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ABSTRACT
Traditional data stream classification assumes that data is generated

from a single non-stationary process. On the contrary, multistream

classification problem involves two independent non-stationary

data generating processes. One of them is the source stream that

continuously generates labeled data. The other one is the target

stream that generates unlabeled test data from the same domain.

The distribution represented by the source stream data is biased

compared to that of the target stream. Moreover, these streams may

have asynchronous concept drifts between them. The multistream

classification problem is to predict the class labels of target stream

instances by utilizing labeled data from the source stream. This

kind of scenario is often observed in real-world applications due

to scarcity of labeled data. The only existing approach for multi-

stream classification uses separate drift detection on the streams

for addressing the asynchronous concept drift problem. If a concept

drift is detected in any of the streams, it uses an expensive batch

technique for data shift adaptation. These add significant execu-

tion overhead, and limit its usability. In this paper, we propose

an efficient solution for multistream classification by fusing drift

detection into online data shift adaptation. We study the theoretical

convergence rate and computational complexity of the proposed ap-

proach. Moreover, empirical results on benchmark data sets indicate

significantly improved performance over the baseline methods.

KEYWORDS
Multistream Classification; Data Shift adaptation; Direct Density

Ratio Estimation; Asynchronous Concept Drift

1 INTRODUCTION
Data stream mining has attracted researchers due to its importance

in today’s connected digital world. Streams of data are continuously

generated by a variety of sources - social networks, online busi-

nesses, military surveillance, to name a few. Efficient extraction of

knowledge from these streams may help in taking important deci-

sions in (near) real time, and unveil hidden opportunities. However,

data stream mining is a challenging task due to its properties, such
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as change of underlying class boundaries (also known as concept

drift), limited labeled data, delayed labeling, etc. [15].

Data stream mining researchers have so far focused on mining a

single stream of data. Even if data is received from more than one

stream simultaneously, all of them are assumed to be generated

from a non-stationary data generating process [3]. Any change in

the data generating process would affect data distributions in these

streams simultaneously. Therefore, all such streams can be com-

bined into a single stream, as individual streams represent the same

distribution. However, combining streams may not be effective

in particular scenarios, especially if individual streams represent

different distributions with asynchronous and independent con-

cept drifts among them. This type of scenarios may arise if data is

generated by two different, but related non-stationary processes.

For example, consider building a model for predicting sentiment

of tweets [13]. Typically, the sentiment is not provided as the ground

truth along with a tweet. So, in order to collect training data, a few

users may agree to provide tweets with sentiment label information.

On the contrary, tweets on which the model needs to analyze the

sentiment may come from any Twitter user. Users providing the

training data may represent only a small portion of the population.

Therefore, if we assume two streams of data, one from the Twitter

users providing labeled data, another from the whole population of

Twitter users, a sampling bias may exist between the distributions

represented by these streams of data. This type of data shift between

streams of data is typically caused due to limited supervision, or

lack of control over the data generating process [3].

A new problem setting calledMultistream Classification has been
introduced in [3] to address these scenarios. It involves two simulta-

neous streams of data. One of the streams, called the source stream,

provides only labeled training data. The other stream, called the

target stream, provides unlabeled test data. The classification task

is to use the labeled data from the source stream for classifying

unlabeled data from the target stream efficiently. As pointed out

before, combining the two streams may result in a different over-

all distribution that inhibits available data patterns when they are

considered individually. Moreover, independent and asynchronous

concept drifts may occur in either of the streams over time. There-

fore, traditional techniques for data stream mining may not be

effective if applied to the combined stream.

The main challenge of multistream classification is to address

data shift and independent asynchronous concept drifts between

the source and target streams. In this paper, we propose an efficient

approach for multistream classification. The approach uses two

sliding windows for storing recent instances from the source and

target streams. Data shift between the source and target stream is

https://doi.org/10.1145/3132847.3132886


addressed by weighing each source instance based on the density

ratio. Let PS (·) and PT (·) be the distributions represented by recent

source and target data instances respectively. The density ratio for

an instance x is defined by β(x) = PT (x)
PS (x) . A Gaussian kernel model

is used in the proposed approach for direct density ratio estimation.

The model is updated online with incoming instances. An ensemble

classifier is used for classification, where each model is trained on

weighted source stream instances.

The proposed approach has an inherent capability of addressing

asynchronous concept drifts in multistream classification. In addi-

tion to addressing data shifts, the proposed approach uses density

ratios estimated by the Gaussian kernel model for detecting any

change between distributions represented by weighted source and

target stream data. If a significant change is detected, the Gauss-

ian kernel model is updated. Subsequently, weights for the source

stream labeled data are re-evaluated using the updated kernel model,

and the ensemble classifier is updated. The efficiency of the pro-

posed approach stems from the fact that it uses the same kernel

model for addressing both data shift and asynchronous concept

drift in multistream classification. Empirical results on benchmark

data sets show that the proposed approach outperforms the existing

multistream classification method in terms of both accuracy and

execution time.

Themain contributions of our work are as follows. (1)We present

an efficient method for direct density ratio estimation in the multi-

stream setting. The model used in this method is updated online.

The density ratios are used for data shift adaptation between the

streams. We provide theoretical convergence rate for the proposed

method. (2) We present a technique for detecting asynchronous

concept drifts between source and target stream data using direct

density ratios. (3) We propose an efficient approach for multistream

classification by fusing asynchronous concept drift adaptation into

data shift adaptation. We derive the time and space complexity

of the proposed approach. (4) We use benchmark real-world and

synthetic data sets to evaluate our approach, and compare the per-

formance with the baseline methods. In addition to the only existing

method for multistream classification, we use some of the acclaimed

state-of-the-art data stream mining techniques as baseline methods.

The rest of the paper is organized as follows. We present a brief

background on multistream classification in Section 2. We present

the proposed approach in Section 3. In Section 4, we provide theo-

retical analysis on the approach, and present experiment results in

Section 5. Finally, we conclude our discussion in Section 6.

2 BACKGROUND
In this section, we present a brief discussion on covariate shift

adaptation and multistream classification. We also discuss some of

the related work in this area.

2.1 Data Shift Adaptation
A fundamental assumption in data mining, known as the “station-

ary distribution assumption”, is that both the training and test data

represent the same data distribution [21]. However, it may be vio-

lated in real-world applications due to limited supervision, or lack

of control over the data gathering process. Traditional techniques

based on this assumption greatly suffer in this scenario.

Addressing an arbitrary difference between training and test

distribution is a very difficult problem [9]. Hence, most approaches

addressing this challenging assume that the training and test data

distributions, denoted by Ptr (·) and Pte (·) respectively, are related
by a covariate shift assumption. More specifically, the relation-

ship between the training and test data distributions is such that

Ptr (y |x) = Pte (y |x) and Ptr (x) , Pte (x), where x and y denote the

set of covariate values and label of a data instance respectively.

In general, covariate shift between training and test data distri-

butions is accounted by computing an importance weight, β(x) =
Pte (x)
Ptr (x) , for each training instance x, and using them in the learning

process. KMM [9], KLIEP [19], and uLSIF [10] are among the tech-

niques that are available in the literature for handling covariate

shift. However, these approaches work only on fixed-size training

and test data. Although Kawahara and Sugiyama extended KLIEP

for direct online density ratio estimation and sequential change

point detection [11], it works on a single stream of data, where set

of training/reference and test data instances are determined by a

sliding window. In this paper, we consider multiple streams of data,

where new data instance may arrive arbitrarily at any stream.

2.2 Multistream Classification
The vast majority of existing data stream classification techniques

make two strong assumptions. First, true labels of data instances

along the stream become available soon after prediction, which are

then used for updating the existing classifier. In practice, labeled

data are scarce as obtaining true labels is costly [7]. Furthermore,

it is assumed that the training and the test data represent the same

distribution. As mentioned in Section 2.1, this assumption may

also be violated due to scarcity of labeled data. This may induce

a sampling bias between the training and test data distribution. A

new problem setting, called Multistream Classification, has been
introduced in [3], where two data streams over the same domain

are considered by relaxing the above assumptions.

2.2.1 Problem Statement. Let us consider that two different but

related processes generate data continuously from a domain D.

The first process operates in a supervised environment, i.e., all the

data instances that are generated from the first process are labeled.

On the contrary, the second process generates unlabeled data from

the same domain. The stream of data generated from the above

processes are called the source stream and the target stream, and

are denoted by S and T respectively. Each data instance is denoted

by (x,y), where x ∈ Dd
is the set of d covariates, and y is the true

label of the instance. As mentioned before, only x for each instance

is observed in T , where S also provides y in addition to x for each

instance. The Multistream Classification is defined as follows.

Definition 2.1. Let XS ∈ D be a set of d-dimensional vectors

of covariates and YS be the corresponding class labels observed

on a non-stationary stream S. Similarly, let XT ∈ D be a set of

d-dimensional vectors of covariates observed on another indepen-

dent non-stationary stream T . Let PS and PT denote covariate

distribution from S and T respectively. Data generated from S
and T are related by a covariate shift, i.e., PS (y |x) = PT (y |x) and
PS (x) , PT (x). Construct a classifierM that predicts class label of

x ∈ XT using XS , YS and XT .
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Figure 1: An example illustrating asynchronous data drifts

2.2.2 Challenges. As mentioned before, we assume that ini-

tially at time t , data distributions of S and T are related by a co-

variate shift, i.e., P
(t )
S (y | x) = P

(t )
T (y | x) and P

(t )
S (x) , P

(t )
T (x).

However, this assumption may not be true at time r > t due

to the non-stationary nature of data streams. The reason is that,

individually within each data stream, the conditional probabil-

ity distribution may change over time due to concept drift, i.e.

P (t )(y | x) , P (r )(y | x). Similarly, a covariate drift, i.e., a change in
the covariate distribution, may also occur with time in each stream.

With two independent non-stationary processes generating data

continuously from D, the effect of a drift may be observed at dif-

ferent times on these streams, referred to as asynchronous drift.
Figure 1 illustrates asynchronous data drifts between the source

and the target stream. In this illustration, four independent data

drifts occur at different times on S and T . The drifts Drift-11 and
Drift-21 are similar, and occur on the source and target stream

respectively but at a different times, which by definition is an asyn-

chronous drift. Similarly, Drift-12 and Drift-22 represent another
example of an asynchronous concept drift. This type of scenario

may occur in a real-world application when the factor causing

a drift affects the streams at different times. To summarize, the

main challenges in multistream classification are handling data

shift and asynchronous concept drift between the source and the

target stream simultaneously and efficiently.

2.2.3 Prior Work. MSC (MultiStream Classifier) [3] is a frame-

work that has recently been proposed for multistream classification.

MSC uses Kernel Mean Matching (KMM) for covariate shift adapta-

tion between the source and the target distributions by weighing

labeled source instances in the learning process. However, since

source or target stream may have asynchronous concept drifts,

weights of the training instances may become outdated if there is a

drift in any of these streams. To address this challenge, an ensem-

ble of classifiers is maintained. The ensemble contains classifiers

built on both source stream and target stream data. The ensemble

is updated by calculating new weights for recent instances from

the source data stream if a concept drift is detected in either of

these streams of data. Concept drift is detected by monitoring any

significant change in classifier feedback following similar approach

proposed in [8]. Since source stream generates all labeled data,

a concept drift in it is detected by tracking any major change in

classifier error rate. On the contrary, classifier confidences are mon-

itored to detect concept drifts in the target stream generating only

unlabeled data.

While being the first approach for addressing the challenges

of multistream classification, MSC suffers from a number of lim-

itations. First, it uses an ensemble classifier consisting of models

trained on both source and target data. Once there is a concept drift

in either stream, the ensemble is updated using a model trained on

data from the corresponding stream. As a result, the overall ensem-

ble management is complex in MSC. Second, it executes change

detection algorithm for detecting concept drift after receiving any

new data instance either in the source or target stream. The change

detection algorithm used in MSC has time complexity cubic in the

number of data instances in the current window, which makes MSC

extremely slow. Third, once a concept drift is detected in any of the

streams, MSC uses Kernel Mean Matching for covariate shift adap-

tation, which also has cubic time complexity. The above overheads

adversely affect the execution time of MSC.

3 THE PROPOSED APPROACH
In this paper, we propose a simple but efficient solution for multi-

stream classification by fusing drift detection into covariate shift

adaptation. We refer to this approach as FUSION (eFficient mUlti-

Stream classification using direct densIty ratio estimatiON).

Source Stream 
(Labeled)

Target Stream 
(Unlabeled)

Density Ratio 
Estimation 

Module (DRM)

Drift Detection 
Module (DDM)

Ensemble 
Classifier

Class 
Prediction

Train Model Drift?
Non-stationary 

Domain
Yes No

Update

Figure 2: Overview of FUSION

Figure 2 and Algorithm 1 illustrate the core components in FU-

SION. It has four main modules, i.e., Density Ratio Estimation (DRM),
Drift Detection (DDM), Classification, and Update. As mentioned in

the problem statement, both source and target streams are gener-

ated from the same non-stationary domain, having asynchronous

data drift between them. We use two fixed-size sliding windows to

store recent instances from S and T , referred to as the source and

the target sliding window, and denoted as WS and WT respec-

tively. The size of the sliding windows is denoted by Nm .

FUSION uses an ensemble classifier for classification. The first

model in the ensemble is trained on the initial instances from the

source sliding window. However, to correct possible covariate shift

between S and T , each instance from the sliding window is as-

sociated with an importance weight. FUSION uses density ratios

estimated from the Density Ratio Estimation Module (DRM) as

importance weights. Label for any new instance arriving in T is

predicted by taking the majority voting from the ensemble classifier.

DRM updates the model for density ratio estimation incrementally

with each incoming instance in either sliding windows.



Table 1: Frequently used symbols

D: Domain M: Ensemble Classifier

P: Set of non-stationary processes PS : Source stream probability distribution

S ∈ P: A labeled source stream PT : Target stream probability distribution

T ∈ P: An unlabeled target stream β(x): Importance weight for x
WS , WT : Source and Target Sliding window L: The maximum allowable ensemble size

x: d-dimensional features (or covariates) α : The set of parameters of the Gaussian kernel model

y ∈ Y: Class label of a data instance Nm : The size of WS andWT

Algorithm 1 FUSION: Multistream Classification

Input: Labeled source stream data S, The size of sliding windows

Nm .

Output: Labels predicted on T data.

1: Read first Nm instances from S and T into WS and WT
respectively.

2: Learn α = {αi }Nm
i=1

using LearnAlpha (Algorithm 2).

3: Estimate

{
β(W(i)

S )
}Nm

i=1

(Section 3.2).

4: InitializeM by learning a base model from WT , WS , and{
β(W(i)

S )
}Nm

i=1

.

5: repeat
6: Receive a new instance x.
7: if x ∈ T then
8: Predict label for x by taking the majority voting.

9: end if
10: Slide the corresponding window (WS orWT ) for including

the new instance.

11: Update α using UpdateAlpha (Algorithm 3).

12: Check for any drift in data using DetectDrift (Algorithm 4).

13: if DetectDrift returns True then
14: Recalculate α = {αi }Nm

i=1
using LearnAlpha

15: UpdateM using UpdateClassifier (Algorithm 5).

16: end if
17: until T exists

As the system keeps receiving new instances in S or T , the Drift
Detection Module (DDM) detects drift between the distributions

represented by data in the sliding windows using density ratios

estimated by DRM. If there is a drift, a new model is trained on

source sliding window instances along with their updated impor-

tance weights. Moreover, the ensemble classifier and the sliding

windows are updated.

Table 1 lists frequently used symbols in this paper. Throughout

the paper, typically a bold symbol or letter is used to denote a set

of elements, and a superscript is used to indicate the index of an

element in the set. A subscript is used to indicate the association of

an entity to a type. For example,W(i)
S denotes the ith data instance

in the source sliding window. We present a detailed discussion

about different modules of FUSION in rest of this section.

3.1 Density Ratio Estimation Module (DRM)
The Density Ratio Estimation module (DRM) of FUSION uses a

Gaussian kernel model for direct density estimation. The model is

updated incrementally as new instances appear in S or T . In this

section, we describe the DRM, and its online update procedure.

3.1.1 Gaussian Kernel Model. At a particular time, we define

the source distribution PS , and the target distribution PT by the

distributions represented by data instances inWS andWT respec-

tively at that moment. Density ratio for an instance x is defined

by β(x) = PT (x)
PS (x) . If x is an instance from S, β(x) is used as its im-

portance weight in the learning process. We will discuss more on

training later in this section.

Using Gaussian kernel model, β(x) is modeled as follows:

ˆβ(x) =
Nm∑
i=1

αiKσ
(
x,W(i)

T

)
(1)

where α = {αi }Nm
i=1

are parameters to be learned from data sam-

ples, and Kσ (·, ·) is a Gaussian kernel with kernel width σ , i.e.,

Kσ (x, x′) = exp

{
− ∥x−x

′ ∥2
2σ 2

}
. The target sliding window instances,

WT , works as the Gaussian centers. Each parameter αi is associ-

ated to the ith Gaussian kernel, i.e., ith instance inWT . We choose

kernel width σ by likelihood cross validation following [19]. Any

other basis functions can also be used in place of Gaussian kernels

in Eq. (1).

3.1.2 Learning Parameters. The target distribution is estimated

by the weighted training distribution, P̂T (x) = ˆβ(x)PS (x). The pa-
rameters α = {αi }Nm

i=1
in model (1) are learned so that the Kullback-

Liebler divergence from PT (x) to P̂T (x) would be minimized. This

leads to the following convex optimization problem-

maximize

{αi }Nmi=1


Nm∑
j=1

log

(Nm∑
i=1

αiKσ
(
W(j)

T ,W
(i)
T

))
subject to

1

Nm

Nm∑
j=1

Nm∑
i=1

αiKσ
(
W(j)

S ,W
(i)
T

)
= 1,

and α1,α2, . . . ,αNm ≥ 0. (2)

Algorithm (2) outlines the steps for learning the parameters α
for the model in Eq. (1). First, Gaussian kernels are calculated for all

WT instances at Line 1. Next, gradient ascent is performed until

convergence while satisfying the constraints at Lines 5-6. Once the

set of parameters α is learned from data, importance weight for

any instance x is calculated using Eq. (1).

3.1.3 Updating Parameters Online. Since data continuously ar-

rives in source and target streams, the model in Eq. (1) needs to

be updated also by updating α . Kawahara and Sugiyama have



Algorithm 2 LearnAlpha: Learn DRM Parameters

Input: Source instances WS =
{
W(i)

S

}Nm

i=1

, target instances

WT =
{
W(i)

T

}Nm

i=1

, the learning rate ϵ , and the kernel width

σ .
Output: DRM parameters α = {α }Nm

i=1
.

1: K(i, j) = Kσ (W(i)
T ,W

(j)
T ); i, j = 1, . . . ,Nm .

2: p(j) = 1

Nm

∑Nm
i=1

Kσ (W(i)
S ,W

(j)
T ); j = 1, . . . ,Nm .

3: Initialize α .

4: repeat
5: Gradient ascent step:

α ← α + ϵK(1./K).
6: Satisfy constraints:

α ← α + (1 − pTα )p/(pT p),
α ←max(0,α ),
α ← α/(pTα ).

7: until convergence
8: Return α = {α }Nm

i=1
.

proposed an online update method of α in [11]. However, unlike

multistream classification scenario, this method assumes only one

stream of data with a sliding window to define the set of reference

and test data instances. In this paper, we adapt this method for

multistream classification scenario.

As mentioned before, WT instances act as the Gaussian kernel

centers. For eachKσ (·,W(i)
T ), there is a corresponding parameterαi

in the set α , which works as the weight for that Gaussian function.

Therefore, if there is a new instance in the target stream, it affects

the optimization problem in Eq. (2). So α needs to be updated while

satisfying constraints.

The online update method is based on the online learning tech-

nique for kernel methods proposed in [12]. Assuming that β is

searched within a reproducing kernel Hilbert spaceH , the follow-

ing reproducing property holds-〈
β(·),K(·, x′)

〉
= β(x′) (3)

Let Ei (β) be the empirical error forW(i)
T , Ei (β) = − log β(W(i)

T ).
It can be observed from Eq. (2) that estimated density ratio

ˆβ is

calculated by minimizing

∑Nm
i=1

Ei (β) under the constraints. Let

Ẽi (β) be the regularized empirical error, that is-

Ẽi (β) = − log β(W(i)
T ) +

λ

2

∥β ∥2H (4)

where λ(> 0) is the regularization parameter, and ∥β ∥H denotes

the norm inH space.

Considering the reproducing property in Eq. (3), and the regular-

ized empirical error shown in Eq. (4), the estimated density ratio (
ˆβ)

can be updated using a new instance in the target stream, denoted

by (W(Nm+1)
T ) as follows-

ˆβ ′ = ˆβ − η∂β ẼNm+1( ˆβ) (5)

where η is the learning rate, and ∂β denotes partial derivative with

respect to β . Since we consider Gaussian kernel model (Eq. (1)),

replacing the partial derivative in Eq. (5), we get-

ˆβ ′ = ˆβ − η
©­­«−

Kσ
(
·,W(Nm+1)

T

)
ˆβ
(
W(Nm+1)

T

) + λ ˆβ
ª®®¬ (6)

Using the Eq. (1), values inα should therefore be updated as follows-
α̂ ′i ← (1 − ηλ)α̂i+1 i = 1, . . . ,Nm − 1

α̂ ′i ←
η

ˆβ
(
W(Nm+1)

T

) i = Nm (7)

Algorithm 3 UpdateAlpha: Update DRM Parameters

Input: Source instances WS =
{
W(i)

S

}Nm

i=1

, target instances

WT =
{
W(i)

T

}Nm

i=1

, new instance x, the kernel width σ , the

regularization parameter λ, and the learning rate η.

Output: Updated DRM parameters, α = {α }Nm
i=1

.

1: if x ∈ S then
2: W(Nm+1)

S ← x.

3: p(j) = 1

Nm

∑Nm
i=1

Kσ (W(i+1)
S ,W(j)

T ), j = 1, . . . ,Nm .

4: Go to Line 10.

5: end if
6: W(Nm+1)

T ← x.

7: p(j) = 1

Nm

∑Nm
i=1

Kσ (W(i)
S ,W

(j+1)
T ), j = 1, . . . ,Nm .

8:
ˆβ(W(Nm+1)

T ) = ∑Nm
i=1

αiKσ (W(Nm+1)
T ,W(i)

T ).
9: Update α using Eq. (7).

10: Satisfy constraints:

α ← α + (1 − pTα )p/(pT p),
α ←max(0,α ),
α ← α/(pTα ).

11: if x ∈ S then
12: W(i)

S ←W(i+1)
S , i = 1, . . . ,Nm .

13: else
14: W(i)

T ←W(i+1)
T , i = 1, . . . ,Nm .

15: end if
16: Return α = {α }Nm

i=1
.

Algorithm 3 outlines the online updating of α . As discussed be-

fore, a new instance in the target stream changes the optimization

problem in Eq. (2). Therefore, α needs to be updated along with

constraint satisfaction. On the contrary, if the new instance arrives

in the source stream, it does not affect the optimization problem

directly. However, the constraints may be violated due to the new

instance. Therefore, the constraints need to be satisfied again. Sub-

sequently, the corresponding sliding window is updated with the

new instance.

3.2 Training and Classification
FUSION uses an ensemble classifier, denoted asM. We start by

loading the first Nm instances from S and T into WS and WT
respectively, which are referred to as the warm-up period data.

FUSION trains the first model in the ensemble using the warm-up

period data. However, due to covariate shift between the source



stream (S) and the target stream (T ), importance weights for la-

beled source data should be considered in the learning process.

These importance weights are estimated by the Density Ratio Esti-

mation (DRM) module using warm-up period data from WS and

WT as follows-

ˆβ
(
W(i)

S

)
=

Nm∑
j=1

α jKσ
(
W(i)

S ,W
(j)
T

)
, i = 1, . . . ,Nm (8)

Any learning algorithm that incorporates importance weight of

training instances can be used in FUSION. As new instances arrive

in S or T , the ensemble classifierM is updated if there is a drift to

ensure that it represents the current concepts. A new base model is

trained using data inWS andWT at that time. Drift detection and

updating method used by FUSION will be discussed later in this

section. FUSION predicts the majority voted class in the ensemble

as the class of an incoming test instance from the target stream.

3.3 Drift Detection Module (DDM)
As mentioned before, PT (x) is estimated by P̂T (x) = ˆβ(x)PS (x). The
classifier is updated following a drift, i.e., a significant difference

between PT (x) and ˆβ(x)PS (x). Letα 0
be the set of initial parameters.

These parameters are updated online as new instances arrive in S
or T . Let α t

be the set of parameters at time t . Let ˆβ0 and
ˆβt are

density ratios defined by α 0
and α t

respectively. The following

likelihood ratio measures the deviation of the weighted training

distribution from the test distribution at time t .

S =

Nm∑
i=1

ln

PT

(
W(i)

T

)
ˆβ0PS

(
W(i)

T

) = Nm∑
i=1

ln

ˆβt
(
W(i)

T

)
ˆβ0

(
W(i)

T

)
A drift is detected if S > − ln(τ ), where τ is a user defined param-

eter. It can be proved that the false alarm rate of the drift detection

algorithm is bounded by τ . The efficiency of FUSION stems from the

fact that in addition to estimating importance weights, it uses the

same Gaussian kernel model for drift detection. Therefore, FUSION

detects drift without adding any extra overhead.

Algorithm 4 DetectDrift: Drift Detection

Input: Target instances WT =
{
W(i)

T

}Nm

i=1

, Set of initial param-

eters

{
α0

i
}Nm
i=1

, Set of current parameter

{
α ti

}Nm
i=1

, The kernel

width σ , and The parameter τ .
Output: True if drift is detected, else False .
1:

ˆβ0(W(i)
T ) =

∑Nm
j=1

α0

j Kσ (W
(i)
T ,W

(j)
T ) for i = 1, . . . ,Nm .

2:
ˆβt (W(i)

T ) =
∑Nm
j=1

α tj Kσ (W
(i)
T ,W

(j)
T ) for i = 1, . . . ,Nm .

3: S =
∑Nm
i=1

ln

ˆβt (W(i )
T )

ˆβ0(W(i )
T )

.

4: Return S > − ln(τ ).

Algorithm 4 sketches drift detection of FUSION. A drift is de-

tected if the drift score S , i.e., the sum of log-likelihood ratios is

greater than a pre-fixed threshold. As α is updated online with any

new instance in S or T , both importance weight estimation and

drift detection of FUSION are efficient.

3.4 Classifier Update

Algorithm 5 UpdateClassifier: Update the Classifier

Input: Target instances WT =
{
W(i)

T

}Nm

i=1

, DRM parameters

{αi }Nm
i=1

, the kernel width σ , and threshold τ .
Output: The updated ensemble.

1: Get α fromWS andWT using Algorithm 2 and 3.

2: Calculate

{
ˆβ(W(i)

S )
}Nm

i=1

using Eq. (8).

3: Train a new classifierMn using weightedWS .

4: Find the least desired model,M ′, in the current ensemble.

5: Update the ensemble by replacingM ′ withMn .

6: Return the updated ensemble classifier.

If a significant difference, i.e., a drift between the distributions

represented by weighted source and target data is detected, the

Gaussian kernel model in (1) needs to be updated by re-evaluating

α . Therefore, if a drift is detected, α is recalculated from WS and

WT using Algorithm 2. Then, importance weight of each instance

inWS is evaluated following Eq. (8) using the re-evaluatedα . Next,

a new model is trained based on instances from WS along with

importance weights. Finally, the ensemble classifierM is updated

using the newly trained model along with re-initializing WS , and

WT . The maximum number of modelsM can contain is L. IfM
contains less than L models currently, the new model is simply

added toM. Otherwise, the least desired model in the ensemble is

replaced by the new model.

As instances in T are unlabeled, it is not practical to find the

least desired model by calculating accuracy. Rather, we calculate

the confidence of a classifier on each instance in WT , and replace

the model having the least average confidence. We use SVM as the

base model in our experiments. A method to produce probabilistic

output from an SVM model has been proposed in [17]. We use the

probability associated with each predicted class as its confidence in

classification. Confidence for most classifiers can be calculated from

classification metadata. For examples, the confidence of Bayesian

classifier and clustering based classifiers can be estimated using as-

sociated probabilities and techniques proposed in [8] respectively.

4 THEORETICAL ANALYSIS
In this section, first we analyze the convergence rate of density

ratio generated by the Density Ratio Estimation (DRM) module.

Then, we derive the time and space complexity of FUSION.

4.1 Convergence Rate
In order to get the convergence rate, we first prove that the error

function Ẽi ( ˆβ) is a strictly convex function, and gradient of Ẽi ( ˆβ)
is Lipschitz continuous and bounded. Next, we find the conver-

gence rate of UpdateAlpha (Algorithm 3). Finally, we determine the

convergence rate of the Density Ratio Estimation(DRM) module.

Lemma 4.1. Ẽi ( ˆβ) is a strictly convex function, i.e., Ẽi (t ˆβ ′ + (1 −
t) ˆβ) < tẼi ( ˆβ ′) + (1 − t)Ẽi ( ˆβ).

Proof. From the definition, Ẽi ( ˆβ) = − log
ˆβ(W(i)

T ) +
λ
2




 ˆβ



2

H
.



Since logarithm is a concave function, we have-

log(t ˆβ ′ + (1 − t) ˆβ) > t log
ˆβ ′ + (1 − t) log

ˆβ (9)

λ

2

∥t ˆβ ′ + (1 − t) ˆβ ∥2 < λt

2

∥ ˆβ ′∥2 + λ(1 − t)
2

∥ ˆβ ∥2 (10)

Then from Eq. (9) and Eq. (10), we get

Ẽi (t ˆβ ′ + (1 − t) ˆβ) < tẼi ( ˆβ ′) + (1 − t)Ẽi ( ˆβ) (11)

Here, we assume that
ˆβ ′ is not equal to ˆβ . □

Lemma 4.2. Gradient of Ẽi ( ˆβ) is Lipschitz continuous and bounded,
i.e.,




∇Ẽi ( ˆβ ′) − ∇Ẽi ( ˆβ)



 ≤ L




 ˆβ ′ − ˆβ



, where L > 0.

Proof. The gradient of Ẽi , ∇Ẽi ( ˆβ) = −
Kτ (·,W(i )

T )
ˆβ

+ λ ˆβ

Therefore-


∇Ẽi ( ˆβ ′) − ∇Ẽi ( ˆβ)



 = 





−Kτ (·,W

(i)
T )

ˆβ ′
+ λ ˆβ ′ +

Kτ (·,W(i)
T )

ˆβ
− λ ˆβ








≤ |λ |




 ˆβ ′ − ˆβ



 + ������Kτ (·,W

(i)
T )

ˆβ ˆβ ′

������ 


 ˆβ ′ − ˆβ





≤ L



 ˆβ ′ − ˆβ





Here, |λ | +

����Kτ (·,W(i )
T )

ˆβ ˆβ ′

���� ≤ L, assuming that
ˆβ , ˆβ ′ , 0. □

Theorem 4.3. Assume there are positive numbersM , D, such that


Ẽi ( ˆβ ′)



 ≤ M and




 ˆβ ′ − ˆβ



2

≤ D. Then, for step size η = 1

γ N ,

E[Ẽi ( ˆβ ′) − Ẽi ( ˆβ)] ≤ LQ
2N , where Q =max{ η

2M2

2ηc−1
,



 ˆβ ′ − ˆβ




2

}.

Proof. From Lemma 4.2, for anyW(i)
T , we know that


∇Ẽi ( ˆβ ′) − ∇Ẽi ( ˆβ)




 ≤ L



 ˆβ ′ − ˆβ





Therefore, we have-

Ẽi ( ˆβ ′) ≤ Ẽi ( ˆβ) +
1

2

L



 ˆβ ′ − ˆβ




 (12)

E[Ẽi ( ˆβ ′) − Ẽi ( ˆβ)] ≤
1

2

L ∗ E
[


 ˆβ ′ − ˆβ




2

]
(13)

Then from Eq. (12) and Eq. (13), we can get

E[Ẽi ( ˆβ ′) − Ẽi ( ˆβ)] ≤
LQ

2N
(14)

□

Therefore, the convergence rate for UpdateAlpha (Algorithm 3)

is O
(

1

N

)
, where N is the sample size.

The convergence rate of LearnAlpha (Algorithm 2) is O
(
n
− 1

2+γ
)

for arbitrary small γ > 0, where n is the number of instances [19].

Assuming that the parameters of the DRMmodule are estimated ini-

tially by LearnAlpha algorithm using N1 number of instances, and

thereafter updated online by UpdateAlpha algorithm using N2 in-

stances (N2 >> N1), the convergence rate of DRM is O ©­« 1+N
1+γ
2+γ

1

N1+N2

ª®¬.

4.2 Time and Space Complexity
FUSION has four modules, i.e., Density Ratio Estimation (DRM),
Drift Detection (DDM), Classification, and Update. DRM has two

operations, one is to learn α (Algorithm 2), and the other one

is to update α online (Algorithm 3). Time complexity to learn

α is O(N 2

m ), where Nm is the size of the sliding windows. Time

complexity to updateα isO(Nm ). As DRM learnsα only once at the

beginning, and updates it onward, the amortized time complexity of

DRM is less than O(N 2

m ). Time complexity of DDM is O(Nm ). Time

complexity of classification and update depends on the learning

algorithm used as the base model. Therefore, FUSION has total time

complexity of O(N 2

m )+ f (Nm ), where f (Nm ) is the time complexity

for training a new model. However, amortized time complexity of

FUSION is much less asα is learned from data occasionally only if a

data drift is detected at Line 15, or initially at Line 2 of Algorithm 1.

Space complexity of DRM is O(N 2

m ), which dominates space

complexities of other modules. Moreover, most learning algorithms

have space complexity less than that. Therefore, overall space com-

plexity of FUSION is O(N 2

m ). Both time and space complexity of

FUSION are functions of Nm . In real world applications, Nm can

be tuned to execute FUSION within available resource.

5 EVALUATION
In this section, we describe the experiment setup, and evaluate the

proposed approach using synthetic and benchmark real-world data

sets. We compare performance of the proposed approach with a

number of baseline methods.

Table 2: Characteristics of data sets

Dataset # features # classes # instances
ForestCover 54 7 150,000

KDD 42 23 200,000

PAMAP 53 19 150,000

Electricity 8 2 45,311

SynRBF@002-1 50 5 100,000

SynRBF@002-2 70 7 100,000

SynRBF@003 70 7 100,000

5.1 Data sets
Table 2 lists the data sets used in the experiments. The first four

data sets are from real-world, all of them are publicly available.

The ForestCover data set is obtained from the UCI repository as

explained in [15]. It contains geospatial descriptions of different

types of forests. The labeling task is to find the actual forest cover

type for a given observation from US Forest Service (USFS) Region-

2 Resource Information System (RIS) data. The KDD [14] data set

contains TCP connection records extracted from LAN network

traffic over a period of two weeks. Each record refers either to a

normal connection or an attack. In Physical Activity Monitoring
(PAMAP) [18] data set, nine individuals were equipped with sensors

that gathered a total of 53 streaming features whilst they performed

activities. Nineteen total activities were identified as class labels

- including one category for miscellaneous or transient activities.

The last real-world data set used in this paper is Electricity [16],

which contains data collected from the Australian New SouthWales



Table 3: Comparison of performance

Data Set

FUSION MSC AHT SVM

Accuracy Time (Seconds) Accuracy Time (Seconds) Accuracy Time (Seconds) Accuracy Time (Seconds)

ForestCover 85.10 469.89 84.4 270.57 61.52 0.05 69.29 8.78

KDD 97.30 417.85 96.80 451.54 97.2 0.05 96.29 10.0

PAMAP 99.80 471.99 97.40 564.56 94.95 0.08 88.04 7.54

Electricity 76.50 238.33 74.60 601.08 75.02 0.02 73.37 0.09

SynRBF@002-1 98.10 415.22 93.60 533.33 85.58 0.07 86.29 8.51

SynRBF@002-2 96.20 561.86 69.80 232.34 83 0.13 44.13 7.72

SynRBF@003 93.10 591.18 58.30 194.49 80.11 0.12 41.28 8.75

Electricity Market. In this market, the price is affected by demand

and supply. The class label identifies the change of the price relative

to a moving average of the last 24 hours.

SynRBF@X are synthetic data sets generated using RandomRBF-
GeneratorDrift of MOA [2] framework, where X is the Speed of

change of centroids in the model. We generate two such data sets us-

ing X = {0.002, 0.003} to evaluate the approaches on concept drifts

having various intensities and frequencies. We generate two ver-

sions of SynRBF@002, using a different number of cluster centroids

and classes. We normalize all the data sets used, and reshuffle the

instances from different classes randomly to remove novel classes

from them.

We generate a biased source stream from each data set mentioned

above using a method similar to previous studies [3, 9] as follows.

First, we detect concept drifts in the data set by employing a Naïve

Bayes classifier to predict class labels, and monitoring its perfor-

mance using ADWIN, similar to [1]. A minibatch is constructed

from data instances between the points at which ADWIN detects a

significant change in the performance, i.e., a concept drift. Follow-

ing [9], we first compute the sample mean x̄ of a minibatch. Next,

we divide the minibatch to form the source and target minibatches.

Each instance x is selected to be included in the biased source mini-

batch according to the probability P (ξ = 1|x) = exp

(
− ∥x−x̄∥

2

2σ 2

)
,

where σ is the standard deviation of ∥x − x̄∥, for all x in the mini-

batch. Finally, we select n% of the instances in the minibatch to be

included in the source minibatch, and the rest of the instances are

included in the target minibatch. The source and target minibatches

are concatenated together to form the source and the target stream

respectively. We vary n in our experiments to introduce different

level of sampling bias between the source and target streams.

5.2 Baseline Methods
The first baseline method we use in this paper is Multistream Clas-
sifier (MSC) [3], which is the only available method in the literature

for multistream classification. MSC uses Support Vector Machine
(SVM) as the base classifier. To implement the base classifier, we

use weighted LibSVM library [4] with RBF kernel. Moreover in

MSC, Kernel Mean Matching (KMM) [9] has been used for data

shift adaptation. We evaluate the quadratic program in KMM using

the CVXOPT python library [5]. To select the parameters of KMM,

we use Bkmm = 1000, ϵkmm =
√
NS−1√
NS

, and γkmm as the median of

pairwise distances in the training set, as suggested in [3].

Although MSC is the only available method for multistream clas-

sification, there are a number of methods available for traditional

data stream classification. We use SVM and Adaptive Hoeffding

Tree (AHT) [2] on a single stream formed by combining the source

and the target stream to examine if these approaches really suffer

in presence of covariate shift and asynchronous drift in streaming

data.

5.3 Setup
We implemented the proposed approach FUSION and one of the

baseline methods MSC using Python version 2.7.6. To implement

SVM and AHT, we used Weka [6] and MOA [2] respectively. All

the methods have been evaluated using a Linux machine with

2.40 GHz core and 16 GB of main memory. For a fair comparison,

we have used SVM with the RBF kernel as the base classifier in

the proposed approach (FUSION). As mentioned in Section 3.1,

the kernel width (σ ) for the Gaussian kernel model in FUSION

is selected by likelihood cross-validation. In the experiments, we

have used Nm = 500, and L = 2, and τ = 0.0001. Moreover, we

used regularization parameter λ = 0.01 and learning rate η = 1

following [11].

5.4 Classification Performance
The first set of experiments are designed for comparing classifica-

tion accuracy and execution time of the approaches considered in

this paper on all the data sets mentioned in Table 2.

5.4.1 Classification Accuracy. Classification accuracy on differ-

ent data sets have been shown in Table 3. The proposed approach

(FUSION) clearly outperforms all the other baseline approaches

considered in this paper. As stated before, we apply SVM and AHT

on the combined stream for examining if simply combining the

source and the target streams is useful. For a fair comparison, we

consider that true labels of only the source stream instances are

available. Since both SVM and AHT are fully supervised models,

we update the model on labeled source stream data instances once a

concept drift is detected. We use ADWIN [1] for detecting concept

drifts. Performance of these baseline methods are evaluated on un-

labeled target stream data. We observe that SVM and AHT perform

poorly compared to the proposed approach on both real-world and

synthetic data sets. It indicates that SVM and AHT suffer on the

combined stream due to not handling data shift and asynchronous

data drifts as stated in Section 2.2.2. The proposed approach also

outperforms MSC by a big margin especially on synthetic data sets,
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Figure 3: Parameter sensitivity of FUSION on ForestCover data set

where we introduce frequent concept drifts. This indicates that

FUSION adapts to data shift and data drifts more efficiently than

MSC.

5.4.2 Execution Time. As discussed in Section 4.2, amortized

time complexity of FUSION is less than O(N 2

m )+ f (Nm ), where Nm
is the size of the sliding windows, and f (Nm ) is the time complexity

for learning a new model. On the contrary, time complexity of MSC

is O(N 3

m ), where Nm is the maximum size of the sliding windows.

Therefore, worst case time complexity of FUSION is better than

MSC. Table 3 shows average time to process 1000 instances (in

seconds) by the approaches on different data sets. We observe that

FUSION achieves competitive execution time compared to MSC

if not better. Online density ratio estimation, and inherent drift

detection contribute to the improved performance of FUSION in

terms of execution time. The other two baselines SVM and AHT

shows better execution time understandably as they do not counter

for data shift and asynchronous data drift adaptation.

5.5 Parameter Sensitivity
The next set of experiments are designed to examine parameter

sensitivity of FUSION. In these experiments, we have used Nm =
800, L = 1, and τ = 0.0001 as the default setting if not mentioned

otherwise.

5.5.1 Ensemble Size. First, we vary the ensemble size (L), and
observe how it affects FUSION on the ForestCover data set from

Figure 3a. We observe that initially with increasing ensemble size,



accuracy also increases. However, further increasing the ensemble

size decreases the accuracy slightly, possibly due to a correlation

among individual model errors [20]. The execution time of FUSION

increases slightly with increasing ensemble size. As mentioned be-

fore, unlike MSC, FUSION uses an ensemble classifier containing

only models trained for predicting target stream data. As a con-

sequence, ensemble management is much lightweight in FUSION

compared to MSC. Therefore, changing ensemble size does not

affect the execution time of FUSION significantly.

5.5.2 Maximum Window Size. Next, we examine affect of win-

dow size on FUSON using the ForestCover data set in Figure 3b.

We observe that the accuracy remains similar with little fluctua-

tions as the size of the sliding window (Nm ) increases. However,

the execution time increases with the size of the sliding window.

The time complexity of FUSION is quadratic with respect to Nm as

analyzed in Section 4.2, which is reflected in the experiment result.

In real-world applications, Nm can be tuned to execute FUSION

within the resource limit.

5.5.3 Drift Detection Parameter. Figure 3c shows affect of the
drift detection parameter (τ ) on FUSION. We mentioned in Sec-

tion 3.3 that the false alarm rate of the drift detection algorithm is

bounded by τ . We observe from the figure that as τ increases, the

number of false alarms produced by the drift detection increases,

and the classifier is updated using wrong data instances. There-

fore, the accuracy decreases and the execution time increases with

increasing τ as expected.

5.5.4 Sampling Bias. Finally, we observe performance of FU-

SION with different sampling bias introduced in ForestCover data

set from Figure 3d. As discussed in Section 5.1, we vary sampling

bias in the data set by varying sampling ratio between the source

and the target stream. As an example, sampling ratio 0.1 means

that we sample only 10% data to be labeled, i.e., included in the

source stream data. The rest 90% data are considered unlabeled

and included in the target stream data. Therefore, increasing sam-

pling ratio results into decreasing sampling bias and vice versa. We

observe that all the methods considered in this paper have better

accuracy as the sampling ratio increases. However, the proposed

approach FUSION exhibits the best performance. We also observe

that performance of AHT and SVM improve rapidly with increas-

ing sampling ratio, as the penalty for not handling sampling bias

reduces.

To summarize, the experiments indicate that FUSION is notmuch

sensitive to its parameters. However, it seems that choosing good

values for L and Nm is vital for getting better performance. These

parameters can be set by doing cross-validation on initial warm-

up period data. Furthermore, as the time and space complexity of

FUSION depends on Nm , it can be tuned for executing FUSION

within the resource limit.

6 CONCLUSION
We have proposed a framework called FUSION in this paper for ef-

ficient multistream classification, where unlabeled test data from a

target stream needs to be classified using labeled training data from

a source stream. The main challenges of multistream classification

are data shift, and asynchronous concept drifts between source and

target stream data. To address these challenges, FUSION uses an

ensemble classifier, where each model is trained using weighted

instances from the source stream. The weights are estimated using

a Gaussian kernel model by estimating density ratios. The same

model is also used for addressing asynchronous concept drifts. Ex-

periment results show the effectiveness of the proposed approach.
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