments.

Given that we observe the return behavior, we can

estimate the probability that the correct mask was

guessed. We use ph to represent the probability an

arbitrarily long random sequence of bits will start with

a harmless instruction. We consider any instruction

that does not cause the execution to crash immediately

after executing it to be harmless (even though it may

alter the machine state in ways that cause subsequent

instruction to produce a crash). Instruction lengths

vary, so determining whether a given injected byte is

harmless may depend on the subsequent bytes on the

stack. The value of ph depends on the current state of

the execution. Whether or not a given instruction

produces a crash depends on the execution’s address

space, as well as the current values in registers and

memory.

We use pr to represent the probability a random se-

quence of bits on the stack exhibits the same behavior

as the near return instruction, thus capturing cases 1

and 2 above. As we have defined it, the harmless in-

structions include instructions that behave like the near

return. We use phnr = ph – pr to denote the probability

random bits correspond to a harmless instruction that

does not behave like a near return. Then, we can

estimate the probability that a guess produces the

apparently correct behavior as:

preturns= pr ∑
k=0

∞

phnr

k =
pr

1 phnr

Given that we observe the correct behavior for some

guess, the conditional probability that the guess was

actually correct is:

pcorrect

preturns

=
1 phnr

256∗pr

The actual values of ph and pr depend on the execution

state. For our test server application (described in

Section 5.1), we compute pr as 1/256 (probability of

guessing 0xc3) + 1/256 (probability of guessing 0xc2) ×

10588/2
16 (fraction of immediate values that do not

cause a crash) = 0.00454. In our experiments

(described in Section 5.3), we observed the apparently

correct behavior with probability 0.0073. The false

positive probability is 0.0034. From this, we estimate

ph = 0.43. Thus, 57% of the time an execution will

crash on the first random instruction inserted.

Eliminating False Positives

For each memory location for which we want to learn

the randomization key, a straightforward implementa-

tion guesses all 255 possibilities. We cannot guess the

mask 0xc3 using a string buffer overflow attack, since

this would require inserting a null byte. If none of the

255 attempts produce the return behavior, we conclude

that the actual mask is 0xc3.

If more than one guess produces the apparently correct

behavior, we place a known harmless instruction at the

guessed position followed by a previously injected

guess that produced the return behavior at the next

stack position as shown in Figure 4. If this attempt

does not exhibit the apparently correct behavior, we can

safely eliminate the guessed mask since we know the

injected byte did not decrypt to a harmless one-byte

instruction as expected. Note that we do not need to

know the exact mask for the next position, just a guess

we have previously learned produces the return

behavior at that location. This approach allows us to

distinguish correct guesses from false positives at all

locations except for the bottom address (the first one

we guess since we are guessing in reverse order on the

stack). In cases where multiple guesses are possible for

the bottom location, we use its guessed mask only to

eliminate false positives in the other guesses, but do not

use that location to inject code.

Harmless instructions help us eliminate false positives

for two reasons. If the guess is correct they have known

behavior; otherwise, they may decrypt to either a

harmful instruction or to an instruction with a different

Figure 4. Eliminating false positives.

...

overwritten return address

...

near return (0xc3)

harmless instruction

...

size that will alter the subsequent instructions. In the

second case, it is possible to still produce the

apparently correct behavior when the mask guess is

incorrect. Hence, we learn conclusively when a mask

is incorrect, but still cannot be sure the guess is correct

just because it exhibits the correct behavior.

The number of useful harmless one-byte instructions is

limited by the density of x86 instruction set. If there are

groups of harmless instructions with similar opcodes, it

is hard to differentiate between them. Harmless

instructions are only useful if an incorrect mask guess

encrypts the guessed harmless instruction to an

instruction that causes a crash. For example, if we use

as harmless instructions a group of similar instructions

such as clear carry flag (0xf8), clear direction (0xfc),

complement carry flag (0xf5), set carry flag (0xf9), set

direction flag (0xfd), the number of masks eliminated is

in most of the cases is the same as if we had use only

one of these instructions. Our attack uses three

disparate one-byte harmless instructions: nop (0x90),

clear direction (0xfc), and increment ecx register

(0x42).

For a given set of possible masks it would be possible

to determine a minimal set of distinguishing harmless

instructions, however this would add substantially to

the length and complexity of the attack code. Instead,

in the rare situations where the three selected one-byte

harmless instructions are unable to eliminate all but one

of the guessed masks, we use harmless two-byte

instructions, of which there are many. This approach

works for all locations except the next-to-bottom

address. In the rare situations when it is not possible to

determine the correct mask for this location, we can

simply start the injected attack code further up the

stack.

Using harmless one-byte and two-byte instructions we

are able to reduce the number of apparently correct

masks to at most two. We cannot handle the case

where the first instruction decrypts to a near return and

pop instruction (0xc2 imm16) using this elimination

process described because the near return (0xc3) and

near return and pop (0xc2) opcodes differ by only their

final bit. There is no harmless x86 instruction we can

use to reliably distinguish them. When a harmless

instruction is encrypted with an incorrect mask and

decrypted with the correct masks, the opcode of the

instruction executed differs only by one bit from the

guessed harmless instruction. It is likely that this

instruction will be a harmless instruction too.

To distinguish between the two forms of near return we

place the bytes 0xc2 0xff 0xff on the stack using the

guessed masks. This is a near return which pops

65,535 bytes from the stack. For many target

vulnerabilities (including our test server), this is enough

to generate a crash. To use this approach, we need to

already know the next two masks on the stack. This is

not a problem because we start elimination from the

bottom of the stack. The first two times we apply

elimination with 0xc2 we have to execute an attempt for

each combination of possible masks of the next two

positions. After that, we know the correct masks for

the locations where we place the 0xffff.

For target applications for which popping 65,535 bytes

from the stack does not cause a crash, we can use

another type of elimination. After we guess enough

bytes, we use a jump instruction to eliminate incorrect

masks. We place a jump instruction with its offset

encrypted using one of the apparently correct guessed

masks. The jump instruction when the mask is correct

will cause a jump to a memory location where a near

return is placed.

Once we have determined six or more masks, we can

take advantage of additional injected instructions to

further minimize the likelihood of false positives and

improve guessing efficiency. These techniques are

similar for both the return and jump attacks, and are

described in Section 3.3.

3.2 Jump Attack

Because it involves guessing a 2-byte key and the

distinguishing behavior is less particular, the jump

attack is more prone to false positives than the return

attack. Fortunately, the structure of the x86 instruction

set can be used to take advantage of the false positives

to improve the key search efficiency.

There are four possible reasons the apparently correct

behavior is observed for a jump attack guess:

1. The correct key was guessed and the injected

instruction decrypted to a jump with offset -2.

2. The injected guess decrypted to some other in-

struction which produces an infinite loop.

3. The injected instruction decrypted to a harmless

instruction, and some subsequently executed

instruction produces an infinite loop.

4. The injected guess caused the server to crash,

but because of network lag or server load, it still

took longer than the timeout threshold the

attacker uses to identify infinite loops.

We can avoid case 4 by setting the timeout threshold

high enough, but this presents a tradeoff between attack

speed and likelihood of a false positive. A more

sophisticated attack would dynamically adjust the

timeout threshold. Since case 4 is likely to occur for

many guesses and will not occur repeatedly for the

same guess, case 4 is usually distinguishable from the

other three cases and the attacker can increase the

timeout threshold as necessary.

From a single guess, there is no way to distinguish

between case 1 (a correct guess) and cases 2 and 3.

However, by using the results from multiple guesses, it

is possible to distinguish the correct guesses in nearly

all instances.

For the second case, there are two kinds of false

positives to consider: (1) the opcode decrypted

correctly to 0xeb, but the offset decrypted to some

value other than -2 which produced an infinite loop; or

(2) the opcode decrypted to some other control flow

instruction that produces an infinite loop.

An example of the first kind of false positive is when

the offset decrypts to -4 and the instruction at offset -4

is a harmless two-byte instruction. This is not a big

problem, since, as we presented in Section 2.3, except

for when we are guessing the first two bytes we are

encrypting the offset with a known mask. When it does

occur in the first two bytes, the attacker has several

possibilities. One is to ignore this last byte and use

only the memory locations above it. Another possibility

is to launch different versions of the injected attack

code, one for each possibly correct mask. Sometimes it

would be faster to launch four versions of the attack

code, one of which will succeed, than to determine a

single correct mask at the bottom location.

The second case, where the opcode is incorrect, is more

interesting. The prevalence of these false positives,

and the structure of the x86 instruction set, can be used

to reduce the number of guesses needed. The other

two-byte instructions that could produce infinite loops

are the near conditional jumps. Like the unconditional

jump instruction, the first byte specifies the opcode and

the second one the relative offset. There are sixteen

conditional jump instructions with opcodes between

0x70 and 0x7f. For example, opcode 0x7a is the JP

(jump if parity) instruction, and 0x7b is the JNP (jump

if not parity) instruction. Regardless of the state of the

process, exactly one of those two instructions is

guaranteed to jump. Conveniently, all the opcodes

between 0x70 and 0x7f satisfy this complementary

property. Thus, for any machine state, exactly 8 of the

instructions with opcodes between 0x70 and 0x7f will

jump, producing the infinite loop behavior if the mask

for the offset operand is correctly guessed. When we

find several masks sharing the same high four bits of

the first byte that all produce infinite loops, we can be

almost certain that those four bits correspond to 0x7.

We can take further advantage of the instruction set

structure by observing that if we try both guesses for

the least significant bit in the opcode, we are

guaranteed that one of the two guesses will produce the

infinite loop behavior if the first four bits of the guess

opcode are 0x7. That is, if we guess two

complementary conditional jump instructions, one of

them will produce the infinite loop behavior; it doesn’t

matter what the other three bits are, since all of the

conditional jump opcodes have the same property.

This observation can be used to substantially reduce the

number of attempts needed. Instead of needing up to

256 guesses to try all possible masks for the opcode

byte, we only need 32 guesses (0x00, 0x10, 0x20, ...,

0xf0, 0x01, 0x11,...,0xf1) to try both possibilities for the

least significant bit with all possible masks for the first

four bits. Those 32 guesses always find one of the

taken conditional jump instructions. Hence, the maxi-

mum number of attempts needed to find the first

infinite loop (starting with no known masks) is 213 (25

guesses for the opcode × 28 guesses for the offset).

When the offset is encrypted with a known mask (that

is, after the first two byte masks have been determined),

at most 32 attempts are needed to find the first infinite

loop. The expected number of guesses to find the first

infinite loop is approximately 15.75 since we can find it

by either guessing a taken conditional jump instruction

or the unconditional jump. (This analytical result is

approximate since it depends on the assumption that

each conditional jump is taken half the time. Since the

actual probability of each conditional jump being taken

depends on the execution state, the actual value here

will vary slightly.)

After finding the first infinite loop producing guess, we

need additional attempts to determine the correct mask.

The most likely case (15/16ths of the time), is that we

guessed a taken conditional jump instruction. If this is

the case, we know the first four bits unmask to 0x7, but

do not know the second four bits. To find the correct

mask, we XOR the guess with 0x7 ⊕ 0xe and guess all

possible values of the second four bits until an infinite

loop is produced. This means we have found the 0xeb

opcode and know the mask. Thus, we expect to find

the correct mask with 8 guesses. The other 1/16th of the

time, the first loop-producing guess is the

unconditional jump instruction. We expect to find two

infinite loops within first four attempts. If we find

them, we know we guessed the correct mask; otherwise

we continue. We expect on average to use 15.75

guesses to find the first infinite loop and 7.75 guesses

to determine the correct mask. Hence, after acquiring

the first two key bytes, we expect to acquire each

additional key byte using less than 24 guesses on

average, while creating two infinite loops on the server.

In rare circumstances, the first infinite loop encount-

ered could be caused by something other than guessing

an unconditional or conditional jump instruction. One

possibility is the loop instruction. The loop instruction

can appear to be an infinite loop since it keeps jumping

as long as the value in the ecx register is non-zero.

When ecx initially contains a high value the loop in-

struction can loop enough times to exceed the timeout

for recognizing an infinite loop. There are several

possible solutions: wait long enough to distinguish

between the jump and the loop, find a vulnerability in a

place where ecx has a low value (an attacker may be

able to control the input in such a way to guarantee

this), or to use additional attempts with different

instructions to distinguish between the loop and jump

opcodes. For simplicity, we used the second option: in

our constructed server, the ecx register has a small

value before the vulnerability.

The other possibility is the injected code decrypts to a

sequence of harmless instructions followed by a loop-

producing instruction. This is not as much of a

problem as it is with the return attack since the proba-

bility of two random bytes decrypting to a loop-pro-

ducing instruction is much lower than the probability of

a single random byte decrypting to a return instruction.

Further, when it does occur, the structure of the condi-

tional jumps in the instruction set makes it easy to

eliminate incorrect mask guesses. The probability of

encountering an infinite loop by executing random

instructions was found by Barrantes, et al. to be only

0.02% [3]. However, since we are not guessing

randomly but using structured guesses, the probability

of creating infinite loops is somewhat higher. In the

first step of the attack we generate all possible

combinations for first two bytes. An infinite loop is

created by an incorrect guess when first byte decrypts

to a harmless one-byte instruction, and the second byte

decrypts to a conditional or unconditional jump instruc-

tion, and the third byte decrypts to a small negative

value. In this case both -2 and -3 will create infinite

loops. To avoid false positives and increased load on

the server, after we find the first infinite loop, we

change the sign bit of the third byte. This changes the

value to a positive one. If the loop was created by an

incorrect mask, when we verify the mask with

conditional jumps and fail to find the expected infinite

loops we can conclude the mask guess is incorrect.

3.3 Extended Attack

The techniques described so far are adequate for

obtaining a small number of key bytes. For ISR

implementations that use a short repeated key, such as

[12], obtaining a few key bytes is enough to inject

arbitrarily long worm code. For ISR implementations

that use a long key, however, an attacker may need to

acquire thousands of key byte masks before having

enough space to inject the malicious code. Acquiring a

large number of key bytes with the jump attack is

especially problematic since attempts leave processes

running infinite loops running on the server. After ac-

quiring several key bytes this way, the server becomes

so sluggish it becomes difficult to distinguish guess

attempts that produce crashes from those that produce

infinite loops.

Once we have learned a few masks, we can improve the

attack efficiency by putting known instructions in these

positions. With the jump attack, once we have guessed

four bytes using short jumps, we change the guessed

instruction to a near jump (0xe9). Near jump is a 5-

byte instruction that takes a 4-byte offset as its operand.

This is long enough to contain an offset that makes the

execution jump back to the original return address.

Hence, we no longer need to create infinite loops on the

server to recognize a correct guess: we recognize the

correct guess when the server behaves normally,

instead of crashing.

When the server has the properties required by the

return attack, we will encounter false positives for the

near jump guessed caused by a relative call (0xe8).

Since the opcode differers from the near jump opcode

in only one bit, we are not able to reliably distinguish

between the two instructions using harmless instruc-

tions. Instead, we keep both possible masks under con-

sideration until the next position is guessed, and then

identify the correct mask by trying each guess for the

offset mask. At worst, we need four times as many

attempts because it is possible that there are two

positions with two possible masks in the offset bytes.

Despite requiring more attempts, this approach is

preferable to the short jump guessing since it reduces

the load on the server created by infinite loops.

Once we have acquired eight masks, we switch to the

extended attack illustrated in Figure 5. The extended

attack requires a maximum of 32 attempts per byte, and

expected number of 23.5. The idea is to use a short

jump instruction to guess the encryption key for current

location with an offset that transfers control to a

known mask location where we place a long jump

instruction whose target is the original return address.

The long jump instruction is a relative jump with a 32

bit offset. Hence, we need to acquire four additional

mask bytes before we can use the extended attack with

the jump attack.

To eliminate false positives, we inject bytes that corre-

spond to an interrupt instruction in the subsequent

already guessed positions. Interrupt is a two-byte in-

struction (0xcd imm8). The second byte is the interrupt

vector number. When the guessed instruction decrypts

to a harmless instruction, the next instruction executed

will be 0xcdcd (INT 0xcd) which causes a program

crash. The only value acceptable for the interrupt

vector number in user mode when running on a Linux

platform is 0x80 [5]. The key is to place enough 0xcd

bytes in the region such that when the first instruction

decrypts to some harmless non-jump instruction (which

could be more than one byte), the next instruction to

execute is always an illegal interrupt. Once we have

room for six 0xcd bytes, we encounter no false

positives.

If any of the masks in this region are 0xcd, we cannot

place a 0xcd byte at that location since injecting the

necessary instruction which would require injecting a

null byte. In this case, we place an opcode corres-

ponding to a two-byte instruction (we use AND, but any

instruction would work). The 0xcd will be the second

byte of the two-byte instruction. After the two-byte

instruction it will find a 0xcd which causes a crash.

The most important advantage of this approach is that

the only cases when the server sends the expected

response are when (1) the first instruction executed is a

taken unconditional jump; or (2) the first instruction

executed is a conditional jump where the condition is

true. With the return attack there is a third case: the

first instruction executed is a near return. This

possibility can be eliminated using the techniques

described in Section 3.1.

The other advantage of this attack is that it does not

need to create infinite loops on the server. Once we

have enough mask bytes to inject a long jump

instruction, we can distinguish correct guesses without

putting the server in an infinite loop. Instead, the

attacker is able to recognize a correct guess when it

receives the expected response from the server.

4. Deployment

If the malicious code is small (for example, the

Sapphire worm was 376 bytes [9]), we can acquire

enough key bytes to inject it directly. This is

reasonable if we are attacking a single ISR-protected

machine using this approach and can run our attack

client code on a machine we control to obtain enough

key bytes to inject the malicious code. If the attacker

wants to propagate a worm on a network of ISR-

protected servers, however, the worm code needs to

contain all the code for implementing the incremental

key attack also. This may require acquiring more key

bytes than can be done without the system

administrator noticing the suspicious behavior and re-

randomizing the server. Since the ISR-breaking code is

inherently complex, even if the malicious payload is

small many thousands of key bytes would be needed to

inject the worm code.

Our strategy is to instead inject a micro virtual machine

(MicroVM) in the region of memory where we know

the key masks. The MicroVM executes the worm code

by moving small chunks of it at a time into the region

where the key masks are known. The next subsections

describe the MicroVM and how worm code can be

written to work within our MicroVM. In order to make

the MicroVM as small as possible we place restrictions

and additional burdens on the worm code.

4.1 MicroVM Implementation

The MicroVM is illustrated in Figure 6. At the heart of

the MicroVM is a loop that repeatedly reads a block of

worm code into a region of memory where the masks

Figure 5. Extended attack.

...

short jump (0xeb)

offset

0xcd

...

0xcd

near jump (0xe9)

offset

offset

offset

offset

0xcd

...

0xcd

overwritten return address

are known and executes that code. The code (shown in

Appendix A) is 98 bytes long (including the 22 bytes of

space reserved for executing worm code).

Before starting the execution loop, the MicroVM in-

itializes the worm instruction pointer (WormIP) to

contain 0 to represent the beginning of the worm code.

The WormIP stores the next location to read a block of

worm code. Next, a block of worm code is fetched by

copying the bytes from the worm code (from the

WormIP) into an execution buffer inside the MicroVM

itself, so that execution can simply continue through

the worm code and then back into the MicroVM code

without needing a call. The addresses of the beginning

of the worm code and worm data space are hardcoded

by the worm code into the MicroVM when it is

deployed on a new host.

No encryption is necessary when worm code is copied

into the execution buffer, since the worm code was

already encrypted with known key masks for the worm

execution buffer locations where it will be loaded into

the worm execution buffer.

Just before the execution of the worm block, the

MicroVM pushes its registers on the stack and then

restores the worm’s registers from the beginning of the

worm data region. After the buffer’s execution, the

MicroVM saves the worm’s registers to the worm data

region. In the last step, the MicroVM restores its

registers and then jumps back to the beginning of the

MicroVM code to execute the next block of worm

code.

4.2 Worm Code

To work in the MicroVM, the worm code is divided

into blocks matching the size of the worm execution

buffer (22 bytes in our implementation). No instruction

can be split across these blocks, so the worm code is

padded with nops as necessary to prevent instructions

from crossing block boundaries. The worm code

cannot leave data on the execution stack at the end of a

block, since the MicroVM registers are pushed on the

stack just before the worm execution begins. To use

persistent data, the worm must write into locations in

the worm data space instead of using the execution

stack.

The most cumbersome restrictions involve jumps. Any

jump can occur within a single worm block, but jumps

that transfer control to locations outside the buffer must

be done differently since all worm code must executed

at known mask locations in the worm buffer. Our

solution is to require that all jumps must be at the end

of a worm code block, and all jump targets must be to

the beginning of a worm code block. Instead of

actually executing a jump, the worm code updates the

value of the WormIP (which is now stored in a known

location in memory, and will be restored when the

MicroVM resumes) to point to the target location, and

then continues into the MicroVM code normally so the

target block will be the next worm code block to

execute. To implement a conditional jump, we use a

short conditional jump with the opposite condition

within the worm buffer to skip the instruction that

updates the WormIP when the condition is unsatisfied.

4.3 Propagation

To propagate, the worm uses the techniques described

in Section 3 to acquire enough key bytes to hold the

MicroVM. Those key bytes are stored in the worm

data region. The MicroVM code is 98 bytes long so at

least 98 key bytes are needed. We may need to acquire

a few additional key bytes to avoid needing to place

null bytes in the attack code. If the mask found for a

given location matches the bytes we want to put there,

we instead put a nop instruction at that location and

obtain an extra key byte. As long as the masks are

randomly distributed, two or fewer will be sufficient

Figure 6. MicroVM.

.
.
.

.
.
.

.
.
.

register data

host key masks

guessed target key masks

other worm data

.
.
.

copy worm code

update worm IP

load worm registers

save worm registers

load VM registers

jmp read_more_worm

.
.
.
.
.

worm IP

read_more_worm:

save VM registers

execution buffer

begin_ worm_data:

worm_code:

k
n
o
w

n
 k

e
y
 m

a
s
k
s

WormIP = 0

_start: save worm address in ebp

move stack frame pointer

22−byte worm

over 99% of the time, so we can nearly always inject

the worm once 100 key bytes have been acquired.

To generate an instance of the worm for a new key, we

XOR out the old key bytes from the worm code and

XOR in the new key bytes. To support this, the propa-

gated worm data includes th host’s acquired mask

bytes. As with the injected MicroVM code, we need to

worry about the impossibility of injecting null bytes.

We insert nops in the injected worm code as necessary

to avoid null bytes. If the added nops would cause a

worm code block to exceed the available space, we

need to create a new block and move the overflow in-

structions into that block. Jump targets in the worm

code may need to be updated to reflect insertion of the

new block.

5. Results

To test our attack we built a small echo server with a

buffer overflow vulnerability. The application waits

for a client to connect. When the client connects, the

server forks a process to process its request. The next

step is to call a method which has a local buffer that

can be overflowed. This method reads the request from

the client and writes back an acknowledgment message.

After this method call the application sends a

termination message (“Bye”) and closes the socket.

Although we use a contrived vulnerability to make the

attack easier to execute and analyze, similar vulnerabil-

ities are found in real applications.

5.1 Attack Client

The attack client structure is the same for both the jump

and return attacks. For each guess attempt, the attack

client (1) opens a socket to the server, (2) builds an

attack string, (3) writes it to the socket, (4) reads the

acknowledgment, (5) installs an alarm signal handler,

(6) sets up an alarm, and (7) reads the termination

message or handles the alarm signal. The return attack

recognizes a possibly correct guess when it receives the

termination message in step 7; the jump attack recogni-

zes a possibly correct guess when the alarm signal

handler is called before the socket is closed.

The attack strategy used for different key bytes is

depicted in Figure 7. The number of key bytes guessed

by the attack is denoted by size. For vulnerabilities

suitable for the return attack, the first eight positions

are guessed using the return instruction. The rest are

guessed using the extended short jump attack (expected

23.5 attempts per byte). For the jump attack, the first

two key bytes acquired have positions size-1 and size-2.

We guess those two bytes simultaneously, using the 2-

byte jump instruction to create an infinite loop. The

next two bytes are guessed separately using the jump

instruction to create an infinite loop. After the fourth

byte is acquired, we do not (intentionally) create any

more infinite loops. For the next six bytes, we use near

jump, with a worst case of 1024 attempts per byte.

After this position, we use the extended short jump

attack.

For the attack client to be efficient there are some

constraints on the address where the attack starts. For

both attacks the address has to be far enough from the

next smaller address which has null as its last byte so

we have enough space to place two short jump instruc-

tions, and a sufficient number of illegal opcodes. As

long as the vulnerable buffer is sufficiently large, the

attack client can find a good location to begin the

attack.

We ran our client normally, not inside the MicroVM.

Hence, our results correspond to the time needed to

launch the initial attack on the first ISR-protected

server. The attack time would increase for later

infections because of the additional overhead associated

with executing in the MicroVM.

5.2 Target

We executed our attack on our constructed vulnerable

server protected by RISE [3]. The RISE

implementation presents a major difficulty in executing

our attack because of the way it implements fork,

pthreads and randomization keys. This necessitated a

small modification to RISE in order for our attack to

succeed. Other ISR implementations, however, may be

vulnerable to our attack without needing this

modification.

RISE uses a different key to randomize an application

each time it is started. Since the attack causes the

Figure 7. Guessing strategies.

infinite loop 16

Return Attack Jump Attack

infinite loop 16

size−1

size−2

infinte loop 8

near returnsize−1

size−3

infinite loop 8size−4

near jumpsize−5

near return

short jumpsize−9

size−8

short jump

near jump

size−12

size−11

short jump0short jump0

.
.
.

.
.
.

.
.
.

.
.
.

server to crash, the attack can only work against a

server that forks separate processes to handle client

requests. Valgrind [16] (the emulator modified to

implement RISE) implements pthreads to use only one

process. Thus, if the attack crashes a thread, then the

entire server will crash and the next execution will use

a different randomization key. So, our attack will only

work against a server that forks separate processes.

When RISE loads an application, a cache data structure

is initialized that holds the key mask for each instruc-

tion address that has been loaded. There is a different

randomization key byte for each byte in the text

segment, and the mask value is stored in the cache the

first time the corresponding instruction address is

loaded.

The fork call is forwarded to the operating system and

results in a new child process running the emulator.

When the injected instructions execute, the child

process will determine that no mask has been initialized

for the address on the stack and it will generate a new

one. Hence, the child process will share the same ran-

domization key for the addresses already loaded in

memory at fork time, but for the addresses it accesses

later it will use it’s own key. This is problematic since

the incremental attack only works if multiple attempts

can be launched attacking the same key.

Perhaps an attacker could control the execution enough

to ensure that the necessary masks are initialized before

the child process forks to ensure they would be the

same on all executions. This would only happen,

however, if the server legitimately ran code on the

stack before reaching the vulnerability. Hence, the

RISE implementation of ISR is not vulnerable to our

attack.

In order to experiment with our attack, we modified

RISE to initialize the masks for all used instruction

addresses before the child process forks to ensure that

all child processes have the same key. Obviously, a

real attacker would not have this opportunity.

In addition to the problems caused by the emulator

itself, we encountered others caused by the operating

system. The Fedora Linux distribution has address

space layout randomization enabled by default. For our

experiments, we disabled this defense. Attacks on

systems using both address and instruction randomiza-

tion pose additional challenges that are beyond the

scope of this paper.

5.3 Experimental Results

Table 1, Figure 8 and Figure 9 summarize the results

from our experiments. The target and client ran on

separate Linux dual AMD Athlon XP 2400+ machines.

connected to the same network switch. For key lengths

up to 128, we executed 100 trials; for longer keys, we

executed 20 trials. In all cases, our attacks are nearly

always able to obtain the correct key and the attack

completes in under one hour, even for acquiring a

4096-byte key using the jump attack. A successful

attack is an execution in which the attack client

correctly guesses the desired number of key bytes.

Every key byte must be correct for us to consider the

attack a success.

The experiments confirm the analytical predictions

regarding the decrease of number of attempts per byte

as key length increases. After breaking the first 12

bytes, fewer than 24 guess attempts are required per

byte to acquire additional key bytes. On average, we

can break a 100-byte key (enough to inject our

MicroVM code) in just over six minutes with the jump

attack. The return attack is faster, and requires less

than two minutes. The difference is the additional

approximately 4000 expected attempts the jump attack

needs to guess the first two bytes simultaneously. The

other difference is the increased time per attempt

needed for the jump attack stemming from the infinite

loops running on the server. The return attack produces

an infinite loop on the server only in the unlucky

circumstances when a random instruction happens to

produce an infinite loop. In our experiments, the

average number of infinite loops created during a return

attack is 0.76. Rarely, we may be unlucky and create

many infinite loops with the return attack (such as was

the case for the extreme maximum time value in

breaking a 4-byte key in Figure 8). The jump attack

must create several infinite loops to guess the first key

bytes. The actual number of loops created, shown in

Key

Bytes Attempts

Attempts

per Byte

Infinite

Loops

Success

Rate (%) Time (s)

2 3983 1991.6 3.86 98 138.3

4 4208 1052.1 8.11 99 207.9

32 7240 226.3 8.28 98 283.6

100 8636 86.4 9.15 100 365.6

512 18904 36.9 8.31 95 627.4

1024 30035 29.3 7.90 100 974.3

4096 102389 25.0 8.36 95 2919.4

Table 1. Jump attack results (averages
over all trials).

Table 1, varies depending on the number of apparently

correct offset values.

In our initial experiments, we had surprising results
where trials guessing 32-byte keys were always taking
longer than guessing 2048-byte keys. The bytes placed
on the stack during the near jump phase of the 32-byte
attack (guessing mask bytes 5 through 11) included an
0xfe byte. This meant if the guessed instruction
decrypted to a harmless instruction the execution could
fall through to the 0xfe instruction and generate an
infinite loop. Instead of the typical number of infinite
loops, over 20 infinite loops were being created. This
increased the server load enough to make the 32-byte
key trials take longer than the 2048-byte keys. We
modified the attack client to avoid this problem by ma-
king it select an address for starting the guessing that
ensures 0xfe will not appear in the near jump offset.

In a few cases, our attack was not able to determine the

correct key. The failures are caused by the inability to

use certain masks because injecting the desired

encrypted byte would require placing a null byte on the

stack, which will cause the attack string to end before

the return address is overwritten. Workarounds are

possible, and necessary for the common cases. For

example, in the return attack we will get an incorrect

mask when a position has an apparently correct guess,

but the mask is the return opcode. We assume 0xc3 is

the correct mask when all the other 255 masks fail to

produce the return behavior. Similarly, for the jump

attack we will have false positives when the mask for

the last position guessed is 0xfe. Our experimental

results demonstrate that with the strategies we use the

likelihood of incorrect guesses is small enough that it is

not worth increasing the length and complexity of the

attack code to deal with the rare special cases.

6. Discussion

Our attack is essentially a chosen-ciphertext attack on

an XOR encryption scheme. If we obtain a known

ciphertext-plaintext pair with such a cipher, obtaining

the encryption key is a trivial matter of XORing the

plaintext and ciphertext. The challenge is obtaining a

known plaintext. We do not actually obtain the plain-

text for a given ciphertext guess, but instead obtain

clues from the remotely observed behavior. After

enough guesses, though, we can reliably determine the

corresponding plaintext for an input ciphertext, and

acquire the key.

This suggests some simple modifications to ISR

implementations that can be used to make incremental

guessing attacks much less likely to succeed. Our

attack strategy would not work against any ISR scheme

that uses an encryption algorithm that is not susceptible

to a simple known plaintext-ciphertext attack. Any

modern block encryption algorithm (such as AES [8])

satisfies this property. Unfortunately, the performance

overhead of decrypting executing instructions with

such an algorithm may be prohibitive. A more efficient

but less secure alternative might be to randomly map

each 8-bit value to a value using a lookup table.

Combining this with the XOR encryption would make

incremental key attacks like we propose much more

difficult since it would hide the structure of the actual

instruction set from the adversary.

The other property our attack relies on that is easily

altered is the need to make many attempts that crash a

process against a binary randomized using the same

Figure 8. Time to acquire key bytes.
Times are wall-clock times measured by the client for
the duration of the attack. The marked points are the
median values and the bars show the 95th percentile
maximum and minimum results over all trials.

 10

 100

 1000

 1 4 16 64 256 1024 4096

T
im

e
 (

s
e

c
o

n
d

s
)

Key Bytes Acquired

Jump
Return

Figure 9. Attempts per byte.

 100

 1000

 1 4 16 64 256 1024 4096

A
tt

e
m

p
ts

/B
y
te

Key Bytes Acquired

Jump
Return

key. RISE is largely invulnerable to our attack because

of the way it uses different randomization keys for

forked processes. If re-randomizing is inexpensive, an

implementation that re-randomizes the binary after

every process or thread crash would not be susceptible

to incremental key breaking attacks. This approach,

however, does make the server increasingly vulnerable

to denial-of-service attacks since all an attacker needs

to do to force the server to shutdown and restart itself

with a new randomization key is to crash a single

thread.

The details of our attacks are heavily dependent on the

x86 instruction set. In particular, our attacks rely on

the presence of short (one or two-byte) control

instructions and short harmless instructions, and benefit

substantially from the structure of the conditional jump

instructions. For any RISC architecture with fixed

instruction length, the minimum number of key bits that

must be guessed at once is determined by the

instruction length. Most RISC architectures use in-

struction lengths of at least 32 bits, which is probably

too long to realistically guess using a brute-force

approach.

7. Conclusion

We have demonstrated that servers protected using ISR

may be vulnerable to an incremental key-breaking

attack. Our attack enables a remote attacker to acquire

enough key bytes to inject an arbitrarily long worm in

an ISR-protect server in approximately six minutes

using the jump attack.

Our results apply only to the use of ISR at the machine

instruction set level; our techniques could not be used

directly to attack ISR defenses for higher-level

languages such as SQL [6] and Perl [12].

Our results indicate that doing ISR in a way that

provides a high degree of security against a motivated

attacker is more difficult than previously thought. The

most efficient ISR proposals, such as the repeated 32-

bit XOR key, provide little security under realistic

conditions. This does not mean ISR is no longer a

promising defense strategy, but it means designers of

ISR systems must consider carefully how effectively

their randomization thwarts possible strategies for

remotely determining the randomization key.

Acknowledgments

The authors thank Gabriela Barrantes for generously

providing the RISE implementation for our experi-

ments. We are grateful to Stephanie Forrest, Patrick

Graydon, and Trent Jaeger for providing useful and

insightful comments on early versions of this paper.

This work benefited from fruitful discussions with Lee

Badger, Steve Chapin, Jack Davidson, Dragos Halmagi,

Xuxian Jiang, Angelos Keromytis, John Knight, David

Mazières, Cristina Nita-Rotaru, Anh Nguyen-Tuong,

Fred Schneider, Jeffrey Shirley, Mary Lou Soffa, Peter

Szor, Dan Williams, Dongyan Xu, and Jinlin Yang.

We thank Andrew Barrows, Jessica Greer, Scott

Ruffner, and Jing Yang for technical assistance, and the

Guadalajara Restaurant for Special Lunch #3. This

work was supported in part by grants from the DARPA

Self-Regenerative Systems Program (FA8750-04-2-

0246) and the National Science Foundation (through

grants NSF CAREER CCR-0092945 and NSF ITR

EIA-0205327).

References

[1] Apache Software Foundation. Apache MPM

Worker. Apache HTTP Server Version 2.0

Documentation.

http://httpd.apache.org/docs-2.0/mod/worker.html

[2] Murat Balaban. Buffer Overflows Demystified.

http://www.enderunix.org/documents/eng/bof-eng.txt

[3] Elena Gabriela Barrantes, David H. Ackley,

Stephanie Forrest, Trek S. Palmer, Darko

Stefanovic, and Dino Dai Zovi. Intrusion

detection: Randomized instruction set emulation

to disrupt binary code injection attacks. 10th ACM

Conference on Computer and Communication

Security (CCS), pp 281 – 289. October 2003.

[4] Elena Gabriela Barrantes, David H. Ackley,

Stephanie Forrest, and Darko Stefanovic.

Randomized Instruction Set Emulation. ACM

Transactions on Information and System Security.

In Press, 2005.

[5] Daniel Bovet and Marco Cesati. Understanding

the Linux Kernel (Second Edition). O’Reilly and

Associates. 2002.

[6] Stephen W. Boyd and Angelos D. Keromytis.

SQLrand: Preventing SQL Injection Attacks. 2nd

Applied Cryptography and Network Security

Conference (ACNS). June 2004.

[7] Jedidiah R. Crandall, S. Felix Wu, and Frederic T.

Chong. Experiences Using Minos as A Tool for

Capturing and Analyzing Novel Worms for

Unknown Vulnerabilities. GI/IEEE SIG SIDAR

Conference on Detection of Intrusions and

Malware and Vulnerability Assessment

(DIMVA). July 2005.

[8] Joan Daemen and Vincent Rijmen. The Design of

Rijndael: AES - The Advanced Encryption

Standard. Springer-Verlag, 2002.

[9] Roman Danyliw. CERT Advisory CA-2003-04

MS-SQL Server Worm. January 2003.

 http://www.cert.org/advisories/CS-2003-04.html

[10] eEye Digital Security. Sapphire Worm Code

Disassembled. January 2003.

http://www.eeye.com/html/Research/Flash/sapphire.txt

[11] Intel Corporation. Intel Architecture Software

Developer’s Manual Volume 2: Instruction Set

Reference. 1997. http://developer.intel.com/design/

pentium/manuals/24319101.pdf.

[12] Gaurav S. Kc, Angelos D. Keromytis, and

Vassilis Prevelakis. Countering Code-Injection

Attacks With Instruction-Set Randomization. 10th

ACM International Conference on Computer and

Communications Security (CCS). October 2003.

[13] David Litchfield. Variations in Exploit methods

between Linux and Windows. July 2003.

http://www.ngssoftware.com/papers/exploitvariation.pdf

[14] The NASM Project. The Netwide Assembler.

http://nasm.sourceforge.net/

[15] The Pax Team. The Design and Implementation

of PaX. November 2003.

http://pax.grsecurity.net/docs/pax.txt

[16] Julian Seward. The Design and Implementation

of Valgrind. 2003. http://developer.kde.org/~sewardj/

docs-2.0.0/mc_techdocs.html

[17] Hovav Shacham, Matthew Page, Ben Pfaff, Eu-

Jin Goh, Nagendra Modadugu, Dan Boneh. On

the Effectiveness of Address-Space

Randomization. 11th ACM Conference on

Computer and Communications Security.

October 2004.

[18] Solar Designer. Return-to-libc Attack. Bugtraq

Mailing List. August 1997.

A. MicroVM Code

The MicroVM code is shown below using NASM

assembly code [14]. For clarity, we use symbolic

constants in this code; the appropriate values would be

hard coded into the injected code by the worm during

deployment. NUM_BYTES is the size of the worm

execution buffer (22), DATA_OFFSET is the offset

from the beginning of the worm code to the beginning

of the data (a four-byte value), and REG_BYTES is the

number of bytes used to store the worm registers (24).

_start:

push ebp ; save frame pointer

; get location of stored worm registers
mov ebp, WORM_ADDRESS + REG_OFFSET

pop dword [ebp + DATA_OFFSET], ebp
xor eax, eax ; eax is the IP into worm
; WormIP = eax (zeroing eax starts at the beginning)

read_more_worm:
; copy next NUM_BYTES into worm execution buffer
cld

xor ecx, ecx
mov byte cl, NUM_BYTES
mov dword esi, WORM_ADDRESS

; get WormIP (points at next instruction to fetch)
add dword esi, eax
mov edi, begin_worm_exec
rep movsb

; change next WormIP to point to next block
add eax, NUM_BYTES
pushad ; save MicroVM registers

; load worm registers
 mov edi, dword [ebp + EDI_OFFSET]
… ; do the same for esi, eax, ebx, ecx, and edx

begin_worm_exec:

nop ; Reserve NUM_BYTES using nops to leave

 nop ; room for worm code fragment
… ; end of worm code space

; save worm registers
mov [ebp + EDI_OFFSET],edi
… ; do the same for esi, eax, ebx, ecx, and edx

popad ; load MicroVM registers
 jmp read_more_worm

