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Abstract
Recently, network traffic analysis has been increasingly used in various
applications including security, targeted advertisements, and network
management. However, data encryption performed on network traffic
poses a challenge to these analysis techniques. In this paper, we present
a novel method to extract characteristics from encrypted traffic by
utilizing data dependencies that occur over sequential transmissions of
network packets. Furthermore, we explore the temporal nature of
encrypted traffic and introduce an adaptive model that considers changes
in data content over time. We evaluate our analysis on two packet
encrypted applications: website fingerprinting and mobile application
(app) fingerprinting. Our evaluation shows how the proposed approach
outperforms previous works especially in the open-world scenario and
when defense mechanisms are considered.

1. INTRODUCTION
With a tremendous growth in the number of Internet users over the

past decade, network traffic analysis has gained significant interest
in both academia and industry. Applications such as personalized
marketing [22] and traffic engineering [30,31] have spurred the demand
for tracking online activities of users [24]. For example, by tracking
the websites accessed by a particular user, related products may be
advertised. Unfortunately, online users have fallen victim to adversaries
who use such tracking mechanisms for malicious activities by passively
monitoring network traffic. As a result, encryption technologies
such as SSL/TLS are used extensively to hide data in network traffic
from unauthorized access. In addition to data encryption, end-node
network identifiers (e.g. IP addresses) may also be hidden from external
adversaries using technologies such as Tor [14], to anonymize the user.

Recent studies [7,36] on traffic analysis have focused on identifying
characteristic patterns in network traffic that reveal the behavior of an
end-node, thereby de-anonymizing the network. Essentially, pattern
recognition techniques are employed over features extracted from
encrypted network traffic passively captured at the user’s end. This
behavior identification process of an end-node (i.e. either a service
accessed by the user, or an application at the user’s end involved in the
network traffic) is called Traffic Fingerprinting.
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Figure 1: Illustration of website and app fingerprinting

In this paper, we focus on the following two applications (illustrated
in Figure 1) whose primary goal is to perform traffic fingerprinting to
identify an end-node generating encrypted traffic. Here, a man-in-
the-middle (i.e., network administrator, ISP, government agency, etc)
captures encrypted network traffic passively at the user’s end.

Website Fingerprinting. This application involves identifying the
webpage (end-node) accessed by a user who actively hides online
activities using an anonymity network such as Tor. Knowledge of
the user’s online activities may be useful in applications such as
targeted advertisements, tracking terrorist activities, checking for
DRM violations, etc. On the contrary, it violates the user’s online
privacy. Destination IP addresses obtained from encrypted traffic in this
setting cannot be used for webpage identification since they would be
encapsulated by the encryption scheme. Fingerprinting over such
encrypted data for identification of webpage (or website) is widely
known as Website Fingerprinting [25]. We denote this as WFIN.

App Fingerprinting. Unlike websites, smartphone apps access the
Internet by connecting to remote services that provide necessary data for
their operation. Examples of such services include advertisements, 3rd
party libraries, and other API-based services. Applications, such as ad
relevance, network bandwidth management, and app recommendations,
may require the knowledge of apps running on a particular device in
order to improve user experience. On the other hand, an adversarial
view of such knowledge may lead to initiation of targeted attacks [39]
involving known vulnerabilities in apps. While apps do not hide
the destination IP addresses, they may access multiple overlapping
destinations. For example, two apps may access the same 3rd-party
library while utilizing the service in a distinct manner. For a man-in-the-
middle observing network traffic, identifying the two apps on the same
device is hard when relying only on the IP addresses. However, the
apps may have distinct network traffic patterns useful for discrimination.
We call the identification of apps on a device, using their encrypted
network traffic patterns, App Fingerprinting, denoted by AFIN.
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A fundamental challenge in performing traffic fingerprinting over
encrypted data is the identification of characteristic features, which are
often used in machine learning classifiers. In particular, encrypted traffic
consists of network packets that carry application data along with other
control messages depending on the communication protocol. In general,
a protocol such as TCP limits the size of each packet. Moreover, each
packet incurs a finite transmission time depending on the network path
followed from its source to its destination. When a man-in-the-middle
passively captures a sequence of packets flowing at the user’s end, the
packet size, time-stamp, and direction can be observed to form a set of
features. As the goal of fingerprinting is to determine end-node patterns,
one must consider a sequence of network packets in the captured traffic
generated during a communication session involving the end-node
under investigation. We call this sequence of packets a trace.

Over time, the captured network traffic may contain multiple traces
associated with a set of end-nodes with different sessions initiated by
the same user. In this setting, feature extraction is performed over
each trace by combining features of each of its packets in a suitable
manner [6,7,21,25,27,36]. Most existing techniques combine features
by assuming independence between subsequent transmissions [6,27].
Therefore, relationship between packets in a TCP session, occurring
consecutively in opposite directions (viz., uplinks from user to server, or
downlinks from server to user), are ignored. A relationship between
these packets may exist due to control messages resulting from the
current data transmission.

Another major challenge in traffic fingerprinting is the changes
of behavioral patterns in network traffic over time, due to changes
in the end-node content. While traffic fingerprinting can be seen as
a continuous process with a man-in-the-middle observing network
traffic perpetually, a classification model trained initially captures
patterns in network traffic available at that particular time. However,
traffic patterns may evolve over time, changing their distinguishing
characteristics. Since these changes are not reflected in the classifier, its
performance degrades while classifying newer data. A recent study in
WFIN observed this temporal behavior [23]. Yet, this remains an open
challenge.

In this paper, we introduce BIND (fingerprinting with BI-directioNal
Dependence), a new set of features from encrypted network traffic, that
incorporates feature relationships between consecutive sets of packets
in opposite directions. These features are used in conjunction with other
independent features to enrich discriminating factors of end-nodes
during pattern recognition. Furthermore, we propose a technique
for adapting the classifier to temporal changes in data patterns while
fingerprinting over a long period of time. Our approach continuously
monitors the classifier performance on the training data. When the
accuracy drops below a predefined threshold, we replace the classifier
with another one trained on the latest data. We call this ADABIND
(ADAptive fingerprinting with BI-directioNal Dependence). The
summary of our contributions is as follows.
• We propose a new feature extraction method, called BIND,

for fingerprinting encrypted traffic to identify an end-node. In
particular, we consider relationships among sequences of packets
in opposite directions.

• We propose a method, called ADABIND, in which the machine
learning classifier adapts to the changes in behavioral patterns
that occur when fingerprinting over a long period of time. We
continuously monitor classifier performance, and re-train it in an
online fashion.

• We evaluate the proposed methods over two applications, namely
website fingerprinting (WFIN) and app fingerprinting (AFIN). We
perform AFIN over encrypted traffic, which has not been explored
in existing studies. Moreover, we use a variety of datasets for

both WFIN and AFIN while employing defense mechanisms to
show the effectiveness of the proposed approaches especially in
the open-world settings.

The rest of the paper is organized as follows. In Section 2, we present
relevant background information and related studies in WFIN and
AFIN. We present BIND and ADABIND in Section 3. The empirical
evaluation including datasets, experiments, and results are detailed in
Section 4. Finally, we discuss certain limitations and future work in
Section 5 and conclude the paper in Section 6.

2. BACKGROUND
In this section, we present relevant existing studies in traffic analysis,

particularly in WFIN and AFIN.

2.1 Website Fingerprinting
The online activity of a user accessing websites can be hidden

using anonymity networks such as Tor [14]. Tor provides a low
latency encrypted connectivity to the Internet, while anonymizing the
connections via a process called pipeline randomization. A circuit
of three relay nodes is formed within the Tor network, composed
of an entry node, an exit node, and a randomly selected relay node.
Circuit connections are reestablished approximately after every 10
minutes of usage [2]. Fingerprinting under this setting is hard due to
the decoupling of user request with end-node (i.e., web server) response.
Nevertheless, this challenging problem of WFIN has gained popularity
in the research community with numerous studies [6,7,21,25,27,36]
proposing techniques to perform fingerprinting, and also to defend
against it. The inductive assumption is that each website has a unique
pattern in which data is transmitted from its server to the user’s browser.
Moreover, each website content is unique. Using this assumption, the
website fingerprinting scenario, generally perceived as an attack against
user’s privacy, employs a statistical model to predict the website name
associated with a given trace. Whereas, a defense mechanism explores
methodologies to reduce the effectiveness of such models capable of
performing an attack.

2.1.1 Attack
The primary form of attack is to train a classifier using traces

collected from different websites, where each trace is represented as a
set of independent features. Information present in network packets
associated with each trace is summarized to form a histogram feature
vector, where the features include packet length (size) and direction
(as used in [25]). In addition, Panchenko et al. [28] introduced a
set of features extracted from a combination of packets known as
Size Markers or Bursts. A burst is a sequence of consecutive packets
transmitted along the same direction (uplink or downlink). Features
such as burst sizes are computed by summing the length of each packet
within a burst. These, along with other features such as unique packet
sizes, HTML markers, and percentage of incoming and outgoing
packets, form the feature vector for a trace. Dyer et al. [17] also used
bandwidth and website upload time as features.

A recent work by Panchenko et al. [27] proposes a sampling process
on aggregated features of packets to generate overall trace features.
Importantly, Cai et al. [7] obtained high classification accuracy by
selecting features that involve packet ordering, where the cumulative
sum of packet sizes at a given time in each direction is considered.
This feature set was also confirmed to provide improved classification
accuracy in [36]. It indicates that features capturing relationships
among packets in a trace are effective in distinguishing different
websites (or end-nodes). In our paper, we focus on extracting such
capability from traces in a novel fashion by capturing relationships
between consecutive bursts in opposite directions.



While these features are used to train a classifier, e.g. Naïve
Bayes [17] and Support Vector Machine (SVM) [28], studies have
identified two major settings under which website fingerprinting can be
performed. First, the user is assumed to access only a small set of
known websites. This restriction simplifies the training process since
the attacker can train a model in a supervised manner by considering
traces only from those websites. This form of classification is known as
closed-world. However, such a constraint is not valid in general as a
user can have unrestricted access to a large number of websites. In this
case, training a classifier by collecting trace samples from all websites
to perform multi-class classification is unrealistic. Therefore, an
adversary is assumed to monitor access to a small set of websites called
the monitored set. The objective is to predict whether a user accesses
one of these monitored websites or not. This binary classification
setting is called open-world. Wang et al. [36] propose a feature
weighting algorithm to train a k-Nearest Neighbor (k-NN) classifier
in the open-world setting. They utilize a subset of traces from the
monitored websites to learn feature weights which are used to improve
classification. In this paper, we evaluate our proposed feature extraction
approach on both these settings. Particularly for the open-world case,
we utilize the feature weighting method proposed in [36] to perform a
comparative study of feature extraction techniques.

A study by Juarez et at. [23] observes and evaluates various
assumptions made in previous studies regarding WFIN. These include
page load parsing by an adversary, background noise, sequential
browsing behavior of a user, and replicability due to staleness in training
data with time, among others. While recent studies [18,38] have
addressed each of these issues by relaxing appropriate assumptions, the
issue of replicability still remains an open challenge. Wang et al. [38]
attempt to address the issue of staleness in training data over time within
their k-NN model [36] specific to open-world. They score the training
data consisting of traces based on model performance of 20 nearest
neighbors. However, this methodology cannot be generalized, i.e., it is
not applicable if one uses a classifier other than k-NN. Moreover,
it is also not applicable to the closed-world setting. In this paper,
we introduce a generic method to update the classifier model for
replicability of WFIN and AFIN over long periods of time.

2.1.2 Defense
Since a successful attack depends on the characteristic network

packet features used to train a model, defenses against WFIN involve
disguising these features to reduce distinguishing patterns in network
traces. Such defense mechanisms vary from padding packets with extra
bytes, to morphing the website packet length distribution such that
it appears to come from another target distribution (i.e., a different
website) [17]. In packet padding, each packet size in the trace is
increased to a certain value depending on the padding method used.
These methods include Pad-to-MTU [17], Direct Target Sampling
(DTS), and Traffic Morphing (TM) [40].

Pad-to-MTU pads each packet to the maximum size limit in TCP
protocol (Maximum Transmission Unit or MTU). With all packet sizes
equal, use of the packet length feature for obtaining deterministic
patterns might be less effective. However, this method is not widely
used in practice as it increases network latency and incurs high overhead
when most of the packets in a trace are of length less than MTU.
Nevertheless, early studies [25] showed that attacks with considerable
success are possible even when defenses like packet padding are used.

This led to a study in [40] that introduced more sophisticated
distribution-based padding methods such as DTS and TM. In DTS,
using random sampling, the distribution of the packet length in a
trace belonging to a website is made to appear similar to the packet
length distribution of another website. This requires less overhead than
Pad-to-MTU. TM further improves DTS by using a cost minimization
function between two websites to minimize packet padding, while

maximizing similarity between them. In our study, we evaluate BIND
by applying these padding techniques to packets while performing the
closed-world settings in website fingerprinting.

In the case of open-world setting, Dyer et al. [17] introduced a
defense mechanism, called Buffered Fixed Length Obfuscator (or
BuFLO), that not only uses packet padding, but also modifies packet
timing information by sending packets in fixed intervals. Cai et
al. [6] improved BuFLO and introduced a lighter defense mechanism,
called Tamaraw, which considers different time intervals for uplink
and downlink packets in the open-world setting. We utilize these
mechanisms in the open-world setting to evaluate BIND.

2.2 App Fingerprinting
An increase in popularity of smartphone applications has attracted

researchers to study the issues of user privacy and data security in apps
developed by third-party developers [35]. In particular, many studies
have proposed methods to perform traffic analysis while a user uses an
app. Dai et al. [12] first proposed a method to identify an app by using
the request-response mechanisms of API calls found in HTTP packets.
They perform UI fuzzing on apps whose network packets are captured
using an emulator. Similarly, [26] proposes a method to fingerprint
apps using comprehensive traffic observations. These studies perform
app identification (or fingerprinting) using only HTTP traffic. Such
methods cannot be applied on HTTPS traffic since the packet content is
encrypted and not readily available.

Studies on performing traffic analysis over HTTPS app network traffic
explore varied applications including smartphone fingerprinting [33],
user action identification [9,10], user location tracking [3], and
app identification [26]. They use packet features such as packet
length, timing information, and other statistics to build classifiers for
identification (or prediction). Note that this is similar to the WFIN
setting mentioned in §2.1. Recently, a study [34] performed AFIN using
both HTTP and HTTPS data. They use features such as burst statistics
and network flows. Here, a flow is a set of network packets belonging to
the same TCP session. They train a random forest classifier (ensemble
of weak learners) and a support vector machine (SVM) using features
extracted from network traffic of about 110 apps from the Google play
store. Evaluation of their method is similar to the closed-world setting
of WFIN, where network traffic from apps considered for training and
testing the model belong to a closed set, i.e., the user has access to only
a finite known set of apps. The method resulted in an overall accuracy
of 86.9% using random forest, and 42.4% using SVM. These results
are based on a small dataset of apps which may have both HTTP and
HTTPS traffic. Furthermore, they only show a closed-world setting.
However, with a large number of apps present on various app stores,
these results may not reflect a realistic scenario of the open-world
setting in AFIN.

Similar to that of WFIN, the open-world setting in AFIN assumes
that the man-in-the-middle monitors the use of a small set of apps
called the monitored set. The goal is to determine whether a user is
running an app that belongs to this set. In our evaluation, we use our
proposed technique for traffic analysis on a larger dataset of apps
that only use HTTPS for connecting to remote services. Contrary to
WFIN where the network is anonymized, apps do not use an anonymity
network. However, the effect of anonymization is similar to that of
WFIN. In WFIN, anonymization results in removal of destination
website identifiers (i.e., IP address). In AFIN, apps connect to multiple
remote hosts deriving remote services from them. However, multiple
apps may connect to the same host. A mere list of hosts or IP addresses
is not sufficient to deterministically identify an app. This property
effectively anonymizes such apps with respect to the network. We
therefore rely on traffic analysis to perform AFIN. In this paper, we



Category Features
Packet (Up/Dn) Packet length

Uni-Burst (Up/Dn)
Uni-Burst size

Uni-Burst time ∗

Uni-Burst count

Bi-Burst (Up-Dn/Dn-Up) Bi-Burst size ∗

Bi-Burst time ∗
∗new features introduced in this paper

Table 1: Features from Packets, Uni-Bursts, and Bi-Bursts.

show the applicability of both closed-world and open-world settings
while utilizing the BIND feature extraction method.

3. PROPOSED APPROACH
In this section, we present the methodology to extract the BIND

features, and detail the ADABIND approach.

3.1 Features
With encrypted payload of each packet in a trace, we extract features

from packet headers only. The main idea is to extract features from
consecutive bursts to capture any dependencies that may exist between
them. As illustrated in Figure 2, we call the burst directed from a
user/client (or app) to server (e.g., burst a), an uplink uni-burst (or Up
uni-burst), and the burst directed from server to the user, a downlink
uni-burst (or Dn uni-burst) (e.g., burst b). Similar to packets, a burst or
uni-burst has features such as size (or length), time, and direction.
Uni-burst size is the summation of lengths of all its packets. Packet
time is the departure/arrival timestamp in the uplink/downlink direction,
measured near the user-end of the network by a man-in-the-middle.
Uni-burst time is the difference between the last packet’s timestamp
and the first packet’s timestamp within a burst, i.e., the time taken to
transmit all packets of a burst in a specific direction. Here, the term
burst and uni-burst are equivalent. The name uni-burst emphasizes on
the fact that features are extracted from a single burst, as opposed
to Bi-Burst which is a tuple formed by a sequence of two adjacent
uni-bursts in opposite direction (e.g., burst b and c in Figure 2).

Bi-Burst features. Features extracted from Bi-Bursts are as follows.

1. Dn-Up-Burst size: Dn-Up-Burst is a set of tuples formed by
downlink (Dn) - uplink (Up) consecutive bursts. Here, unique
tuples are formed according to the corresponding uni-burst
lengths where each tuple forms a new feature.

2. Dn-Up-Burst time: This set of features considers unique
consecutive uni-burst time tuples between adjacent Dn uni-burst
and Up uni-burst sequences.

3. Up-Dn-Burst size: Similar to Dn-Up-Burst size features, these
features consider burst length tuples of adjacent Up uni-burst and
Dn uni-burst sequences.

4. Up-Dn-Burst time: Similar to Dn-Up-Burst time features, this
set of features considers burst time tuples formed by adjacent Up
uni-burst and Dn uni-burst sequences.

In each trace, we count such unique tuples to generate a set of
features. To overcome dimensionality issues associated with burst sizes,
quantization [15] is applied to group bursts into correlation sets (e.g.,
based on frequency of occurrence).

Packet and Uni-Burst features. In addition to the Bi-Bursts features,
we also use burst size and burst time features. Previous studies [17]
only consider total trace time as a feature, contrary to the burst time
feature we use in this paper. Furthermore, we also consider the count of
packets within a burst as a feature. In order to capture variations of the
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Figure 2: An example illustrating BIND Features.

packet features, we use an array of unique packet lengths as well. The
set of features, termed as BIND, are listed in Table 1. All these features
are concatenated to form a large array of features (histograms) to be
extracted from each trace. A set of multiple traces represented in this
manner forms the training and testing set.

Example. Figure 2 depicts a simple trace where packet sequences
between uplink and downlink are shown. Each packet in the figure has
size s in bytes and time t in milliseconds. We set time for the first
packet in the trace to zero, as a reference. An example of a uni-burst is
shown as burst a, whose size is 500, computed by adding packet sizes
s = 200 and s = 300 that form the burst. Its time is computed as 10,
which is the absolute time difference between the last packet (t = 10)
and the first packet (t = 0) in the burst. Similarly, a Bi-Burst example
is shown as well, formed with a combination of bursts b and c. This is
denoted as Dn-Up-Burst. In this case, the Bi-Burst tuple using the burst
size (i.e., Dn-Up-Burst size) is represented as {DnUp_2300_400},
where 2300 is the burst size of b, and 400 is the burst size of c. We
count the number of such unique tuples in the trace. In this case, the
count for {DnUp_2300_400} is 1.

3.2 Learning
In the closed-world setting, we use the BIND features to train a

support vector machine (SVM) [11] classifier. SVM applies convex op-
timization and maps non-linearly separated data to a higher dimensional
linearly separated feature space. Whereas in the open-world setting,
using the BIND features, we apply the weighted k-Nearest Neighbor
(k-NN) approach proposed in [36]. Feature weights are computed
using traces from the monitored set. During testing of traces with
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Figure 3: Illustration of ADABIND.

unknown class labels, these feature weights are applied. Majority class
voting among k-Nearest Neighbors is performed to predict class label
of a test trace. Additionally, we also use a Random Forest classifier in
the open-world setting. Instead of performing feature weighing, which
is computationally expensive, we use a set of weak learners to form an
ensemble of decision trees (random forest).

3.2.1 Static Learning
Typically, previous studies (mentioned in §2.1) have focused on

performing fingerprinting by collecting traces for a short period of time.
Classifiers are trained on traces collected within this time period, and
used to predict class labels thereafter. We refer to this type of classifier
training as static. On the contrary, WFIN and AFIN can be viewed as a
continuous process involving trace collection over a long period of time.
Moreover, data collection is time consuming. Changes in data content
transmitted between end-nodes affect patterns captured in the model.
Using a static model to predict class labels of test traces in this situation
drastically affects classification performance.

3.2.2 Adaptive Learning
We now present the details of ADABIND. In this section, we show

how we model encrypted data fingerprinting in an adaptive manner. As
discussed in §3.2.1, over time, the data patterns of the current traces
may be different from the patterns in previously seen training traces.
This is known as concept drift [19,20]. To address this challenge, the
model has to be updated (re-trained) regularly. We study the effect of
re-training as follows.

Fixed update. One simple approach is to apply fixed updates to
re-train the model periodically. We refer to this approach as BINDFUP
(BIND Fixed UPdate). BINDFUP updates the model periodically,
regardless of any concept drift that may happen. The model will
be re-trained regularly (e.g., at the end of every week) with freshly
obtained training data. There are two possible scenarios, early update
and late update. In early update, BINDFUP updates the model in a way
that ensures no concept drift in data. Although this update is more
accurate and stable, it may suffer from unnecessary re-training which
will add significant overhead to the classification process. On the other
hand, late update may miss possible concept drift in data over time
which affects the overall performance of the model.

Dynamic update. In this approach, as depicted in Figure 3, we update
the model whenever there is a drift between the current data and
previously seen training data. R is a training window that builds
the model, while S is a sliding window that probes this model for
any possible concept drift (i.e., model needs update). Algorithm 1
describes this dynamic update mechanism. We refer to this algorithm as
BINDDUP (BIND Dynamic UPdate). BINDDUP starts by considering a
portion of data as a training window to initialize the ADABIND model

Algorithm 1: BINDDUP

Data: Training Data: TrainX , Testing Data: TestX
Input: Training Window: R, Sliding Window: S, Threshold: T

1 begin
2 Ftrain ← extractFeatures(TrainXR);
3 initializeModel(ADABIND,Ftrain);
4 for each S do
5 Ftest ← extractFeatures(TestXS);
6 accuracy ← validateModel(ADABIND,Ftest);
7 if accuracy < T then
8 moveR;
9 Ftrain ← extractFeatures(TrainXR);

10 updateModel(ADABIND,Ftrain);
11 move S;
12 end
13 end
14 end

Dataset # of websites # of traces
per website

HTTPS [25] Monitored 30 70
Non-Monitored 970 1

TOR [36] Monitored 100 90
Non-Monitored 5000 1

Table 2: Statistics for Website Fingerprinting datasets in the
open-world setting.

(lines 2 and 3). Then, the subsequent instances are considered within a
sliding window to validate the performance of this model over time
(lines 5 and 6). If the accuracy drops below a predefined threshold (line
7), the initial ADABIND model becomes obsolete (i.e., concept drift)
and the training window moves (line 8) to get new instances to re-train
and update the model (lines 9 and 10). BINDDUP utilizes the ADABIND
updated model to test incoming new data in a continuous fashion.

4. EVALUATION
In this section, we present the empirical results of using BIND for

WFIN and AFIN, comparing it with other existing methods.

4.1 Datasets
We use two existing datasets for evaluating WFIN, one using HTTPS

and the other using the Tor anonymity network, referred to as HTTPS
and TOR respectively. These datasets have been widely used in previous
research on traffic fingerprinting. For AFIN, we collect our own dataset
from apps that use the HTTPS protocol.

Website Datasets. The first dataset presented in [25], which we
denote as HTTPS, was collected while browsing websites using the
HTTPS protocol along with a proxy server to imitate an anonymity
network. The authors followed a ranking procedure to select the most
accessed websites in their school department. The second dataset
is described in [36]. This dataset is collected by capturing packets
generated from a browser connected to the Tor anonymity network. We
denote this dataset as TOR.

HTTPS consists of 1000 websites with 200 traces each. For WFIN,
we evaluate the closed-world setting by randomly picking a subset of
these 1000 websites. For the open-world setting, we randomly select 30
websites as the monitored set, and the rest as the non-monitored one.

The other dataset (TOR) consists of two sets of traces. The first is a
set of 100 websites that have 90 traces each. These websites were
selected from a list of blocked websites by some countries. We use
this for the closed-world experiments. The second set consists of
5000 websites that have one trace each. These websites were selected



Category # of apps # of traces
per app

APP-FIN
Monitored 30 20
Non-Monitored 2238 1

APP-COMM Non-Monitored 1061 1
APP-SOCIAL Non-Monitored 1290 1

Table 3: Dataset statistics for App Fingerprinting in the open-
world setting.

Internet

Wireless Access Point

Switch (with Port Mirroring)

Packet Sniffer Server

Android Phone

Figure 4: Illustration of the app trace data collection process

from Alexa’s top websites [1]. In the open-world setting, we use the
set of 100 websites as monitored, and the set of 5000 websites as
non-monitored. The summarized statistics of these datasets are provided
in Table 2. These two datasets enable us to perform an unbiased
comparison of BIND with other competing methods.

App Dataset. For AFIN, we evaluate BIND using a dataset that we
collected by executing multiple Android apps on a Samsung Galaxy S
device, running Android version 4.3.1. We randomly select about
30,000 apps from three different categories in Google Play Store. The
categories include Finance, Communication, and Social. We refer to
them as APP-FIN, APP-COMM, and APP-SOCIAL respectively. We
then install and launch these apps on the phone which is connected to
the Internet via a wireless router. Each trace per app is collected over
a 30-sec period passively using a mirroring switch at the wireless
router. Figure 4 illustrates this data collection setup. We filtered the
captured traffic to contain packets from ports 80, 8080, and 443. We
then identify apps that use only HTTPS data from the captured traces.
These traces from such apps are then used to perform the closed-world
and open-world AFIN. It is important to note that we uninstall each app
as soon as we complete capturing a trace to avoid any background noise
during further trace generation.

Similar to WFIN, multiple traces of apps are required to train a
classifier in the closed-world and open-world settings. We use the
APP-FIN dataset for performing the closed-world experiments as we
capture multiple traces for each app. We only capture a single trace per
app for APP-COMM and APP-SOCIAL to be used for the open-world
experiments as the non-monitored set. The dataset statistics for the
open-world setting are shown in Table 3. Note that in the closed-world
setting, we only evaluate using apps from APP-FIN. In the case of
open-world, the monitored apps are considered only from APP-FIN and
the non-monitored apps are considered from all categories shown in
Table 3.

While performing app selection for creating our dataset, we observed
a few interesting statistics that would further motivate the problem
of AFIN. Figure 5 shows the percentage of apps that use HTTP and
HTTPS data at launch in our initial set of 30, 000 apps. Observe that
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Figure 5: Empirical Statistics of Android Apps

Data
Analysis
Method

Setting
Type Features Classifier

VNG++ [17] Closed
Uni-Burst Size & Count

Total Trace Time
Uplink/Downlink Bytes

Naïve
Bayes

P [28] Closed
Uni-Burst Size & Count

Packet Size
Packet Ordering

SVM

OSAD [37] Closed Cell Traces Optimized
SVM

BINDSVM ∗ Closed

BIND features:
Bi-Burst Size & Time

Uni-Burst Size, Time, & Count
Packet Size

SVM

WKNN [36] Open Same features as P Weighted
k-NN

BINDWKNN ∗ Open BIND features:
Same features as BINDSVM

Weighted
k-NN

BINDRF ∗ Open BIND features:
Same features as BINDSVM

Random
Forest

∗new approaches introduced in this paper

Table 4: Traffic Analysis Techniques used for the evaluation

most apps use HTTP along with HTTPS while a sizable portion of apps
use only HTTPS, for communication over the Internet. Furthermore, we
obtained a list of IP addresses from HTTPS apps in each category
We found a total of 1115 unique IP addresses for APP-FIN, 820
for APP-COMM, and 900 for APP-SOCIAL. Additionally, each app
connects to 3 different IP addresses on average over the whole dataset.
This clearly indicates that the IP addresses found on HTTPS traffic
overlap across apps, and do not provide sufficient information to
identify the app generating a trace by itself.

4.2 Experimental Settings
Using these datasets, we perform our analysis on both closed-

world and open-world settings. For a comparative evaluation, we
consider existing traffic analysis techniques developed for WFIN. These
techniques are listed in Table 4. The table details the features and
classifiers used for our evaluation in both Closed-world (Closed) and
Open-world (Open) settings. For brevity of representation, we term
websites (in the case of WFIN) or apps (in the case of AFIN) as entities.

Closed-world. Using BIND features, we use a support vector machine
classifier (SVM) in the closed-world setting. We refer to this approach
as BINDSVM as shown in Table 4. In our experiments, we use a
publicly available library called LibSVM [8] with a Radial Basis
Function (RBF) kernel having the parameters Cost = 1.3× 105 and
γ = 1.9× 10−6 (following recommendations in [28]). We consider
varied subsets of entities to evaluate the feature set. Particularly,
we use 16 randomly selected traces per entity (class) for training a



classifier, and 4 randomly selected traces per entity for testing. For each
experiment, we chose the number of selected (monitored) entities in
{20, 40, 60, 80, 100}.

Open-world. For the open-world scenario, as discussed in §3.2, we
use two classification methods with the BIND features. First, we use
the weighted k-NN mechanism proposed in [36]. Specifically, we
use k = 1 since it is shown to produce the best results on the TOR
dataset in [36]. We denote this method as BINDWKNN as shown
in Table 4. Furthermore, we also use the Random Forest classifier
with BIND features, denoted as BINDRF in Table 4. We use a set of
100 weak learners to form an ensemble of decision trees. We use the
scikit-learn [29] implementation for our evaluation. The complete set of
monitored and non-monitored traces mentioned in Tables 2 and 3 are
considered for evaluation.

Evaluation Measure. The results of the closed-world evaluation
are measured by computing the average accuracy of classifying the
correct class for all test traces. We randomly select traces from the
corresponding dataset and repeat each experiment 10 times with
different entities and traces. Average accuracy is computed across
these experiments. In the open-world evaluation, we measure the
true positive rate (TPR) and false positve rate (FPR) of the binary
classification. These are defined as follows: TPR = TP

TP+FN
and

FPR = FP
FP+TN

. Here, TP (True Positive) is the number of traces
which are monitored, and predicted as monitored by the classifier. FP
(False Positive) is the number of traces which are non-monitored, but
predicted as monitored. TN (True Negative) is the number of traces
which are non-monitored and predicted as non-monitored. FN (False
Negative) is the number of traces which are monitored, but predicted as
non-monitored. We perform a 10-fold cross validation on each dataset,
which gives randomized instance ordering.

In order to evaluate the performance of BIND against defenses
discussed in §2.1, we consider one of the most sophisticated and
complex defenses, Traffic Morphing (TM). Furthermore, to evaluate
BIND against existing approaches, for the open-world setting on the
TOR dataset, we apply the Tamaraw defense mechanism, designed
specifically for Tor, as evaluations in [6,36] show that this defense
performs exceptionally well against TOR.

4.3 Experimental Results
We use the notations given in Table 2 and Table 3 to denote the

WFIN and AFIN datasets respectively.

4.3.1 Traffic Analysis
We first perform WFIN and AFIN experiments in the closed-world

setting. Here, a set of randomly chosen entities are classified using
competing methods. We vary the set size from 20 to 100. The results are
presented in Table 5 using the HTTPS and TOR datasets for WFIN, and
the APP-FIN dataset for AFIN. In some cases, we can see BINDSVM
performs comparatively closer to or lower than the other competing
methods, while outperforming them in other cases. For example, with
80 websites considered, the average accuracy of BINDSVM (BIND
using SVM) on the HTTPS dataset is 88.4%. This is marginally greater
than 88.3% obtained from the P method. Similarly in AFIN, BIND
resulted in an average accuracy of 87.8%, compared to a marginally
better accuracy of 88% resulting from the P method. Moreover for the
TOR dataset, it is not surprising that the OSAD method performs
the best in all experimental settings since it uses a distance measure
that is specifically applicable to Tor data. In the closed-world setting,
most methods listed in Table 4 use features that overlap or hold
similar information about the class label. Some features provide better
characteristic information about the class than others. When selecting

the websites at random during evaluation, each classification method
outperforms the other in a few cases depending on the data selected for
training and testing. Therefore, the average accuracy across these are
marginally superior than others in most of the cases.

However, the greatest impact of using BIND features can be observed
in the more realistic open-world setting. Table 6 presents the results of
the open-world setting for all competing methods. Here, a high value of
TPR and a low value of FPR are desired. As mentioned earlier in this
section, we use two types of classifiers while using the BIND features,
i.e., BINDWKNN and BINDRF. In the case of WFIN, it is clear that
the TPR for both BINDWKNN and BINDRF is significantly better
compared to that of WKNN. For instance, consider the result of the
TOR dataset. The TPR obtained from BINDWKNN method is 90.4%
and that obtained from BINDRF is 99.8%, as compared to 89.6% of
WKNN. The BINDRF method outperforms WKNN even though the
WKNN method was specifically designed for high quality results on this
dataset. In terms of FPR, BINDWKNN method performs better than
WKNN.

A more significant result can be observed in the open-world setting
of AFIN. Both TPR and FPR are greatly improved with the BINDWKNN
and BINDRF methods on all app fingerprinting datasets, as indicated in
Table 6. For example, the average TPR resulting from BINDWKNN
method on the APP-FIN dataset is 78%, compared to the average TPR
of 53% reported by the WKNN method. Similarly, the average FPR of
7% reported by the BINDWKNN method is better than the average FPR
of 10% resulting from the WKNN method. This clearly demonstrates
the effectiveness of using BIND features for traffic analysis in AFIN as
well.

Moreover, the average TPR and FPR are largely improved when
using the BINDRF method. It is important to note that while using
monitored and non-monitored traces from different categories, i.e., in
the case of the APP-COMM and APP-SOCIAL datasets, the average
TPR and FPR are better when compared with the results from the
APP-FIN dataset where the monitored and non-monitored sets are
from the same category. Especially, a low FPR of less than 1% is
obtained on these datasets. This indicates that there exist differentiating
characteristics between apps from different categories as expected.

The open-world setting is a binary classification problem. Features
extracted and the classifier used for determining class boundary
significantly impact the TPR and FPR results. In the case of WKNN,
the monitored entities are made as close as possible via an iterative
weighing mechanism. When using BIND features, we count unique
bi-burst tuples. These provide additional features to the existing
feature set of uni-burst used in [36]. These features aid the weighing
mechanism by bringing out more relevant dimensions, suppressing less
relevant ones in BINDWKNN. Random forest uses decision trees that
divide the feature space effectively using the information gain measure
rather than the Euclidean distance measure used by the k-NN method.
An ensemble of such classifiers typically reduces bias and variance
during training, compared to a single classifier [5]. Consequently, this
classifier, along with BIND features, shows superior performance in
TPR results.

4.3.2 Traffic Analysis with Defenses for Website Fin-
gerprinting

We now consider the evaluation of BIND in an adversarial environ-
ment, specifically for WFIN, similar to relevant studies in this area.
Here, we apply a defense mechanism to trace packets for with the aim
of reducing effectiveness of a fingerprinting attack (classifier), and
study the robustness of BIND when used by an attacker against such
defenses.

With defense mechanisms such as Traffic Morphing (TM) used by
defenders to thwart classifiers, the features extracted from the data play
an important role while performing an adversarial attack. Table 7 shows



Dataset HTTPS TOR APP-FIN
Method VNG++ P OSAD BINDSVM VNG++ P OSAD BINDSVM VNG++ P OSAD BINDSVM

#
en

tit
ie

s 20 87.5 93.5 94.1 94.0 78.0 85.3 90.0 86.5 81.3 92.0 88.7 93.3
40 83.8 91.4 89.0 91.3 67.8 77.6 92.1 80.9 73.6 88.3 85.1 87.3
60 85.2 92.3 91.0 91.6 63.7 77.0 86.7 79.5 72.3 86.5 83.6 86.7
80 81.6 88.3 87.7 88.4 62.9 75.8 89.5 77.6 72.8 88.0 79.6 87.8

100 82.4 90.3 89.2 90.0 56.9 71.4 85.7 73.9 66.0 83.1 77.2 84.2

Table 5: Accuracy (in %) of the closed-world traffic analysis for website fingerprinting (HTTPS and Tor) and app fingerprinting
(App-Finance) without defenses.

Dataset HTTPS TOR APP-FIN APP-COMM APP-SOCIAL
Method WKNN BINDWKNN BINDRF WKNN BINDWKNN BINDRF WKNN BINDWKNN BINDRF WKNN BINDWKNN BINDRF WKNN BINDWKNN BINDRF

TPR 73.0 91.0 98.2 89.6 90.4 99.8 53.0 78.0 88.5 64.0 82.0 93.1 61.0 75.0 92.1
FPR 29.0 16.0 18.3 2.1 1.9 3.4 10.0 7.0 1.9 5.0 2.0 0.8 5.0 2.0 0.1

Table 6: TPR and FPR (in %) of open-world setting for website fingerprinting (HTTPS and Tor) and app fingerprinting (App-Finance,
App-Communication and App-Social) without defenses.

Dataset HTTPS

Method VNG++ P OSAD BINDSVM

#
w

eb
si

te
s 20 79.1 76.0 86.6 87.5

40 74.4 73.6 79.1 82.6
60 68.4 68.0 74.6 79.7
80 61.2 65.1 69.8 75.2

100 64.1 60.6 67.4 73.2

Table 7: Accuracy (in %) of closed-world website fingerprinting
on HTTPS dataset with Traffic Morphing.

Dataset TOR

Method VNG++ P OSAD BINDSVM

#
w

eb
si

te
s 20 77.8 81.3 68.5 82.3

40 66.6 74.9 58.5 77.6
60 61.0 70.3 51.2 72.3
80 58.7 67.6 42.6 69.9

100 65.8 65.8 39.3 68.7

Table 8: Accuracy (in %) of closed-world website fingerprinting
on Tor dataset with Traffic Morphing.

the average accuracy obtained on the HTTPS dataset when TM is
applied on all websites in the closed-world setting. It is important to
note that for every experiment, we apply TM by selecting a random
target website. BINDSVM performs with significant improvement
in average accuracy on all experiment settings compared to other
competing methods. For instance, BINDSVM reports an average
accuracy of 73.2% with 100 closed-world websites. This is better
than the average accuracy of 67.4% reported by OSAD, which is the
second highest accuracy in this setting.

Similarly, Table 8 shows the average accuracy obtained on the TOR
dataset when TM is applied on all websites. From the table, we can
observe that the BINDSVM method outperforms other methods.

In the open-world setting, we apply TM on the HTTPS dataset. The
TPR and FPR results are shown in Table 9. The BINDRF method reports
an average TPR of 98.5%. However, it also reports an undesirable high
FPR of 72.4%. This high FPR indicates that more false alarms are
reported by this classifer. In contrast, the BINDWKNN method reports
82% average TPR, which is greater than 74% reported by the WKNN
method. Moreover, it also reports the lowest average FPR of 24% on
the dataset. This shows the effectiveness of this defense on HTTPS
dataset. It also indicates that BIND features aid the weighted k-Nearest
Neighbors algorithm to classify more accurately than merely using
Uni-Burst features.

Table 9 also shows the average TPR and FPR obtained on the TOR
dataset when using competing methods while applying the Tamaraw
defense mechanism. In the case of methods that use the weighted k-NN

Dataset Score Method
WKNN BINDWKNN BINDRF

HTTPS TPR 74.0 82.0 98.5
FPR 29.0 24.0 72.4

Tor TPR 2.7 2.7 100.0
FPR 0.0 0.0 0.0

Table 9: TPR and FPR (in %) in open-world setting for website
fingerprinting on HTTPS dataset with Traffic Morphing, and
Tor dataset with Tamaraw.

algorithm, i.e., WKNN and BINDWKNN, we obtain a low TPR of
2.7%. This result agrees with that reported by Wang et al. [36] who
use the WKNN method on the same dataset. Yet rather remarkably,
we obtain an average TPR of 100% and an average FPR of 0% from
the BINDRF method. This highly accurate classification is a result
of a combination of BIND features and random forest classifiers,
where features of monitored websites are morphed by Tamaraw.
Moreover, the morphing scheme involves changing packet time and size
values. In the BIND feature set, we consider quantized tuple counts as
features (Bi-Burst), along with other Uni-Burst features. Changing the
packet time information by a constant may not successfully destroy
characteristic information in a trace. Furthermore, the tree structure of
weak learners (decision trees) in the random forest classifier aids in a
better classification as illustrated in Table 6. This combination provides
a perfect classification of the morphed dataset in this case.

4.3.3 Traffic Analysis with Defenses for App Finger-
printing

We evaluated our proposed data analysis technique in an adversarial
environment for WFIN. A user may visit any website s/he desires
using an anonymity network to protect against surveillance from
external adversaries on the network. However, this case may not
be directly applicable to AFIN. An app is typically deployed on a
well-recognized app store such as Google play. These apps typically
may not provide users an ability to configure network traffic to use a
user-desired anonymity network such as Tor. They use the default
network configuration set on the host device. However, the goal of an
adversary in AFIN might be to identify vulnerable apps or malware
installed on a device in order to perform attacks such as privilege
escalation [13] targeted on the user. Therefore, we perform experiments
on app traffic when defenses such as TM are applied to reduce chances
of app identification.

We assume that defenses like packet padding could be applied to app
traffic and evaluate the data analysis techniques when the padding
technique of TM is used. Instead of morphing the packet distribution of
a website with another one in the case of WFIN, packet distribution of



Dataset APP-FIN

Method VNG++ P OSAD BINDSVM

#
A

pp
s

20 71.5 68.3 77.6 77.0
40 58.3 59.1 61.0 67.0
60 50.2 51.7 56.0 59.2
80 44.6 44.8 49.3 53.8

100 42.9 42.1 49.2 50.4

Table 10: Accuracy (in %) of closed-world app fingerprinting
while using Traffic Morphing.

Dataset Score Method
WKNN BINDWKNN BINDRF

APP-FIN
TPR 16.0 22.0 20.5
FPR 14.0 13.0 5.1

APP-COMM
TPR 41.0 46.0 66.8
FPR 7.0 5.0 4.1

APP-SOCIAL
TPR 67.0 68.0 68.6
FPR 5.0 4.0 1.2

Table 11: TPR and FPR (in %) of open-world app fingerprint-
ing while using Traffic Morphing.

an app is morphed to appear similar to another app. Table 10 shows the
accuracy of this scenario in the closed-world setting on the APP-FIN
dataset with the morphed traffic. Similar to the results in Table 7,
the average accuracy reported by BINDSVM method is higher than
other competing methods in most cases. Results of the open-world
setting are given in Table 11. Clearly, BIND performs better than other
competing methods. A low FPR with a high TPR are reported by the
BINDRF method compared to WKNN. Another important observation
is that the TPR resulting from the APP-FIN dataset is lower than other
categories. This shows that intra-category differentiating characteristic
features may be affected more than inter-category features while using
morphing techniques. Overall, these results reinforce our hypothesis
that BIND methods provide good characteristic properties from traces
which can be used for better entity identification.

However, we realize that TPR is low when compared to that of the
WFIN datasets in Table 9. The network signature of an app is different
from that of a website. Apps use the Internet to connect to services
and communicate minimal amount of data as necessary. In contrast,
browsing a website could potentially generate a larger network trace
since all the components of a website have to be downloaded to the
browser. A smaller network footprint may affect the fingerprinting
process.

4.3.4 Execution Time
Figure 6 shows the execution time for experiments in Table 5 on

the TOR dataset, where OSAD outperforms the other methods. The
x-axis in the figure represents the number of websites, while the y-axis
represents the execution time (in seconds) in logarithmic scale (base
10). The execution times of VNG++, P, and BINDSVM classifiers are
low compared to that of OSAD. For instance, with 60 websites, OSAD
takes 2340 sec while VNG++, P, and BINDSVM take 25, 31, and 39
sec, respectively. This shows how OSAD incurs extra overhead which
may render it impractical in some scenarios. In the case of open-world
setting, we observed that WKNN and BINDWKNN (> 30 mins) took
significantly longer time than BINDRF (< 60 secs), due to weight
computations. Yet, BINDRF outperformed BINDWKNN (or WKNN) in
Table 6 and Table 11 on most cases.

4.3.5 Base Detection Rate Analysis
In this section, for the open-world scenario, we study the effect of

BIND in a more realistic scenario which considers the probability of a
client visiting a website or using an app in the monitored set, referred to
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Figure 6: Running time (in seconds) for the experiments in Ta-
ble 5, on TOR dataset. Note that time axis is in logarithmic
scale to the base 10.

as prior or base rate. This has been recently raised as a concern in the
research community in WFIN [23].

The base detection rate (BDR) is the probability of a trace being
actually monitored, given that the classifier predicted (detected) it as
monitored. Using the Bayes Theorem, BDR is formulated as:

P (M |D) =
P (M) P (D|M)

P (M) P (D|M) + P (¬M) P (D|¬M)]
, (1)

where M and D are random variables denoting the actual monitored
and the detection as monitored by the classifier, respectively. We
use TPR and FPR, from Table 6, as approximations of P (D|M) and
P (D|¬M), respectively.

Table 12 presents the BDR computed for the open-world classifiers.
We assume P (M) or prior is calculated as the size of the monitored set
divided by the world size (the size of the monitored and non-monitored
set), i.e., P (M) = |monitored|

|monitored|+|non−monitored| . The table shows
the BDR for the different datasets.

Although BIND methods ourperform other methods, as the results in
Table 12 indicate, the numbers expose a practical concern in fingerprint-
ing research: despite having high accuracy values, typical fingerprinting
detection methods are rendered ineffective when confronted with
their staggeringly low base detection rates. This is in part due to their
intrinsic inability to eliminate false positives in operational contexts.

However, we follow a similar approach to the results of a recent
study [16] in Anomaly Detection to approximate the prior for the
specific scenario of a targeted user. The study assumes a model
with a determined attacker leveraging one or more exploits of known
vulnerabilities to penetrate a typical organization’s internal network, and
approximates the prior of a directed attack to 6% (using threat statistics
from 2011). Similarly, we model a targeted user where the prior
increases given other estimates. For example, consider a government
tracking a suspicious user (targeted) with a prior knowledge or estimate
that increases the probability of such user visiting certain websites or
using certain apps (monitored) or carrying out specific online activities
(e.g. suspicious activities).

Figure 7 depicts this process using TPR and FPR obtained from
Table 6 with the TOR dataset. In this figure, we show the effect of
increasing the prior, starting from 2% which is the actual P (M).
Similarly, Figure 8 shows the effect of increasing this prior on the same
dataset while applying the Tamaraw defense, using TPR and FPR
from Table 9. The figures show how increasing the prior improves
the BDR significantly. As our confidence about the prior raises, the
corresponding BDR increases to practical values.



Method Dataset
HTTPS TOR APP-FIN APP-COMM APP-SOCIAL

WKNN 7.4 46.4 6.7 27.14 22.5
BINDWKNN 15.3 49.2 13.1 54.4 47.1
BINDRF 14.6 37.4 38.7 25.3 68.6

Table 12: Base detection rate percentages in the open-world
setting.
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Figure 7: Increasing prior effect on BDR using the Tor dataset
for open-world without defense.

4.3.6 Adaptive fingerprinting
We now present the experimental results of adaptive learning

(ADABIND) discussed in §3.2.2. The experiment in Figure 9 shows the
effect of concept drift on the model, and the BINDDUP dynamic update
(re-training) process in WFIN. Here, the x-axis represents time (in days)
and the y-axis represents accuracy (%). We consider 20 websites from
the HTTPS dataset with a training window of 16 traces per website for
training the ADABIND model (R = 16, starting at day 1 to day 16).
Then, a sliding window of 4 traces (starting at day 17) per website is
considered for validating this model by testing its accuracy.

It is important to note the training and testing data are collected at
different times, under different experimental settings. As the 4-day
validating window slides, if the accuracy drops below a certain threshold
(85% in this experiment), the model becomes obsolete. So, we re-train
the model at that point (i.e., at day 33, 94, 119, and 148 as shown in
the figure). This dynamic re-training mechanism improves the accuracy,
resulting in values above the assigned threshold. The average accuracy
of this approach is 92.6%.

Figure 9 also shows how the accuracy drops to low values if no
update is considered. In this experiment, we train the model once in the
beginning and use the 4-day sliding window to validate test traces. The
resulting average accuracy of this static learning method is 76%, which
illustrates the need for re-training the model to adapt for possible data
drifts over time.

In addition, Figure 9 shows the same experiment where we apply the
BINDFUP fixed update approach by re-training the model every 24 days
instead of the dynamic update in BINDDUP. We use the same 4-day
validating window as before. The figure shows how the model becomes
more accurate and stable. Yet, this results in an extra training overhead
due to unnecessary updates. The average accuracy of this approach
is 93.3%, which is marginally better from the average accuracy of
BINDDUP (92.6%). The number of updates in this experiment for
BINDFUP is 8, which is twice as many as the number of updates in the
dynamic update approach (BINDDUP). As discussed in § 4.3.4, a
classifier may have large execution time, resulting in significantly large
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Figure 8: Increasing prior effect on BDR using the Tor dataset
for open-world while applying the Tamaraw defense.
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Figure 9: Adaptive Learning.

re-training cost. This shows the trade-off between performance and cost
of re-training the model.

To see the effect of the training window (R), Figure 10 shows the
BINDDUP dynamic update experiments when varying the value of R
in the range {4, 8, 12, 16, 20}. If R is small, the number of training
instances may not be enough to build a good model, and may lead
to frequent updates. On the other hand, choosing large values of R
incurs extra training overhead and may cause the model to miss some
drifts in data. Table 13 shows the average accuracies and number of
updates/re-trains for the experiments shown in Figure 10. When R
increases, the average accuracy improves to a certain level, and then
goes down. We obtained the best results when R = 16 with a moderate
number of updates (i.e., 4 re-trains).

For the previous experiments which used SVM, we observed similar
conclusions for the other datasets. We did not include them because of
space limitations. In general, the adaptive learning algorithm can be
applied to any classification approach.

5. DISCUSSION
In this paper, we introduced BIND, a new feature extraction and

classification method for data analysis on encrypted network traffic with
two case studies including WFIN and AFIN. We discuss the challenges
and limitations, resulting from the assumptions in our evaluation, as
well as future work.

A study in WFIN [23] describes the effects of various assumptions
on the evaluation results. Major assumptions include single-tabbed
browsing or absence of other background noise, small time gap (or
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Figure 10: Dynamic update with different values of the training
window (R)

R 4 8 12 16 20
Average accuracy (%) 86.6 89.3 89.9 92.6 91.7

Number of updates 10 7 5 4 2

Table 13: Average accuracies and number of updates with dif-
ferent values of the training window (R)

freshness) in data collection between training and test set, page load
parsing, and replicability. Recent studies [18,38] tried to address these
issues by evaluating classifiers in conditions with relaxed assumptions.
In particular, a long time gap (or staleness) in data collection between
training and testing sets can have a significant impact on classifier
accuracy. This limitation is true for the BIND approach as well
since similar base features that are affected with time, i.e., packet
statistics such as length, sequence, and timing are used. The challenge
can be addressed by periodically training a new model with fresh
training data as introduced in this paper using ADABIND which models
fingerprinting in an adaptive manner.

The ADABIND method updates the model with new training batches
which requires a significant number of training instances. Furthermore,
the re-training process assumes the availability of testing instance labels
which may not be valid in certain cases. To address these challenges, in
future we would like to identify the right point in the incoming stream
from where we need to re-train the model incrementally (i.e., keeping
old useful data) in an unsupervised manner (i.e., without labels). Hence,
one of the future directions of BIND is to apply the concept of Change
Point Detection (CPD) [19,20] to decide when to update the models in
an unsupervised fashion and re-train incrementally.

The proposed methods in our paper assume sequential user access
to end-nodes and ignore background noise, as mentioned in §2.1
regarding WFIN [23]. Nevertheless, these methods can be augmented
with techniques relaxing such assumptions. We also note that such
assumptions are applicable to AFIN as well. In a smartphone, multiple
apps may run background services, such as auto-sync, within the
device that access the Internet periodically. Moreover, services offered
by an app can change over time with newer versions released by
developers periodically. Each updated version of an app may have
dissimilar network signature or fingerprint, which could affect classifier
performance as well. Furthermore, exploring different activities of
an app would generate different network signatures compared to a
signature obtained by merely launching it. One could use dynamic
analysis techniques [4,32] to explore an app automatically for a better
understanding of network behaviors. We leave these for future work.

6. CONCLUSION
We introduced, implemented, and evaluated BIND, a new data

analysis method on encrypted network traffic for end-node identification.
The method leverages dependence in packet sequences to extract
characteristic features suitable for classification. In particular, we study
two cases where our method is applicable: website fingerprinting and
app fingerprinting. We empirically evaluate both these cases in the
closed-world and open-world settings on various real-world datasets
over HTTPS and Tor. Empirical results indicate the effectiveness
of BIND in various scenarios including the realistic open-world
setting. Our evaluations also include cases where defense mechanisms
are applied on website and app fingerprinting. We showed how the
proposed approach achieves a higher performance compared to other
existing techniques. In addition, we introduced the ADABIND approach
that addresses temporal changes in data patterns over time while
performing traffic fingerprinting.
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