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Abstract

A set of replicas is diverse to the extent that all imple-
ment the same functionality but differ in their implementa-
tion details. Diverse replicas are less prone to having vul-
nerabilities in common, because attacks typically depend on
memory layout and/or instruction-sequence specifics. Re-
cent work advocates using mechanical means, such as pro-
gram rewriting, to create such diversity. A correspondence
between the specific transformations being employed and
the attacks they defend against is often provided, but lit-
tle has been said about the overall effectiveness of diversity
per se in defending against attacks. With this broader goal
in mind, we here give a precise characterization of attacks,
applicable to viewing diversity as a defense, and also show
how mechanically-generated diversity compares to a well-
understood defense: strong typing.

1. Introduction

Computers that execute the same program risk being vul-
nerable to the same attacks. This explains why the Internet,
whose machines typically have much software in common,
is so susceptible to malware. It is also a reason that repli-
cation of servers does not necessarily enhance the availabil-
ity of a service in the presence of attacks—geographically-
separated or not, server replicas, by definition, will all ex-
hibit the same vulnerabilities and thus are unlikely to exhibit
the independence required for enhanced availablity.

A set of replicas isdiverse if all implement the same
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functionality but differ in their implementation details. Di-
verse replicas are less prone to having vulnerabilities in
common, because attacks typically depend on memory lay-
out and/or instruction sequence specifics. But building mul-
tiple distinct versions of a program is expensive, so re-
searchers have turned to mechanical means for creating di-
verse sets of replicas.

Various approaches have been proposed, including re-
location and/or padding the run-time stack by random
amounts [10, 6, 21], rearranging basic blocks and code
within basic blocks [10], randomly changing the names of
system calls [7] or instruction opcodes [13, 4, 3], and ran-
domizing the heap memory allocator [5]. Some of these
approaches are more effective than others. For example,
Sachamet al. [18] derive experimental limits on the address
space randomization scheme proposed by Xuet al. [21],
while Sovarelet al. [19] discuss the effectiveness of instruc-
tion set randomization and outline some attacks against it.

For mechanically-generated diversity to work as a de-
fense, not only must implementations differ (so they have
few vulnerabilities in common), but the detailed differences
must be kept secret from attackers. For example, buffer-
overflow attacks are generally written relative to some spe-
cific run-time stack layout. Alter this layout by rearranging
the relative locations of variables and the return address on
the stack, and an input designed to perpetrate an attack for
the original stack layout is unlikely to succeed. Were the
new stack layout to become known by the adversary, then
crafting an attack again becomes straightforward.

The idea of transforming a program so that its internal
logic is difficult to discern is not new; programs to accom-
plish such transformations have been calledobfuscators [8].
An obfuscator� takes two inputs—a program� and a se-
cret key�—and produces amorph ������, which is a
program whose semantics is equivalent to� but whose im-
plementation differs. Secret key� prescribes which ex-
act transformations are applied in producing������. Note
that since� and� is assumed to be public, knowledge of�

would enable an attacker to learn implementation details for
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morph������ and perhaps even automate the generation
of attacks for different morphs.

Baraket al. [2] and Goldwasser and Kalai [11] give theo-
retical limits on the effectiveness of obfuscators as a way to
keep secret the details of an algorithm or its embodiment as
a program. This work, however, says nothing about using
obfuscators to create diversity. For creating diversity, we
are concerned with preventing an attacker from learning de-
tails about the output of the obfuscator (since these details
are presumed needed for designing an attack), whereas this
prior work is concerned with preventing an attacker from
learning the input to the obfuscator.

Different classes of transformations are more or less ef-
fective in defending against different classes of attacks. Al-
though knowing this correspondence is important when de-
signing a set of defenses for a given threat model, knowing
the specific correspondences is not the same as knowing the
overall power of mechanically-generated diversity as a de-
fense. This paper explores that latter, broader, issue, by

� giving the definitions needed for proving results about
the defensive power of obfuscation;

� giving a precise characterization of attacks, applicable
to viewing diversity as a defense;

� developing the thesis that mechanically-generated di-
versity is comparable to type systems, and deriving an
admittedly unusual type system equivalent to obfusca-
tion in the presence of finitely many keys;

� exhibiting, for a C-like language and an obfuscator that
rearranges memory, an increasingly tighter sequence
of type systems for soundly approximating that obfus-
cator. The most accurate type system is based on in-
formation flow. We also show that no type system cor-
responds exactly to the obfuscator, and therefore ap-
proximations are the best we can achieve.

All proofs, as well as detailed semantics for the language
and type systems we describe in the text, can be found in a
companion technical report [17].

2. Attacks and Obfuscators: A Framework

We assume that a program interacts with its environment
through inputs and outputs. Inputs include initial arguments
supplied to the program when it is invoked, additional data
supplied during execution through communication, and so
on. Outputs are presumably sensed by the environment, and
they can include state changes. A program’sbehavior de-
fines a sequence of inputs and outputs.

We define asemantics for program� and inputs���� to
be a set ofexecutions comprising sequences of states that
engender possible behaviors of the program with the given

inputs. Animplementation semantics ������ describes execu-
tions of programs at the level of machine instructions: for
a program� and inputs���� , ��� ��� ������ is the set of ex-
ecutions of program� on inputs���� . For high-level lan-
guages, an implementation semantics typically will include
an account of memory layout and other machine-level de-
tails about execution. Given a program� and input���� ,
the executions given by two different implementation se-
mantics could well be different.

Associate an implementation semantics��� ������ with
each morph������. This approach is quite general and
allows us to model various kind of obfuscations:

� If the original program is in a high-level language, then
we can take obfuscators to be source-to-source transla-
tors and take morphs to be programs in the same high-
level language.

� If the original program is object code, then we can take
obfuscators to be binary rewriters, and we take morphs
to be object code as well.

� If the original program is in some source language,
then we can take obfuscators to be compilers with dif-
ferent compilation choices, and we take morphs to be
compiled code.

Notice that an obfuscator is not precluded from adding run-
time checks. So, our characterization of an obfuscator ad-
mits program rewriters that add checks to protect against
bad programming.

Attacks are conveyed through inputs and are defined rel-
ative to some program� , an obfuscator� , and a finite set
of keys��� � � � ���. A resistable attack on program �

relative to obfuscator � and keys ��� � � � ��� is defined
to be an input that produces a behavior in some morph
������� and that cannot be produced by some other morph
�������—presumably because implementation details dif-
fer from morph to morph.1 When morphs are deterministic,
the definition of a resistable attack simplifies to being an in-
put that produces different behaviors in some pair of morphs
������� and�������.

Whether executions from two different morphs reading
the same input constitute different behaviors is subtle. Dif-
ferent morphs might represent state components and se-
quence state changes in different ways (e.g., by reordering
instructions). Therefore, whether two executions engender
the same behavior is best not defined in terms of the states of
these executions being equal or even occurring in the same

1An attack that produces equivalent behavior in all morphs might be
called aninterface attack because it exploits the intended (although ap-
parently poorly chosen) semantics of the program’s interface [9]. With-
out some independent specification, interface attacks are indistinguishable
from ordinary program inputs; mechanically-generated diversity is useless
against interface attacks.
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order. For example, different morphs of a routine that re-
turns a tree (where we consider returning a value from the
routine an output) might create that tree in different regions
of memory. Even though different addresses are returned by
each morph, we would want these executions to be consid-
ered equivalent if the trees at those different addresses are
equivalent.

We formalize execution equivalence for obfuscator� us-
ing relations��

����, one for every� � �. It is tempting
to define��

���� in terms of an equivalence relation on ex-
ecutions, where executions�� and�� are put in the same
equivalence class if and only if they engender the same be-
havior. This, however, does not work, for reasons we detail
below. So, for a tuple of executions���� � � � � ��� where
each execution�� is produced by morph������� run on an
input ���� (i.e.,�� � ��� ������

� ������ holds), we define

���� � � � � ��� � ��
������� � � � ���� (1)

to hold if and only if executions��, . . . , �� all engender
equivalent behavior. Equation (1) has to be instantiated for
each given language and obfuscator. We do this below for a
particular language, Toy-C.

When morphs are deterministic programs, and thus� �

is a unique execution of morph����� �� on input ���� ,
then by definition���� is a resistable attack whenever
���� � � � � ��� �� ��

������� � � � ����. In the general case
when morphs are nondeterministic programs, an input����

is a resistable attack if there exists an execution�� �

��� ��
����

� ������ for some� � ��� � � � � �	 such that for all
choices of�� � ��� ������

� ������ (for 	 � ��� � � � � � 
 �� � �
�� � � � � �	) we have���� � � � � ��� �� ��

������� � � � ����.

��
���� cannot in general be an equivalence relation on

executions because our notion of execution equivalence
for some languages might involve supposing an interpre-
tation for states—an implicit existential quantifier—rather
than requiring strict equality of all state components (as
we do require for outputs). For example, consider execu-
tions��, ��, and��, each from a different morph with the
same input. Let��	� denote the	th state of�, ��	��
 the
value of variable
 in state��	�, and suppose that for all	,
���	��� � ���	��� � ��, ���	��� � 		 and that location 10
in �� has the same value as location 22 in��. Now, by in-
terpreting� as an integer variable, we conclude���	��� and
���	��� are equivalent; by interpreting� as a pointer vari-
able, we conclude���	��� and���	��� are equivalent; but
it would be wrong to conclude the transitive consequence:
���	��� and���	��� are equivalent. Since equivalence re-
lations are necessarily transitive, an equivalence relation is
not well suited to our purpose.

3. Execution Equivalence for C-like Languages

States. States in C-like languages model snapshots of
memory. In the implementation semantics for such a lan-
guage, a state must not only associate a value with each
variable but the state must also capture details of memory
layout so that, for example, pointer arithmetic works. We
therefore would model a state as a triple��� 
���, where

� � is the set of memory locations;

� 
 is a variable map, which associates relevant infor-
mation with every variable. For variables available to
programs,
 associates the memory locations where
the content of the variable is stored; and for variables
used to model program execution,
 associates infor-
mation such as sequences of outputs, inputs, or mem-
ory locations holding the current stack location or next
instruction to execute;

� � is amemory map, which gives the contents of every
memory location; thus,������ � � holds.

The domain of variable map
 includesprogram vari-
ables andhidden variables. Program variables are manip-
ulated by programmers explicitly, and each program vari-
able is bound to a finite not necessarily contiguous sequence
���� � � � � ��� of memory locations in�:

� If � � �, then the variable holds a single value; mem-
ory location�� stores that value;

� If � � �, then the variable holds multiple values (for
instance, it may be an array variable, or a C-like struct
variable);��� � � � � �� stores its values;

� If � � �, the variable is not bound in that state.

Hidden variables are not directly accessible to the program-
mer, being artifacts of the language implementation and ex-
ecution environment. For our purposes, it suffices to assume
that the following hidden variables exist:

� �� records the memory location of the next instruction
to execute; it is always bound to an element of�
��	,
where� indicates the program terminated;

� ������� records the finite sequence of outputs that the
program has produced;

� ������ holds a (possibly infinite) sequence of inputs
still available for reading by the program.

Memory map� assigns to every location in� a value
representing the content stored there. A memory location
can contain either a data value (perhaps representing an
instruction or integer) or another memory location (i.e., a
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pointer). Thus, what is stored in a memory location is am-
biguous, being capable of interpretation as a data value or as
a memory location. This ambiguity reflects an unfortunate
reality of system implementation languages, such as C, that
do not distinguish between integers and pointers.

Executions. Let 
 be the set of states. An execution� �
��� ��������� of program� in a C-like language, when given
input ���� , can be represented as an infinite sequence� of
states from
 in which each state corresponds to execution
of a single instruction in the preceding state, and in which
the following general requirements are also satisfied.

(1) � is the same at all states of�; in other words, the set of
memory locations does not change during execution.

(2) If ��	���� � � for some	, then���� � ��	� for all
� � 	; in other words, if the program has terminated
in state��	�, then the state remains unchanged in all
subsequent states.

(3) There is either an index	 with ��	���� � � or for every
index 	 there is an index� � 	 with ���� �� ��	�; in
other words, an execution either terminates with�� set
to� or it does not terminate and changes state infinitely
many times.2

(4) ������������ � �� and for all	, ��	� ���������� is ei-
ther exactly��	���������, or��	��������� with a single
additional output appended; in other words, the initial
sequence of outputs produced is empty, and it can in-
crease by at most one at every state.

(5) ����������� � ���� and for all 	, ��	 � ��������� is
either exactly��	��������, or ��	�������� with the first
input removed; in other words, input values only get
consumed, and at most one input is consumed at every
execution step.

Equivalence of Executions. The formal definition of
��
������� � � � ���� for a C-like language is based on re-

lating executions of morphs to executions in a suitably cho-
senhigh-level semantics of the original program. A high-
level semantics�����	 associates a sequence of states with
an input but comes closer to capturing the intention of a
programmer—it may, for example, be expressed as exe-
cution steps of a virtual machine that abstracts away how
data is represented in memory, or it may distinguish the in-
tended use of values that have the same internal represen-
tation (e.g., integer values and pointer values in C). Execu-
tions from different morphs of� are deemed equivalent if it

2This rules out direct loops, such as statements of the form� � ���� �.
This restriction does not fundamentally affect our results, but is technically
convenient.

is possible to rationalize each execution in terms of a single
execution in the high-level semantics of� .

To relate executions of morphs to executions in the
high-level semantics, we assume adeobfuscation relation
Æ������ between executions�� of ������� and execu-
tions �� in the high-level semantics��� ��	��� of � , where
���� ��� � Æ������ means that execution�� can be ratio-
nalized to execution�� in the high-level semantics of� . A
necessary condition for morphs to be equivalent is that they
produce equivalent outputs and read the same inputs; there-
fore, relationÆ������ must satisfy

��
 ��� ���� ��� � Æ������ � �	����� � �	������

where�	���� extracts the sequence of outputs produced
and inputs remaining to be consumed by execution�.
�	���� is defined by projecting the bindings of the�������
and the������ hidden variables and removing repetitions in
the resulting sequence.3 Such a relation for a family of ob-
fuscations and a C-like language is given in�4.

Given a tuple of executions���� � � � � ��� for a given in-
put ���� where each�� is produced by morph�������,
these executions are equivalent if they all correspond to the
same execution in the high-level semantics��� ��	 ��� of pro-
gram� . This is formalized by instantiating Equation (1) for
Toy-C as follows.

���� � � � � ��� � ��
������� � � � ���� if and only if

������ �� � ��� ��	 ������

��
 ��� 	 � �� � ��� ������

� �������
���� ��� � Æ�������

(2)

4. Concrete Example: The Toy-C Language

4.1. The Language

In order to give a concrete example of how to use our
framework to reason about diversity and attacks, we in-
troduce a toy C-like language, Toy-C. The syntax and
operational semantics of Toy-C programs should be self-
explanatory. We only outline the language here, giving
complete details in a companion technical report [17, App.
A].

Figure 1 presents an example Toy-C program. A pro-
gram is a list of procedure declarations, where each pro-
cedure declaration gives local variable declarations (intro-
duced by	
�) followed by a sequence of statements. Ev-
ery procedure can optionally be annotated to indicate which
variables are observable—that is, variables that can be ex-
amined by the environment. Observable variables are speci-
fied on a per-procedure basis. Whether a variable is observ-
able does not affect execution of a program; the annotation

3Removing repetitions is necessary so that the sequence has one ele-
ment per output produced or input read.
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Figure 1. Example Toy-C program

is used only for determining equivalence of executions (see
�4.2).

Procedure�
�� is the entry point of the program. Proce-
dure parameters and local variables are declared with types,
which are used only to convey representations for values.
Types such as���� represent pointers to values (in this case,
pointers to values of type���). Types such as������ repre-
sent arrays (in this case, an array with four entries); arrays
are�-indexed and can appear only as the type of local vari-
ables.

Toy-C statements include standard statements of imper-
ative programming languages, such as conditionals, loops,
and assignment. We assume the following statements also
are available:

� An output statement corresponding to every output,
such as printing and sending to the network. For sim-
plicity, we identify an output statement with the output
that it produces.

� A statement�
�� that simply terminates execution with
an error.

As in most imperative languages, we distinguish be-
tween expressions that evaluate to values (value-denoting
expressions, or VD-expressions for short), and expressions
that evaluate to memory locations (address-denoting ex-
pressions, or AD-expressions for short). Expressions ap-
pearing on the left-hand side of an assignment statement
are AD-expressions. VD-expressions include constants,
variables, pointer dereference, and address-of and arith-
metic operations, while AD-expressions include variables
and pointer dereferences. Array operations can be synthe-
sized from existing expressions using pointer arithmetic, in
the usual way.

Reference Semantics. Toy-C program execution is de-
scribed by areference semantics ��������� , which we use as a
basis for other semantics defined in subsequent sections.
Full details of the reference semantics appear in a compan-
ion technical report [17, App. A.2].

Reference semantics��������� captures the stack-based al-
location found in standard implementations of C-like lan-
guages. Values manipulated by Toy-C programs are inte-
gers, which are used as the representation both for integers
and pointers; the set of memory locations used by the se-
mantics is just the set of integers. To model stack-based al-
location, a hidden variable stores a pointer to the top of the
stack; when a procedure is called, the arguments to the pro-
cedure are pushed on the stack, the return address is pushed
on the stack, and space for storing the local variables is al-
located on the stack. Upon return from a procedure, the
stack is restored by popping-off the allocated space, return
address, and arguments of the call. Assume that push incre-
ments the stack pointer, and pop decrements it.

Vulnerabilities. Reference semantics��������� of Toy-C does
not mandate safety checks when dereferencing a pointer or
when adding integers to pointers. Attackers can take ad-
vantage of this freedom to execute programs in a way never
intended by the programmer, causing undesirable behavior
through techniques such as:

� Stack smashing: overflowing a stack-allocated buffer
to overwrite the return address of a procedure with a
pointer to attacker-supplied code (generally supplied
in the buffer itself);

� Arc injection: using a buffer overflow to change the
control flow of the program and jumping to an arbitrary
location in memory;

� Pointer subterfuge: modifying a pointer’s value (e.g.,
a function pointer) to point to attacker-supplied code;

� Heap smashing: exploiting the implementation of the
dynamic memory allocator, such as overwriting the
header information of allocated blocks so that an ar-
bitrary memory location is modified when the block is
freed.

Pincus and Baker [16] gives an overview of these tech-
niques. All involve updating a memory location that the
programmer thought could not be affected.

Let us consider a threat model in which attackers are al-
lowed to invoke programs and supply inputs. These inputs
are used as arguments to the�
�� procedure of the pro-
gram. For example, consider the program of Figure 1. Ac-
cording to reference semantics��������� , on input 0,1, or 2, the
program terminates in a final state where�
� is bound to a
memory location containing the integer��. However, on in-
put
�, the program terminates in a final state where�
� is
bound to a memory location containing the integer�	; the
input
� makes the variable��� point to the memory lo-
cation bound to variable�
�, which (according to reference
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semantics��������� ) precedes��� on the stack, so that the as-
signment���� �� �	 stores�	 in the location associated
with �
�. Presumably, this behavior is undesirable, and in-
put
� ought to be considered an attack.

4.2. An Obfuscator

An obfuscator that implementsaddress obfuscation to
protect against buffer overflows was defined by Bhaktaret
al. [6]. It attempts to ensure that memory outside an allo-
cated buffer cannot be accessed reliably using statements
intended for accessing the buffer.

This obfuscator, which we will call����� , relies on the
following transformations: varying the starting location of
the stack; adding padding around procedure arguments on
the stack, blocks of local variables on the stack, and the re-
turn location of a procedure call on the stack; permuting the
allocation order of variables and the order of procedure ar-
guments on the stack; and supplying different initial mem-
ory maps.4

Keys for ����� are tuples��
� ���������� describing
which transformations to apply:�
 is a starting location
for the stack;� is a padding size;� � ���� ��� � � � � is a
sequence of permutations, with�� (for each� � �) a per-
mutation of the set��� � � � � �	; and����� represents the ini-
tial memory map in which to execute the morph. Morph
���������� is program� compiled under the above trans-
formations.

An implementation semantics��� ������� ��� specifying how
to execute morph������ is obtained by modifying refer-
ence semantics��� ������ to take into account the transforma-
tions prescribed by key�. These modifications affect pro-
cedure calls; more precisely, with implementation seman-
tics ��� ������� ��� for � � ��
� ����������, procedure calls
now execute as follows:

� � locations of padding are pushed on the stack;

� the arguments to the procedure are pushed on the stack,
in the order given by permutation��, where� is the
number of arguments—thus, if
�� � � � � 
� are argu-
ments to the procedure, then they are pushed in order

������ � � � � 
�����;

� � locations of padding are pushed on the stack;

� the return address of the procedure call is pushed on
the stack;

� � locations of padding are pushed on the stack;

� memory for the local variables is allocated on the
stack, in the order given by permutation��, where�
is the number of local variables;

4Different initial memory maps model the unpredictability of values
stored in memory on different machines running morphs.

� � locations of padding are pushed on the stack;

� the body of the procedure executes.

Full details of implementation semantics��� ������� ��� are
given in a companion technical report [17, App. B].

Notice, which inputs cause undesirable behavior (e.g.,
input
� causing�
� to get value 42 if supplied to the pro-
gram of Figure 1) depends on which morph is executing—
if the morph uses a padding value� of 	 and an identity
permutation, for instance, then
� causes the undesirable
behavior in the morph that
� had caused.

To instantiate������
� ��� for Toy-C and����� , we need a

description of the intended high-level semantics and deob-
fuscation relations.

A high-level semantics�����	 that serves our purpose is a
variant of reference semantics��������� , but where values are
used only as the high-level language programmer expects.
For example, integers are not used as pointers. Our high-
level semantics for Toy-C distinguishes betweendirect val-
ues and pointers. Roughly speaking, a direct value is a
value intended to be interpreted literally—for instance, an
integer representing some count. In contrast, a pointer is in-
tended to be interpreted as a stand-in for the value stored at
the memory location pointed to; the actual memory location
given by a pointer is typically irrelevant.5

Executions in high-level semantics�����	 are similar
to executions described in�3, using states of the form
���� �
 � ���, where set of locations�� is �, �
 is the vari-
able map, and�� is the memory map. To account for the
intended use of values, the memory map associates with ev-
ery memory location a tagged value��
�, where tag� indi-
cates whether value
 is meant to be used as a direct value
or as a pointer. Specifically, a memory map�� associates
with every memory location�� � �� a tagged value

� ���
���
� with 
 � �
��
, indicating that������ con-
tains direct value
; or

� �����
������ with ��� � ��, indicating that������ contains
pointer���.

Deobfuscation relationsÆ����� for ����� are based on
the existence of relations between individual states of ex-
ecutions, where these relations rationalize an implementa-
tion state in terms of a high-level state. More precisely, an
execution� � ��� ������� ��� ������ in the implementation se-
mantics of���������� and an execution�� � ��� ��	������ in
the high-level semantics of� are related throughÆ����� if
there exists a relation� on states (subject to a property that

5Other high-level semantics are possible, of course, and our framework
can accommodate them. For instance, a high-level semantics could addi-
tionally model that arrays are never accessed beyond their declared extent.
Different high-level semantics generally lead to different notions of equiv-
alence of executions.
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we describe below) such that for some stuttered sequence6

��� of ��, we have

��
 ��� � � ���� � �������

The properties we require of relation� capture how we
are allowed to interpret the states of morph����������.
There is generally a lot of flexibility in this interpretation.
For analyzing����� , it suffices that� allows morphs to allo-
cate variables at different locations in memory, and captures
the intended use of values. Generally, relation� might also
need to relate states in which values have different repre-
sentations.

The required property of relation� is that there exists a
map� (indexed by implementation states in�) that, for any
given �, maps memory locations in���� to memory loca-
tions in������, such that� determines �. The map is param-
eterized by implementation states so that it may be different
at every state of an execution, since a morph might reuse
the same memory location for different variables at differ-
ent points in time.

A map� determines� when, roughly speaking,� re-
lates implementation states and high-level states that are
equal in all components, except that data in memory lo-
cation� in the implementation state� is found at memory
location���� �� in the high-level state. Formally,� deter-
mines� when the relation satisfies the following property:
��� 
��� � ���� �
 ���� holds if and only if

(1) Either 
 ���� � �
 ���� � �, or �
 ���� �
����� 
���� 
 �����;

(2) 
 ��������� � �
 ���������;

(3) 
 �������� � �
 ��������;

(4) For every observable program variable�, there ex-
ists � � � such that
 ��� � ���� � � � � ���, �
 ��� �

����� � � � � ����, and for all	 � � we have�� � ���,

where� � �� relates implementation locations� � � and
high-level locations�� � �� and captures when these loca-
tions hold similar structures. It is the smallest relation such
that � � �� holds if whenever������� �� � �� holds then so
does one of the following conditions:

� ���� � 
 and������ � ���
���
�;

� ���� � ��, ������ � �����
������ and�� � ���.

Given this definition of deobfuscation relations, it is now
immediate to define equivalence of executions for morphs
using definition (2).

6
��� is astuttered sequence of �� if ��� can be obtained from�� by replac-

ing individual states by a finite number of copies of that state.

5. Obfuscation and Type Systems

Even when obfuscation does not eliminate vulnerabili-
ties, it can make exploiting them more difficult. System-
atic methods for eliminating vulnerabilities not only form
an alternative defense but arguably define standards against
which obfuscation could be compared. The obvious candi-
date is type systems, which can prevent attackers from abus-
ing knowledge of low-level implementation details and per-
forming unexpected operations. For example, strong typing
as found in Java would prevent overflowing a buffer (in or-
der to alter a return address on the stack) because it is a type
violation to store more data into a variable than that variable
was declared to accommodate.

Type systems for system programming languages, and
strong typing in particular, are generally concerned with rul-
ing out two kinds of behaviors:

(1) Assigning an inappropriate value to some variable.

(2) Accessing memory past the end of a buffer under the
pretense of accessing the buffer.

There is no need to worry about (1) with Toy-C, because the
same values serve both as integers and addresses. Thus, our
focus here is on (2).

Eliminating vulnerabilities is clearly preferable to hav-
ing them be difficult to exploit. So why bother with ob-
fuscation? The answer is that strong type systems are not
always an option with legacy code. The relative success of
recent work [12, 14] in adding strong typing to languages
like C not withstanding, obfuscation is applicable to any
object code, independent of what high-level language it de-
rives from. There are also settings where type systems are
not desirable because of cost. For example, most strongly-
typed languages involve checking that every access to an
array is within bounds. Such checks can be expensive. A
careful comparison between obfuscation and type systems
then helps understand the trade-offs between the two ap-
proaches.

To compare obfuscation with type systems, we ex-
plore obfuscation as a form ofprobabilistic type checking,
whereby type-incorrect operations cause the program to halt
with some probability� but with probability� 
 � a type-
incorrect operation is allowed to proceed. With a good ob-
fuscator, an attempt to overwrite a variable will, with high
probability, trigger an illegal operation and cause the pro-
gram to halt (because the attacker will not have known
enough about storage layout), which is exactly the behav-
ior expected from probabilistic type checking.

We start our comparison by discussing how the kind
of strong typing being advocated with programming lan-
guages, such as Java, compares to what can be achieved
with obfuscation. To be concrete, we show that strong typ-
ing for Toy-C does eliminate all vulnerabilities targeted by
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����� , but strong typing also signals type errors for programs
and inputs that are not considered resistable attacks relative
to ����� . This discrepancy prompts us to investigate how to
weaken strong typing to capture more accurately what� ����

accomplishes for Toy-C.
All of the type systems we study aredynamic type

systems—extra information is associated with values, and
this information is checked during execution. When the
check detects a type error, execution is halted. Admittedly,
this is a very general notion of type system. It encom-
passes all type systems in the literature, but also includes
approaches that are not typically viewed as type systems.

A type system, admittedly unusual, that signals a type
error for exactly those executions corresponding to inputs
that are resistable attacks relative to any� and some fixed
and finite set��� � � � ��� of keys is the trivial type sys-
tem,� 	�
�

���������
, instantiated by an implementation seman-

tics ��� ��	�
�����������

� ������ that repeatedly runs all morphs
in parallel, taking unanimous consensus before performing
an observable action:

Execute program� up to the next out-
put statement (including updates to observable
program variables), and also execute morphs
�������� � � � � ������� up to their next output
statement:

� If the same output is next about to be pro-
duced by all morphs, then the type system
allows� to produce its output, and repeats
the procedure;

� If not, then the type system signals a type
error and aborts execution.

Theorem 5.1. Let ��� � � � ��� be arbitrary keys for � .
For any program � and inputs ���� , ���� is a resistable
attack on � relative to � and ��� � � � ��� if and only if
� � ��� ��	�
�����������

� ������ signals a type error.

This theorem then establishes that type systems are in fact
equivalent to obfuscation under a fixed finite set of keys.
As we show below, this correspondence can be used to con-
struct a probabilistic type system.

5.1. Exact Type Systems for �����

As defined in�4.2, obfuscator����� admits infinitely
many keys. Although for many applications we care only
about a finite set of keys at any given time (e.g., when us-
ing morphs to implement server replicas, of which there
are only finitely many), the exact set of keys might not be
known in advance or may change during the lifetime of the
application. Therefore, it is sensible to try to identify inputs
that are resistable attacks relative to����� and any finite sub-
set of the possible keys, or equivalently, to recognize inputs

that are not resistable attacks relative to����� and every finite
subset of the possible keys.

If we are interested in a type system that signals a type
error for exactly executions corresponding to inputs that are
resistable attacks relative to����� and any finite set of keys,
then a type system such as� 	�
�

���������
is no longer feasible.

This is because there are infinitely many possible finite sets
of keys available for����� , and therefore, a type system like
�	�
�

���������
would need to execute infinitely many morphs.

�	�
�

���������
can be viewed as approximating a type sys-

tem that aborts exactly those executions corresponding to
inputs that are resistable attacks relative to����� and some
finite set of keys. Adding more keys—that is, consider-
ing type system� 	�
�

������������—improves the approxima-
tion because there are fewer programs and inputs for which
�	�
�

������������ will fail to signal a type error, even though the
inputs are resistable attacks. This is because every resistable
attack relative to����� and��� � � � ��� is a resistable attack
relative to����� and��� � � � �����

�, but not vice versa.
The approximation embodied by type system� 	�
�

���������

can become a probabilistic approximation of the type sys-
tem that aborts exactly those executions corresponding to
inputs that are resistable attacks relative to����� and some
finite set of keys. Consider a type system� ���� that works
as follows: before executing a program, keys��� � � � ���

are chosen at random, and then the type system acts as
�	�
�

���������
. For any fixed finite set��� � � � ��� of keys,

�	�
�

���������
will identify inputs that are resistable attacks rel-

ative to����� and��� � � � ���, but may miss inputs that are
resistable attacks relative to����� and some other finite set
of keys. By choosing the set of keys at random, type system
� ���� has some probability of identifying any input that is a
resistable attack relative to some finite set of keys.

As we now show, it is impossible to design a type sys-
tem that aborts executions for exactly those inputs for which
there exists a finite set��� � � � ��� of keys and the input is
a resistable attack relative to����� and��� � � � ���.

To simplify the exposition, we focus on type systems that
restrict��������� : if an execution of program� does not signal
a type error, then that execution can be viewed as an exe-
cution of ��� ������ . Assume a function�
� on the values of
implementation semantics��������� that extracts the integer be-
ing represented by the value, stripped of all typing informa-
tion. Given an execution� in an implementation semantics
������ , define the execution��� to be the execution obtained
by replacing every value
 in every state of� by �
� �	�. An
implementation semantics������ is arestriction of ��������� if for
every program� and input���� , whenever� � ��� �� � ������
does not signal a type error, then�� � ��� �� ���� ������ satisfies,
for all 	 � �:

(i) ����	��������� � ���	���������;

(ii) ����	�������� � ���	��������;
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Figure 2. Accessing memory outside a buffer

(iii) For every observable program variable�, ����	��� �
���	���.

Theorem 5.2. Let ������ be an implementation semantics for
Toy-C such that:

(i) For every � and ���� , ��� ��� ������ is computable;

(ii) ������ is a restriction of ��������� ;

(iii) � � ��� ��������� signals a type error whenever ���� is
a resistable attack relative to ����� and some finite set
of keys.

Then, there exists a program � and input ���� such that
� � ��� ��� ������ signals a type error, but for all finite sets
of keys ��� � � � ���, ���� is not a resistable attack relative
to ����� and ��� � � � ���.

This shows that it is impossible to devise a type system that
signals a type error exactly when an input is a resistable
attack relative to����� and an arbitrary finite set of keys. Any
type system must therefore approximate this.

The proof of this result relies on obfuscator� ���� ad-
mitting infinitely many keys. In reality, machines have a
bounded amount of memory, and memory locations can
only store a bounded number of bits, so program size is
bounded. Therefore, it is likely that only finitely many keys
are needed to describe all morphs that can be executed on a
given machine. This means that there is a possibility of de-
vising a type system that exactly corresponds to����� on a fi-
nite machine. One possibility might be� 	�
�

���������
, although

that type system requires a factor of� additional memory to
execute programs. We leave the question of devising such
exact type systems for finite machines open.

5.2. Strong Typing for Toy-C

Obfuscator����� is intended to defend against attacks that
involve accessing memory outside the extent of a buffer.

Thus, to eliminate the vulnerabilities targeted by� ���� , a
type system only has to check that a memory read7 or write
through a pointer into a buffer allocated to a variable does
not access memory outside that buffer.

In Toy-C, there are only two ways in which this memory
access can happen. First, the program can read a value using
a pointer that has been moved past the extent of a buffer, as
in Figure 2(a). Second, the program can write through a
pointer that has been moved past either end of a buffer, as
in Figure 2(b). Our type system must abort executions of
these programs.

To put strong typing into Toy-C, we associate informa-
tion with values manipulated by programs. More precisely,
values will be represented as pairs�	� ����—an integer
value 	—and�	�������
�� � 
����—apointer value 	 point-
ing to a buffer starting at address��
�� and ending at address

�� [12, 14]. Our type system8 � ���
 enforces the following
invariant: whenever a pointer value�	�������
�� � 
���� is
dereferenced, it must satisfy��
�� � 	 � 
�� . Informa-
tion associated with values is tracked and checked during
expression evaluation, as follows.

S1. The representation of a constant	 is �	� ����.

S2. Dereferencing an integer value results in a type er-
ror. The result of dereferencing a pointer value
�	�������
�� � 
���� returns the content of memory lo-
cation	; however, if	 is not in the range delimited by
��
�� and
�� , then a type error is signalled.

S3. Taking the address of an AD-expression�� denoting an
address	 returns a pointer value�	�������
�� � 
����,
where��
�� and
�� are the start and end of the buffer
in which address	 is located.

S4. An addition operation signals a type error if both sum-
mands are pointer values; if both summands are integer
values, the result is an integer value; if one of the sum-
mands is a pointer value�	�������
�� � 
���� and the
other an integer value�	�� ����, the operation returns
�	� 	��������
�� � 
����.

7While reading a value is not by itself generally considered an attack,
allowing an attacker to read an arbitrary memory location can be used to
mount attacks.

8An alternate form of strong typing is to enforce the following,
stronger, invariant: every pointer value������������� ��	�� satisfies
����� � � � ��	 . This alternate form has the advantage of being enforce-
able whenever a pointer value is constructed, rather than when a pointer
value is used. Compare the two programs in Figure 3. According to this
alternate form of strong typing, both programs signal a type error when
evaluating expression�� � ��: it evaluates to a pointer value outside
its allowed range (viz., extent of�). But although signalling a type er-
ror seems reasonable for program (a) in Figure 3, it seems inappropriate
with program (b) because this problematic pointer value is never actually
used. Note that morphs created by����� will not differ in behavior when
executing program (b).
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(b)

Figure 3. Signalling type errors at pointer
value construction versus use

S5. An equality test signals a type error if the operands are
not both integer values or both pointer values.

To formalize how Toy-C programs execute under type
system� ���
, we extend reference semantics��������� to track
the types of values. Details of the resulting implementa-
tion semantics��������
� appears in a companion technical re-
port [17, App. C.1]. One modification to����� ���� is that��������
�

uses values of the form�	� ��, where	 is an integer and� is
a type, as described above.

Attacks disrupted by obfuscator����� lead to type errors
in Toy-C equipped with� ���
. The following theorem makes
this precise.

Theorem 5.3. Let ��� � � � ��� be arbitrary keys for ����� .
For any program � and inputs ���� , if ���� is a resistable
attack on � relative to ����� and ��� � � � ���, then � �
��� �����
� ������ signals a type error. Equivalently, if � �
��� �����
� ������ does not signal a type error, then ���� is not
a resistable attack on � relative to ����� and ��� � � � ���.

Thus,� ���
 is a sound approximation of����� , in the sense
that it signals type errors for all inputs that are resistable at-
tacks relative to����� and a finite set of keys��� � � � ���.
This further supports our thesis that there is a connec-
tion between type systems and obfuscation. Moreover, any
type system that is more restrictive than� ���
 and therefore
causes more executions to signal a type error will also have
the property given in Theorem 5.3.

Notice that����� and� ���
 do not impose equivalent re-
strictions. Not every input for which� ���
 signals a type
error corresponds to a resistable attack. When executing
the program of Figure 4(c), for instance,� ���
 signals a type
error because�
��� yields a pointer that cannot be deref-
erenced. But there is no resistable attack relative to�����

because morphs created by����� do not differ in their be-
havior, since output statement�������� is always going to
be executed.
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Figure 4. Sample programs

Figure 4(c) is a program for which strong typing is
stronger than necessary—at least if one accepts our defini-
tion of a resistable attack as input that leads to differences in
observable behavior. So in the remainder of this section, we
examine weakenings of� ���
 with the intent of more tightly
characterizing the attacks����� targets.

5.3. A Tighter Type System for �����

One way to understand the difference between� ���� and
� ���
 is to think about integrity of values. Intuitively, if a
program accesses a memory location through a corrupted
pointer, then the value computed from that memory access
has low integrity. This is enforced with����� when differ-
ent morphs compute different values. We thus distinguish
between values havinglow integrity, which are obtained
by somehow abusing pointers, and values havinghigh in-
tegrity, which are not. This suggests equating integrity with
variability under����� ; a value has low integrity if and only
if it differs across morphs.

If we require that outputs cannot depend on values with
low integrity, then execution should be permitted to con-
tinue after reading a value with low integrity. This is the
key insight for a defense, and it will be exploited for the
type system in this section.

Tracking whether high-integrity values depend on low-
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integrity values can be accomplished using information flow
analyses, and type systems have been developed for this,
both statically [1] and dynamically [15].

We adapt� ���
 and design a new type system� ���� that
takes integrity into account. Roughly speaking, a new
type��� is associated with any value having low integrity.
Rather than signalling a type error when dereferencing a
pointer to a memory location that lies outside its range, the
type of the value extracted from the memory location is set
to ���. The resulting implementation semantics��� �� ����� ap-
pears in a companion technical report [17, App. C.2].

� ���� will signal a type error whenever an output state-
ment is attempted and that output statement depends on a
value with type���. In other words, if control reaches
an output statement due to a value with type���, then a
type error is signalled. So, for example, if a conditional
statement branches based on a guard that depends on values
with type���, and one of the branches produces an output,
then a type error is signalled. To implement� ����, we track
when control flow depends on values with type���. This is
achieved by associating a type not only with values stored
in program variables, but with the content of the program
counter itself, in such a way that the program counter has
type��� if and only if control flow somehow depended on
values with type���.

Consider Figure 4(c). When executing that program, ex-
pression�
 � �� evaluates to��� � ���������� �� � ���
(using a similar reasoning as for� ���
), and therefore, be-
cause location����� is outside its range,���
���� eval-
uates to�	� ���� for some integer	—the actual integer is
unimportant, since it having type��� will prevent the inte-
ger from having an observable effect. The value�	� ���� is
never used in the rest of the program, so execution proceeds
without signalling a type error (in contrast to� ���
, which
does signal a type error).

By way of contrast, consider Figure 4(b). When execut-
ing the�� statement in that program,���
 � ��� evaluates
to �	� ���� (for some integer	), and� evaluates to��� ����.
Comparing these two values yields a value with type���,
since one of the values in the guard had type���. (Com-
puting using a value of low integrity yields a result of low
integrity.) Because the guard’s value affects the control flow
of the program, the program counter receives type��� as
well. When execution reaches output statement��������, a
type error is signalled because the program counter has type
���.

Theorem 5.4. Let ��� � � � ��� be arbitrary keys for ����� .
For any program � and inputs ���� , if ���� is a resistable
attack on � relative to ����� and ��� � � � ���, then � �
��� ������� ������ signals a type error.

Thus, just like� ���
, � ���� is a sound approximation of����� .
As illustrated by the programs of Figure 4,� ���� corresponds

more closely to����� than does� ���
. Information flow there-
fore captures our definition of resistable attack relative to
����� more closely than strong typing. But, as we see below,
� ���� still aborts executions on inputs that are not resistable
attacks relative to����� , so� ���� is still stronger than����� .

Consider the program of Figure 4(a). Here, the value
read from location�
 � �� has type���, and it is being
used in a conditional test that can potentially select between
different output statements. However, because equality is
reflexive, the fact that we are comparing to a value with type
��� is completely irrelevant, as the guard always yields
true. We believe that it would be quite difficult to develop
a type system9 that can identify guards that are validities,
because doing so requires a way to decide when two ex-
pressions have the same value in all executions. Yet, if we
had a more precise way to establish the integrity of the pro-
gram counter (for instance, by being able to establish that
two expressions affecting control flow have the same value
in all executions), then we would have a type system that
more closely correspond to����� . The results of�5.1, how-
ever, indicate that this is impossible.

6. Concluding Remarks

This paper gives a reduction from defenses created by
mechanically-generated diversity to probabilistic dynamic
type checking. But we have ignored the probabilities. For
practical application, these probabilities actually do matter,
because if the dynamic type checking is performed with low
probability, then checks are frequently skipped and attacks
are likely to succeed. The probabilities, then, are the in-
teresting metric when trying to decide in practice whether
mechanically-generated diversity actually is useful. Unfor-
tunately, obtaining these probabilities appears to be a dif-
ficult problem. They depend on how much diversity is in-
troduced and how robust attacks are to the resulting diverse
semantics. Our framework is thus best seen as only a first
step in characterizing the effectiveness of program obfusca-
tion and other mechanically-introduced diversity.

A reduction from obfuscation to non-probabilistic type
checking—although clearly stronger than the results we
give—would not help in characterizing the effectiveness of
mechanically-generated diversity, either. This is because
there is (to our knowledge) no non-trivial and complete
characterization of the attacks that strong typing repels.
Simply enumerating which known attacks are blocked and
which are not does not give a satisfying basis for charac-
terizing a defense in a world where new attacks are con-
stantly being perpetrated. We should strive for characteri-
zations that are more abstract—a threat model based on the

9There are static analyses, such as constant propagation with condi-
tional branches [20], that achieve some, but not all, of what is needed.
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resources or information available to the attacker, for ex-
ample. In the absence of suitable abstract threat models,
reductions from one defense to another, like what is being
introduced in this paper, might well be the only way to get
insight into the relative powers of defenses. Moreover, such
reductions remain valuable even after suitable threat models
have been developed.

We focus in this paper on a specific language, a single
obfuscator, and a few simple type systems. Our primary
goal, however, was not to analyze these particular artifacts,
although the analysis does shed light on how the obfuscators
and type systems defend against attacks (and some of the re-
sults for these artifacts are surprising). Rather, our goal has
been to create a framework that allows such an analysis to
be performed for any language, obfuscator, or type system.
The hard part was finding a suitable, albeit unconventional,
definition of resistable attack and appreciating that proba-
bilistic variants of type systems constitute a useful vocab-
ulary for describing the power of mechanically-generated
diversity.
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