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BiMorphing: A Bi-Directional Bursting Defense
Against Website Fingerprinting Attacks
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Abstract—Network traffic analysis has been increasingly used in various applications to either protect or threaten people, information,
and systems. Website fingerprinting is a passive traffic analysis attack which threatens web navigation privacy. It is a set of techniques
used to discover patterns from a sequence of network packets generated while a user accesses different websites. Internet users (such
as online activists or journalists) may wish to hide their identity and online activity to protect their privacy. Typically, an anonymity network
is utilized for this purpose. These anonymity networks such as Tor (The Onion Router) provide layers of data encryption which poses
a challenge to the traffic analysis techniques. Although various defenses have been proposed to counteract this passive attack, they
have been penetrated by new attacks that proved the ineffectiveness and/or impracticality of such defenses. In this work, we introduce
a novel defense algorithm to counteract the website fingerprinting attacks. The proposed defense obfuscates original website traffic
patterns through the use of double sampling and mathematical optimization techniques to deform packet sequences and destroy traffic
flow dependency characteristics used by attackers to identify websites. We evaluate our defense against state-of-the-art studies and
show its effectiveness with minimal overhead and zero-delay transmission to the real traffic.

Keywords—Traffic analysis, Website fingerprinting defenses.
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1 INTRODUCTION

U SER privacy on the web has been a critical as-
pect of many studies in the past decade [1]. With

a surge in the number of applications and ways to
access information, security and privacy technologies
are increasingly used to protect users’ identity. These
technologies include SSH, SSL/TLS, VPN and IPSec [2].
One particular facet of web privacy is the ability of an
attacker to identify the web pages visited by a user.
Private browsing and proxy tunnelling are often used to
protect the accessed content. However, network identity
may not be adequately protected. A user (e.g., an activist,
or journalist) may wish to be anonymous or overcome
active internet regulations that curtail one’s freedom.

Recently, studies have revealed that these privacy de-
fenses can be weakened by passive traffic analysis of
network packets while the user accesses a website [3],
[4], [5], [6], [7], [8], [9], [10]. This is known as the Website
Fingerprinting attack, which is mostly used in attack
settings by a passive adversary who is assumed to have
access to the victim’s network.

In an attack scenario, an adversary aims to identify the
web browsing activity of a client by passively listening to
the network traffic between the client and a server. Traffic
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analysis is performed, using various statistical methods,
to identify or predict the website accessed by the client.
In order to eliminate deterministic identification char-
acteristics such as destination IP and webpage content,
clients often use proxies or low-latency anonymity net-
work services such as Tor (The Onion Router) [11]. These
services disguise and encrypt network packets bound
for a particular destination. Attackers employ machine
learning techniques to learn the parameters of statistical
models using network traffic from various websites. Such
models can be used to classify an observation of network
traffic.

To counteract the website fingerprinting attack, vari-
ous defenses have been proposed in the literature [12],
[13], [7], [14], [15]. The competition between attackers
and defenders has been continually evolving. On the
one hand, the attacker gathers the encrypted packets
transmitted between the client and server, extracts pat-
terns and features, and performs traffic analysis through
machine learning techniques in an attempt to infer the
destination website an Internet user is trying to access.
On the other hand, defenders (such as Tor) have been
developing various means to thwart such attempts by
disguising and morphing network packets bound for a
particular website.

Existing defenses in literature try to thwart such at-
tacks by morphing the (source) website distribution to
make it appear to come from another (target) website
distribution with the objective of confusing the ma-
chine learning classifier. Such defenses focus on changing
characteristics like packet length, time, and consecutive
sequences of packets in a specific direction (i.e., client to
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server and vice versa) [12], [13], [7], [14], [6], [15].
In this paper, we introduce BIMORPHING, a novel web-

site fingerprinting defense that thwarts the fingerprint-
ing attacks by considering bi-directional dependence
between consecutive sequences of packets in opposite
directions. The proposed defense algorithm obfuscates
website patterns through the use of bi-directional sta-
tistical sampling and optimization techniques to achieve
minimal bandwidth overhead and zero-delay transmis-
sion to actual traffic. To the best of our knowledge, this
is the first study that utilizes a size and time (double)
concurrent sampling approach.

In short, the main contributions of this paper are
summarized as follows.
• We introduce a novel traffic fingerprinting defense,

called BIMORPHING, to thwart the fingerprinting
cyber attack. Specifically, BIMORPHING considers
dependence between consecutive sequences of pack-
ets in opposite directions.

• We propose a new defense algorithm that leverages
dependency sampling and zero latency traffic trans-
mission.

• We show how this defense achieves minimum band-
width overhead through the use of mathematical
optimization techniques.

• We implement and evaluate our approach against a
Tor dataset and show how the proposed methodol-
ogy outperforms the state-of-the-art studies.

The rest of the paper is organized as follows. In
Section 2, we present relevant background information
and related studies about website fingerprinting attack,
then we discuss our attack methodology. In Section 3,
we present relevant background information and related
studies about website fingerprinting defense; then we
discuss our defense methodology. The model is evalu-
ated in Section 4. The assumptions and consequences of
the new defense are discussed in Section 5. Finally, we
conclude our paper in Section 6.

2 WEBSITE FINGERPRINTING ATTACK
Data encryption of network packets provides user pri-
vacy by hiding plain-text content while transmitting data
between two devices within a network. Protocols such
as HTTPS support the required security layer. However,
this does not hide the user’s identity since it reveals
the source and destination IPs [16]. Typically, a proxy
server is used to route internet traffic to mask the IP
address [17]. In this case, the network traffic appears
to be sourced from the proxy server rather than the
user’s machine. A combination of encryption and proxy
server hides the user’s identity deterministically. Fur-
ther, anonymity networks make it harder to identify the
destination IP as such networks use multiple proxies
between the user and the destination server. In particular,
anonymity networks such as Tor [11] hide information of
its users by providing a low latency anonymization and
pipeline randomization.

Attacker

Entry
Guard

Middle 
Relay

Exit
NodeUser Destination

Websites

Three-layer
Encryption

Fig. 1: A Tor anonymity network example showing a
user connecting to the Internet via three Tor nodes. The
website fingerprinting passive attack occurs between the
user and the Tor entry guard.

The problem of website fingerprinting is to identify
the website browsed by a client through encrypted and
anonymized network connections by using meta infor-
mation of encrypted packets transmitted between the
user and an anonymity network. Figure 1 illustrates an
example of a client (or user) connecting to a server via
the Tor network. In this paper, we use the term “website”
and “webpage” interchangeably.

A dataset consists of a set of data instances with
features. Each data instance is assumed to be generated
from an unknown distribution. The goal of learning
is to estimate this probability distribution to answer
queries, such as classification, given evidence. A distinct
set of training and testing data instances are used to
construct and evaluate the model. In the case of website
fingerprinting, the data instances are network packets
exchanged between the server and a client. An Attacker
captures these encrypted packets in order to predict the
website they may belong to. A sequence of packets re-
quired to load a website onto the user’s browser is called
a trace. A set of statistical properties can be extracted
from a trace to represent it as a vector of features for
classification. A set of traces having these features form
the training and test datasets.

The website fingerprinting scenario, generally per-
ceived as an attack against user’s privacy, employs a
statistical model to predict the website name associated
with a given trace. Whereas, a defense mechanism ex-
plores methodologies to reduce the effectiveness of such
models capable of performing an attack.

2.1 Attack Background
Numerous studies [3], [4], [5], [6], [7], [8], [9], [10] have
proposed techniques to perform website fingerprinting.
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(a) Closed World attack scenario.
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(b) Open World attack scenario.

Fig. 2: In the Closed World scenario (a), the user visits one page among those monitored by the attacker. In Open
World (b), the user is allowed to visit unmonitored pages.

TABLE 1: Best 20 features according to the recent feature
analysis by Hayes and Danezis [8].

Rank Feature Computation
1 Counting the # of downlink packets
2 Counting the # uplink packets (fraction of total count of packets)
3 Counting the # downlink packets (fraction of total count of packets)
4 Calculating the Standard deviation of uplink packet ordering List
5 Counting the # uplink packets
6 Summing the items in the alternative concentration feature list
7 Calculating the average of uplink packet ordering list
8 Summing the incoming packets, the uplink packets and the total # packets
9 Summing the alternative # packets per second

10 Calculating the total # packets
11-18 Packet concentration and ordering feature list

19 Counting the downlink packets stats in first 30 packets
20 Counting the uplink packets stats in first 30 packets

Essentially, a supervised learning technique is employed
where a set of features are collected from traffic flow
at the user’s end. These include packet length, direction
(i.e., uplink from client to server or downlink from
server to client), and time [3]. In [18], besides using
packet length histograms, the authors combine consec-
utive packets, in the same direction, to form features
called bursts. In addition, more features such as number
of unique packet sizes, percentage of incoming and
outgoing packets, and bursts with variable n-gram fea-
tures [12] have been used.

Training data has distinct traffic traces (sequence of
packets) for each website. A classification algorithm such
as Naive Bayes, SVM, Decision trees, and k-NN predicts
the class of each test trace with the same set of features,
where the class is the website name. In order to train a
classification model (or a classifier), a sufficient number
of traces from every website is required. However, it
is impractical to obtain traces for all websites. In a
closed-world scenario, a classifier is trained using traces
from a finite set of websites. Therefore, a test trace will
have a class label prediction belonging to one of these

websites as shown in Figure 2 (a). On the other hand,
the classification problem in an open-world scenario is
to determine if a test trace belongs to a “monitored”
or “non-monitored” website set as shown in Figure 2
(b). The techniques developed to address the open-world
problem design a binary classifier that requires traces
from both the finite monitored set and an infinitely large
(rest of the universe) set of non-monitored websites.

Wang et al. [6]. use monitored website traces to learn
weights of features while the k-NN model utilizes
traces from both monitored and non-monitored web-
sites for classification. They use k-NN classification with
weighted L1 distance to conduct website fingerprinting
attacks. A page is classified as belonging to particular
class only if all k neighbors belong to this class. We
used the same training parameters as in Wang et al.’s
work [6] with our feature vectors to compare classifier
performance.

Cai et al. [5]. utilize cumulative sum of packet sizes at
a given time in each direction for the feature generation
process. In this attack traces are converted into strings,
then Damerau-Levenshtein distance is applied to com-
pare between traces. After that, the packets are ordered
so that information about the size of objects referenced
in a page and the order in which the browser requests
them can be extracted, then Hidden Markov Models are
used to extend web page classifier to a web site classifier.

Hayes et al. [8]. implement an attack against webpages
and Tor hidden services using random decision forests.
They applied a systematic analysis of the features pro-
posed by previous research. The importance of different
features was evaluated regarding k-Nearest Neighbor
classifier; the 20 most important features are shown in
Table 1. The selected features are transformed using
Random Forest (RF) by extracting feature values from
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the original feature set. Then, leaves are generated by
applying RF to these values; leaves are then used as fea-
ture values for classification process that used a custom
modification of the k-Nearest Neighbors classifier that
was used for the k-NN attack.

Panchenko et al. [10]. introduce recently an attack that
is based on an SVM with a Radial Basis Function (RBF)
kernel. The attack is called CUMUL. It abstracts the
loading process of a webpage by generating a cumulative
behavioral representation of its trace and derives n fea-
tures by sampling the piecewise linear interpolant of the
representation at n equidistant points. The cumulative
features are computed by adding the lengths of outgoing
packets and subtracting the lengths of incoming packets.
These implicitly cover characteristics of the traffic that
other classifiers have to explicitly consider, e.g., packet
ordering or burst behavior. We adopt such features with
n = 100 to compare classifier performance.

Juarez et al. [19] observe and evaluate various assump-
tions made in studies regarding website fingerprinting.
These include page load parsing by an adversary, back-
ground noise, sequential browsing behavior of a user,
and replicability due to staleness in training data with
time, among others. While recent studies [20], [21] have
addressed each of these issues by relaxing appropriate
assumptions, the issue of replicability still remains an
open challenge.

2.2 Our Attack Methodology

We recently proposed a study [9] in which the main
idea is to extract features from traces by capturing
dependencies between bi-bursts (two consecutive bursts
in opposite directions). The attack was called BIND
(fingerprinting with BI-directioNal Dependence). In this
attack, features are extracted from individual packets,
single bursts (called uni-bursts), and from adjacent uni-
bursts in opposite directions (called bi-bursts). As shown
in Figure 3, a burst can be directed from a user/client to
the server (uplink uni-burst) (e.g., burst a), or directed
from server to the user (downlink uni-burst) (e.g., burst
b). Similar to packets, a uni-burst has features such as
size (or length), time, and direction. Uni-burst size is
computed by summing the lengths of all its packets. Uni-
burst time is computed by subtracting the last packet’s
timestamp from the first packet’s timestamp within a
burst, i.e., the time taken to transmit all packets of a
burst in a specific direction. Figure 3 shows an example
of how features are extracted from a uni-burst (e.g., burst
a) whose size is 500, computed by adding packet sizes s =
200 and s = 300 that form the burst. Its time is computed
as 10, which is the absolute time difference between the
last packet (t = 10) and the first packet (t = 0) in the burst.

The features extracted from Bi-Bursts include four
categories as follows. The first category is Dn-Up-Burst
size features which is a set of tuples formed by downlink
(Dn) - uplink (Up) consecutive bursts such that unique

 s  = 200 , t = 0 

 s = 200, t = 50

Client (Up) Server (Dn)

 s = 800, t = 125

 s  = 500 , t = 280

Up Uni-Burst

Bi-Burst or Dn-Up-Burst

Bi-Burst or Up-Dn-Burst
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b

c

d

e

f

g

Tim
e

Fig. 3: An example illustrating BIND Features [9].

tuples are formed according to the corresponding uni-
burst lengths where each tuple forms a new feature. The
second category is Dn-Up-Burst time features which con-
siders unique consecutive uni-burst time tuples between
adjacent Dn uni-burst and Up uni-burst sequences. The
third category is Up-Dn-Burst size features which are
similar to Dn-Up-Burst size features, these features con-
sider burst length tuples of adjacent Up uni-burst and
Dn uni-burst sequences. The fourth category is Up-Dn-
Burst time features which are similar to Dn-Up-Burst
time features, this set of features considers burst time
tuples formed by adjacent Up uni-burst and Dn uni-burst
sequences.

Table 2 illustrates the complete set of features used by
this attack. Figure 3 shows an example of how features
are extracted from a Bi-burst (e.g., formed with a com-
bination of bursts b and c) which is denoted as Dn-Up-
Burst. In this case, the Bi-Burst tuple using the burst size
(i.e., Dn-Up-Burst size) is represented as (DnUp-2300-
400), where 2300 is the burst size of b, and 400 is the burst
size of c. We count the number of such unique tuples in
the trace. In this case, the count for DnUp-2300-400 is 1.

After that, in each trace, these unique tuples are
counted to generate a set of features. Then a quantization
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TABLE 2: Features of BIND from Packets, Uni-Bursts,
and Bi-Bursts [9].

Category Feature

Packet (Up/Dn) Packet length

Uni-Burst (Up/Dn)
Uni-Burst size
Uni-Burst time

Uni-Burst count

Bi-Burst (Up-Dn/Dn-Up)
Bi-Burst size
Bi-Burst time

process is applied to overcome dimensionality issues
associated with burst sizes. For the learning process, we
used the BIND features to train a support vector machine
(SVM) classifier in the closed-world and open-world set-
tings. SVM applies convex optimization and maps non-
linearly separated data to a higher dimensional linearly
separated feature space. We compare our defense against
this attack in our evaluation as one of the most recent
works in the website fingerprinting domain.

3 WEBSITE FINGERPRINTING DEFENSE

In this section, we present relevant background in web-
site fingerprinting defenses and discuss our defense
methodology.

3.1 Defense Background
As a successful website fingerprinting attack counts on
collecting useful features from encrypted packets to train
a model, defenses against this attack are designed with
the aim of obfuscating the patterns of the encrypted
packets of the loaded website. Defending website finger-
printing attacks has been an active area of research and
many defenses have been introduced in literature [12],
[13], [7], [14], [15]. These defenses vary from morphing
the website packet length distribution (called source) to
make it appear to come from another website distribu-
tion (called target) [12] to deforming the time required
for packets to get exchanged between client and server.

Packet Padding. Padding refers to a technique that
hides website distributions by increasing packets length
(size). One of the basic and effective padding defenses
is Pad-to-MTU which pads each individual packet to the
maximum transmission unit (MTU) in the TCP connec-
tion [12]. As all packet sizes become equal when apply-
ing this defense, obtaining useful patterns by attackers
might be less effective. This approach tries to thwart the
classifier’s ability to extract meaningful features using
packet size histograms from different websites since all
packets are of equal size. Although this method may
not be appreciated in practice as it may increase the
bandwidth overhead, early studies [3] showed that a

considerable success can be achieved when applying
defenses such as this packet padding.

To overcome the bandwidth overhead burden, more
practical distribution-based techniques have been intro-
duced to the website fingerprinting defense domain.
Specifically, Direct Target Sampling (DTS) and Traffic
Morphing (TM) are distribution-based padding defenses
that use statistical sampling techniques [13]. Using ran-
dom sampling, DTS morphs the packet length distribu-
tion of a source webpage to make appear similar to that
of a predetermined target webpage. Wright et al. [13]
introduced the TM defense which advances DTS by
using a convex optimization approach to further lower
the padding overhead.

Packet Padding and Time Obfuscation. Beside padding,
packet arrival/departure time, observed at client by an
adversary, may reveal distinguishing factors about vis-
ited websites. Dyer et al. [12] presented Buffered Fixed
Length Obfuscator (BuFLO) as a combination of packet
padding and time change defenses. BuFLO sends fixed-
length packets in fixed intervals for a fixed amount
of time. Cai et al. [7] improved BuFLO by introduc-
ing a lighter defense named TAMARAW. Instead of set-
ting a minimum duration of padding, TAMARAW stops
padding when the number of packets sent in both direc-
tions are multiples of a certain padding parameter. This
approach groups webpages in anonymity sets, with the
amount of padding generated being dependent on the
webpage’s total size. Also, incoming and outgoing traffic
are treated independently, using different packet sizes
and padding at different rates because of the asymmetry
of web browsing traffic. It still sends a fixed count of
packets for each trace as in BuFLO. Time deforming
defenses incur a delay overhead which is not preferred
in practice. Juarez et al. [14] presented an improved
adaptive padding defense called Website Traffic Finger-
printing Protection with Adaptive Defense (WTF-PAD)
that leverages packet time sampling approaches to send
dummy packets in gaps of real packets without delaying
actual traffic.

Burst Deforming. As explained earlier in this section, a
powerful distinguishing factor in website fingerprinting
is the use of burst features (i.e., aggregated packets in a
specific direction) and bi-bursts (i.e., consecutive bursts
in opposite directions). A recent study done by Wang et
al. [15] proposed a one-to-one burst molding defense that
fuses bursts of source and target websites by taking the
maximum of the two bursts (in order). We compare our
defense against this approach as one of latest defenses
introduced in literature. Our introduced BIMORPHING
defense leverages padding and time deforming defenses
and morphs bi-bursts using sampling and optimization
techniques for a minimum bandwidth overhead and zero
delay packet transmission.
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Fig. 4: BIMORPHING Example

3.2 Our Defense Methodology
In order to defeat traffic fingerprinting attacks, it is not
adequate to morph the packet sequences by just using
size padding techniques or even more sophisticated time
delay methods. The bursting nature of website traffic
makes it easy to classify a website even when such de-
fenses are applied. In addition, website fingerprinting at-
tacks that leverage bi-directional bursting characteristics
have been shown to be effective website fingerprinting
attacks even with the presence of defenses that try to
disguise packet sequences and make a source website
distribution look like it is coming from a different target
website distribution.

In this section, we introduce a new approach, called
BIMORPHING, as a novel defense against website finger-
printing attacks. The proposed defense morphs the bi-
bursting patterns (uplink to downlink or downlink to up-
link) and makes sure there is no time delay to the actual
packets exchanged between client and server. Figure 4
presents an example of morphing two bursts (uplink and
downlink). For the uplink burst, BIMORPHING samples
and injects a dummy packet in the gap between the first
and second real packets without any delay (i.e., the first
two packets in the uplink burst get transmitted on time).
Similarly, for the downlink burst, the approach samples
and sends two dummy packets in gaps of real packets.

As attackers exploit the bi-bursting size and time na-
ture of encrypted packet sequences to extract useful fea-
tures, to counteract such attacks, we implement a defense
mechanism that hides these characteristics by applying
bi-burst sampling techniques to a source website and
make it appear as coming from a target website.

BIMORPHING’s architecture, depicted in Figure 5, em-
bodies this approach through the use of optimization and
double sampling techniques. The architecture shows the
two phases of BIMORPHING. The initialization phase (top

half) is responsible for building distributions that will
be used in the double sampling phase (bottom half). The
architecture will be explained in detail in the following
sections.

BIMORPHING consists of three main components, bi-
bursting count sampling, an optimization technique to
lower the padding overhead, and bi-bursting inter-
arrival time (IAT) sampling. We now explain the three
components in detail.

3.2.1 Bi-bursting count sampling
As discussed earlier in this section, an effective defense
should change the bi-bursting nature of a website as
bi-directional dependence between consecutive bursts
reveal characteristics about traffic. Toward this end, the
first component of our BIMORPHING defense morphs
bursts taking into consideration the dependence nature
between uplink-downlink and downlink-uplink bursts.
BIMORPHING is a distribution-based defense with the
objective of morphing bi-burst patterns such that these
bi-bursts appear to come from a pre-determined target
distribution.

Count Distribution Matrices. First we define some no-
tations that we use in our figures (such as Figure 5) and
throughout the paper. Let s and t be the source and target
websites, respectively. Let Xt = [x1, x2, ..., xn] ∈ Nm×n
be the uplink-downlink (up-dn) or downlink-uplink (dn-
up) bi-burst co-occurrence matrix built from the target
website, where xi = [x1i, x2i, ..., xmi]

T is a column vector
and each entry xji tabulates the number of times a burst
of count i (i.e., the number of packets) in a specific
direction is followed by a burst of count j in the oppo-
site direction. Similarly, Xs is the bi-burst co-occurrence
matrix built from the source website. In this work, every
individual packet is padded to the maximum transmis-
sion unit (MTU).

As depicted in Figure 5, from Xs and Xt, BIMOR-
PHING starts by building matrices of probability distri-
butions Ds and Dt over bi-directional bursting counts
from s and t, respectively. D↑↓ is the uplink-downlink
distribution matrix while D↓↑ is the downlink-uplink
distribution matrix. For instance, as depicted in Figure 7,
D↑↓t = [d↑↓t1 , d↑↓t2 , ..., d↑↓tn ] is an m× n matrix that denotes
the target uplink-donwlink distribution where n is the
number of all possible uplink burst packet counts and
m is the number of all possible downlink burst packet
counts. The column vector d↑↓ti = [d↑↓t1i , d

↑↓t
2i , ..., d

↑↓t
mi ]

T

represents the probability mass function (pmf) of the
uplink burst count i with all possible downlink burst
packet counts (i.e., 1 to m). We build similar distribution
matrices for the opposite direction of the target website
(i.e., D↓↑t) as well as for the source website (i.e., D↑↓s and
D↓↑s). The distributions are shown in Figure 5. Notice
that, we don’t show the arrows in Figure 5 for simplicity
but for each case, we generate distributions for both
directions (uplink to downlink and downlink to uplilnk)
as depicted in Figure 6.
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Fig. 5: BIMORPHING Architecture

Fig. 6: Count Distribution Matrices

Bi-Burst Count Sampling. In BIMORPHING, we start
by sending the first burst from the source website s as
is. Then, for each burst of count i from s, we sample
a burst of count j from the t’s distribution matrix Dt

depending on the previous burst. The sampling process
is illustrated in Figure 7. As an example, let bsi be the
current source downlink burst with count i. As this is
a downlink burst, we sample based on the previous
burst direction (i.e., uplink) and count (i.e., we sample

Fig. 7: Bi-Burst Count Sampling

from the column vector d↑↓tk assuming the previous
uplink burst has k packets). Form this pmf, we build its
corresponding Cumulative Distribution Function (CDF)
and uniformally sample a burst. Let btj be the sampled
burst with count j. If j > i, we add (j−i) fake packets to
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the original burst from s and send. Otherwise, we send
the original burst and continue sampling until all source
bursts are consumed. We interleave these fake packets
with the original real packets from s using an algorithm
that ensures zero delay for the original real packets as
will be explained shortly. Finally, if the total number of
bursts in target is larger than the total number of bursts
in source, we add the extra target bursts to the source.
This ensures small website patterns are not revealed to
the attacker.

3.2.2 Learning Optimal Target Co-occurrence Distribu-
tion
The bi-bursting sampling proposed above may introduce
a sampling bias in the target distribution. This bias comes
from the fact that most of the bi-burst packet counts
are small. Hence, this leads to a sampling bias towards
these small bursts which may result in a misrepresen-
tation of the target in the new generated distribution.
In addition, adding fake packets during sampling may
incur a high overhead to the bandwidth. Toward dealing
with these two challenges (sampling bias and bandwidth
overhead), we propose a balancing solution through the
use of mathematical optimization as depicted in Figure 5.
BIMORPHING introduces two objective functions, one for
the uplink-downlink distributions (H↑↓) and the other
one for the downlink-uplink distributions (H↓↑). Equa-
tion 1 shows the objective function minimizing H↑↓.

min
W∈Rm×n

H↑↓ =
n∑
i=1

m∑
j=1

pij f(xij) [wij (|btj | − |bsi |)]2, (1)

Here, n and m are the number of all possible uplink
burst counts and all possible downlink burst counts,
respectively. pij is the probability from the pmf of the
source website while xij is the number of times an uplink
burst of count i is followed by a downlink burst of
count j in the target co-occurrence matrix Xt. Equation 2
explains f(xij) which is the same weighting function
introduced in [22] with the same model parameters (i.e.,
xmax = 100 and α = 3/4). f(xij) is a weighting function
designed to eliminate noise between co-occurrences of
consecutive words (bi-bursts in our case). It deals with
rare co-occurrences as well as frequent co-occurrences of
bi-bursts.

f(xij) =

{
(
xij

xmax
)α, if xij < xmax

1, otherwise.
(2)

The weights w′s are the parameters to learn. The
overhead to be minimized is (|btj | − |bsi |) which denotes
burst count difference between target and source. After
learning the optimal w′s, we recalculate Xt using the
Hadamard entrywise matrix product Xt = Xt◦W where
xij = xij wij .

The partial derivative of Equation 1 with respect to
each weight wij is as follows.

∂H↑↓
∂wij

= pij f(xij) 2 [wij (|btj | − |bsi |)]
∂[wij (|btj | − |bsi |)]

∂wij
∂H↑↓
∂wij

= pij f(xij) 2 [wij (|btj | − |bsi |)] (|btj | − |bsi |)

∂H↑↓
∂wij

= 2 pij f(xij) (|btj | − |bsi |)2 wij
(3)

Accordingly, each iteration in gradient descent modi-
fies each parameter wij as follows.

wij = wij − γ .
∂H↑↓
∂wij

, (4)

where γ is the step size. Equation 5 shows the downlink-
uplink objective function minimizing H↓↑ which is sim-
ilar to the one in Equation 1 with flipping the directions
of uplink and downlink and observing the downlink-
uplink distribution values. Similarly, the partial deriva-
tive of H↓↑ with respect to wij is similar to Equation 3
but with the values coming form the downlink-uplink
distributions.

min
W∈Rm×n

H↓↑ =

n∑
i=1

m∑
j=1

pij f(xij) [wij (|btj | − |bsi |)]2 (5)

This optimization technique ensures that co-occurring
bi-bursts are not weighed equally (i.e., frequent co-
occurrences are not overweighed and noisy rare co-
occurrences do not carry more than deserving weights).
It also minimizes the overhead of sampling from the tar-
get distribution which is crucial for any efficient defense
mechanism.

3.2.3 Bi-burst Inter-arrival Time (IAT) Sampling
Although the above sampling methodology achieves the
purpose of bi-burst morphing, a main drawback is that
fake packets incur a time delay overhead as they are
sent with original real packets. This leads to a delay to
the actual traffic exchanged between client and server.
To tackle this issue, we introduce a zero delay algorithm
that is a modified and simplified version of the Adaptive
Padding algorithm introduced in [23], [14]. The algo-
rithm sends fake packets in gaps of real packets without
delaying the actual traffic. Our approach combines bi-
burst count sampling and bi-burst time sampling to-
gether which not only hides trace size characteristics but
also disguise timing leak that may be used by attackers
to accurately fingerprint websites.

IAT Distribution Matrices. The departure/arrival (up-
link/downlink) time difference between observations of
two consecutive packets is the inter-arrival time (IAT).
We first start by building the IAT distributions from
the target website t. In a similar fashion to the bi-
burst count distributions, the approach builds two inter-
arrival time (IAT) distributions from bi-bursts, one for
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Fig. 8: IAT Distribution Matrices

uplink-downlink (A↑↓t) and the other for downlink-
uplink (A↑↓t). For the uplink-downlink case, A↑↓t =
[a↑↓t1 , a↑↓t2 , ..., a↑↓tn ] ∈ Rm×n denotes the target uplink-
donwlink IAT distributions where n is the number of
all possible uplink burst packet counts and m is the
number of all possible downlink inter-arrival times. The
column vector a↑↓ti = [a↑↓t1i , a

↑↓t
2i , ..., a

↑↓t
mi ]

T represents the
probability mass function of the uplink burst count i
with all possible next-burst downlink inter-arrival times
(i.e., 1 to m). As before, we build a similar matrix of
the opposite direction for the target website t (i.e., A↓↑t).
These matrices are shown in Figure 8.

Bi-Burst IAT Sampling. Bi-burst IAT sampling runs
simultaneously with bi-burst count sampling introduced
above (double sampling) to ensure sending fake packets
in gaps between real packets without delaying the actual
traffic. The process is shown in Figure 5. Whenever
a real packet is ready to be sent, and depending on
the previous burst direction and count, BIMORPHING
samples an inter-arrival time from the corresponding
distribution. For example, if the source current burst is
a downlink burst bsi , we sample based on the previous
burst direction which is uplink (i.e., we sample an inter-
arrival time from the column vector a↑↓tk assuming the
previous burst has a count of k packets). Similarly, if
the current burst is uplink, we sample from the previous
downlink burst’s pmf, i.e., a↓↑tk .

3.2.4 Zero Delay Packet Interleaving
As mentioned earlier, the BIMORPHING defense runs bi-
burst count sampling and bi-burst IAT sampling con-
currently. The algorithm is depicted in Figure 9 using
a finite state machine. Let’s assume bi-burst count sam-
pling gives us a pool of f fake packets to interleave
with real burst packets (sample f from D↑↓t, as coming

from a downlink current burst, b↓s). Whenever a real
packet is ready to be sent, BIMORPHING sends it without
delay (send(p)), samples a new inter-arrival time, and
starts a timer r (sample r from A↑↓t). If r expires before
another real packet comes, then BIMORPHING sends a
fake (dummy) packet (send(d)) from the pool f and
starts over by resampling another inter-arrival time. If
a real packet arrives before r expires, we send the real
packet (without sending any fake packets) and resample
an inter-arrival time.

The process continues until all current burst (uplink or
downlink) real packets have been sent. If the pool f is not
exhausted yet at the end of the current burst, we continue
sending these residuals using the IAT sampling process
until receiving a packet from the other party (next burst).
We continue a similar process with the next burst. At the
end of trace (fin), we send extra tail bursts from target
if the total number of bursts of target is greater than the
total number of bursts in source (extra).

4 EVALUATION
In this section, we demonstrate the effectiveness of the
proposed traffic fingerprinting defense. We evaluate BI-
MORPHING against a Tor dataset (denoted as TOR) using
the methodology described in §3.2. We examine the
closed-world and open-world scenarios when no defense
is applied and when there is a defense mechanism.

4.1 Dataset and Experimental Setup
The TOR dataset we use to validate our approach with
was collected by capturing encrypted packets generated
from a browser connected to the Tor anonymity network.
The dataset is described in detail in [6]. As described in
Table 3, the dataset consists of two groups of collections.
The first one is a group of 100 websites with 90 traces
(page loads) each. These websites were collected from a
list of blocked websites by three censoring countries. We
use these 100 websites for the closed-world experiments.
The second collection consists of 5000 websites where
each website has one trace. These websites were selected
from the Amazon Alexa’s top websites [24]. In the open-
world setting, we consider the first group of 100 websites
as the monitored set and the second group of 5000
website and the non-monitored set.

Closed-world. We consider the first collection of web-
sites for evaluating BIMORPHING, i.e., the 100 blocked
websites with 90 traces each. We perform a 10-fold cross
validation with these 9000 instances for training and
testing the classifier and take the average accuracy for
assessment. We use in total three state-of-the-art website
fingerprinting attacks: BIND [9], CUMUL [10], and k-
NN [6] explained in §2 to evaluate our defense. BIND
and CUMUL use a support vector machine classifier
(SVM) and k-NN uses a k-nearest neighbor classifier.
SVM is a large margin classifier that finds the best margin
of separation between labeled training data. This margin
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b↑s b↓s D↑↓t A↑↓t

b↑s D↓↑t A↓↑t

extra

send(p)

start

next burst sample f sample r

r expires & f ! = 0 : send(d), f - -

send(p)next burst

sample f sample r

send(p)

r expires & f ! = 0 : send(d), f - -

fin

fin

next burst

Fig. 9: Finite state machine to illustrate the BIMORPHING algorithm. send(p) denotes sending a real packet instantly.
send(d) denotes sending a dummy packet. f is the bi-burst count sampling pool. r is the countdown timer after
sampling the bi-burst IAT. fin refers to end of trace. extra denotes sending extra bursts from target if any.

can be used to predict the label of a test data appropri-
ately. Non-linear margins can be found by transforming
the computational space to a higher dimension using a
kernel. For BIND, we use SVM with a Radial Basis Func-
tion (RBF) kernel having the parameters Cost = 1.3× 105

and γ = 1.9× 10−6 [18]. For CUMUL, we use SVM with
a RBF kernel having the parameters Cost = 2× 1011

and γ = 2.0. k-NN (k-Nearest Neighbors) algorithm is
used where majority class voting is performed among
k neighbors of a test entity to determine its class label.
We use the weighted k-NN mechanism proposed in [6].
In this approach, feature weights are initially computed
using a subset of monitored entities. Specifically, we use
k = 2 since it is shown to produce the best results on the
TOR dataset in [6]. In our experiments, we use a publicly
available library called Scikit-learn [25]. The results of the
closed-world evaluation are measured by computing the
average accuracy of classifying the correct class for all
test traces.

Open-world. For evaluating BIMORPHING in the open-
world scenario, we use the whole TOR dataset. The mon-
itored set consists of the 9000 instances of the 100 blocked
websites in the first collection while the non-monitored
set consists of the second collection websites (i.e., 5000
websites with one instance each). The classification be-
comes a binary classification problem with each moni-
tored website as a positive point and each non-monitored
website as a negative point. Similar to the closed-world
setting, BIND [9] and CUMUL [10] attacks are used
for evaluation. We apply a 10-fold cross validation as
well. Furthermore, as the open-world scenario is a binary

classification problem (monitored or non-monitored), we
measure the true positive rate (TPR) and false positive
rate (FPR). These are defined as follows: TPR = TP

TP+FN

and FPR = FP
FP+TN . Here, TP (True Positive) is the

number of traces which are monitored, and predicted
as monitored by the classifier. FP (False Positive) is the
number of traces which are non-monitored, but predicted
as monitored. TN (True Negative) is the number of
traces which are non-monitored and predicted as non-
monitored. FN (False Negative) is the number of traces
which are monitored, but predicted as non-monitored.
In addition, we measure the F1 score, also known as the
F-measure. F1 score is a measure of a test’s accuracy and
defined as F1 = 2TP

2TP+FP+FN . It is the weighted average
of the precision and recall, where an F1 score reaches its
best value at 1 and worst value at 0.

Optimization. For learning the optimal target bi-burst
co-occurrence weights explained in §3.2.2, we use the
gradient descent algorithm. The number of iterations we
use is 100 with the step size γ = 0.001. We initialize
the values of each parameter wij to one. As mentioned
in §3.2.2, the optimal learned weights are then used
to recalculate the distributions of the target website to
correct any sampling bias to frequent bi-burst counts and
ensure minimum bi-burst sampling overhead.

Comparison. In order to evaluate the performance of BI-
MORPHING, we consider running it against the BIND [9]
as one of the most recent attacks that uses bi-directional
bursting features and show how our defense decreases
the attack accuracy. Also, we test our defense against
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TABLE 3: The TOR dataset

Dataset # of websites # of traces
per website Closed-world Open-world

TOR [6] Monitored 100 90 X X
Non-Monitored 5000 1 × X

other popular website fingerprinting attacks such as
CUMUL [10] and k-NN [6]. Furthermore, we compare
the BIMORPHING defense against the most recent state-
of-the-art defenses (BURSTMOLDING) introduced in [15]
and (TAMARAW) introduced in [7]. BURSTMOLDING
morphs individual bursts of a source website to look like
the target website bursts. Unlike our approach, BURST-
MOLDING is a one-to-one burst molding defense that
merges uni-bursts of source and target websites by tak-
ing the maximum burst count of each source burst and
its correspondent target burst, in order. Unfortunately,
BURSTMOLDING does not implement any approach to
ensure zero delay of traffic transmission. Our defense
BIMORPHING not only modifies individual bursts, but
also considers the dependency between bi-bursts and
uses optimized sampling techniques with zero delay
traffic transmission.

4.2 Results
Using the TOR dataset, we evaluate the BIMORPHING
approach in the closed-world and open-world settings.
We show the results when no morphing is applied
(normal traffic) and compare them to the morphed data
(when packets are morphed).

BIMORPHING in Closed-world. Table 4 presents the
closed-world results using the original and defended
(morphed) data. As shown in the table, after classifying
the 100 websites the accuracy of the data when no
defense is applied is pretty high. When defenses are
applied to traffic, the accuracy drops.

It can be seen that for all three BIND, CUMUL and
k-NN attacks, BIMORPHING achieves less accuracy than
BURSTMOLDING [15]. The lower the accuracy, the more
effective the defense is. This shows the effectiveness
of the proposed BIMORPHING defense which considers
a zero delay optimized bi-burst sampling technique.
Not only does BIMORPHING disguise the bi-directional
bursting patterns via the bi-burst count sampling, but
it also protects against the inter-packet arrival time leak
through the IAT sampling technique. From Table 4, it
can be seen that TAMARAW [7] performs better than
BIMORPHING regarding accuracy. However, we later
explain why TAMARAW is not a practical defense strategy
to apply in website fingerprinting.

BIMORPHING in Open-world. The results of the open-
world scenario are illustrated in Table 5 and Table 6.
Table 5 shows the results when the BIND attack is
used and Table 6 presents the results when applying the
CUMUL attack. We show the results when no defense

TABLE 4: Accuracy (%) of known attacks in the closed-
world setting against normal and morphed TOR data

Defense
Attack Accuracy (%) Avg Accuracy (%)

BIND CUMUL k-NN
No Defense 80.04 91.02 83.85 84.97
BIMORPHING 15.57 19.64 12.93 16.05
BURSTMOLDING 27.74 33.75 18.33 26.61
TAMARAW 3.65 7.03 3.33 4.67

is considered as well as when applying the defenses
techniques.

An effective defense must decrease the classifier TPR
while increasing its FPR value. From Table 5 we see that
the TPR value drops from 99.80% (no defense) to the
values of 92.72% and 88.33% for the BURSTMOLDING
and BIMORPHING defenses, respectively when the BIND
attack is used. In addition, we see that the FPR of each
defense increases significantly when applying the de-
fenses with the highest value achieved by BIMORPHING
(29.26%) which results in high false alarms leading to
uncertainty in attacker’s decisions of classifying moni-
tored websites. Similarly, for the case of the CUMUL
attack, it can be seen from Table 6 that the TPR value
decreases from 96.6% (no defense) to 86.91% for BIMOR-
PHING and to 95.31 for the BURSTMOLDING defense. On
the contrary, the FPR value increases from 6.48% (no
defense) to 19.64% for BIMORPHING and to 11.14% for
the BURSTMOLDING defense. Along with the TPR and
FPR ratios, the tables also show the number of true and
false positive instances classified by each approach as
well as the F1 score.

Defense Overhead. When a defense adds extra packets
to morph burst sequences and confuse the adversary,
it creates some inevitable overheads, namely bandwidth
overhead and time overhead. The bandwidth overhead
of a defense is defined as the number of extra packets
added in the morphed data, divided by the number
of packets in the original packet sequence. The time
overhead of a defense is defined as the extra time needed
to load the packet sequence in the morphed data, divided
by the original time required in the original packet
sequence. An effective defense algorithm must mini-
mize these overheads while achieving the desired goal
of hiding the characteristics of the destination website.
BIMORPHING uses an optimization technique to get the
bandwidth overhead to its lowest. On the other hand, if
not dealt with properly by the algorithm, morphing can
come with a possible time delay to the actual traffic. In
reality, unlike bandwidth overhead, any delay overhead
becomes a concern in low-latency networks like TOR.
Most of the existing traffic fingerprinting defenses are
imperfect when dealing with delay overhead. As dis-
cussed in §3.2.3, BIMORPHING introduces a zero delay
algorithm that sends the extra sampled packets in gaps
of real packets in a way that ensures real packets arrive
on time.
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TABLE 5: Accuracy (%) of BIND in the open-world
setting against normal and morphed TOR data

BIND Attack
Defense TPR (%) FPR (%) #TP #FP F1 (%)
No Defense 99.80 3.40 8982 170 98.96
BURSTMOLDING Defense 92.72 17.86 8345 893 91.5
BIMORPHING Defense 88.33 29.26 7950 1463 86.35

In this section, we show the bandwidth and de-
lay overhead. We see from Table 7 that BIMORPH-
ING achieves a lower bandwidth (BW) overhead than
the other competing algorithms (BURSTMOLDING and
TAMARAW). Figure 10 presents the trade-off between
the BIMORPHING defense effectiveness and bandwidth
overhead. For the delay overhead, as shown in Table 7,
BIMORPHING scores a zero delay overhead to the actual
traffic whereas BURSTMOLDING and TAMARAW can not
avoid it. The overhead measure shown in this section
does not consider the extra burst traffic sent after the
real traffic gets transmitted. This is because when the
last packet gets exchanged, control messages between
client and server flag end of real data. The following
data is full dummy and need not be considered in the
measurements.

Non-practical Defenses. The first defense that used the
strategy of adding dummy packets and/or delay packets
to make the client’s traffic indistinguishable against web-
site fingerprinting was BuFLO [12] , proposed by Dyer
et al., whose strategy was to modify packets and make
them sent at constant rates and thus remove packet-
specific features. However, coarse features such as total
volume, size, and time were hard to conceal without
incurring high bandwidth overheads [12].

TAMARAW [7] tried to solve this problem by grouping
sites that are similar in size and padding all the sites
in a group to the greatest size in that group. Even so,
TAMARAW based padding mode comes with substantial
bandwidth overhead and a reduction in protocol obfus-
cation, although results in lower accuracy for most of
the attacks. The cause of this is the greater amount of
padding after the transmission has finished in TAMARAW
compared to other defense techniques. For instance, in
the closed-world setting, the experiments in Table 4 show
that under the TAMARAW defense, BIND, CUMUL, and
k-NN attacks achieve only 3.65%, 7.03% and 3.33% ac-
curacies respectively. However, these experiments reveal
that TAMARAW comes with an enormous bandwidth
overhead cost, which is roughly more than 500% as
shown in Table 7. On the other hand, BIMORPHING and
BURSTMOLDING achieve 56.40% and 86.90% bandwidth
overhead respectively, which is insignificant compared to
the bandwidth overhead of TAMARAW. This leads to the
conclusion that defenses like TAMARAW are not practical
approaches to deploy as website fingerprinting defenses
in TOR compared to other defenses that achieve much
lower bandwidth overheads.

TABLE 6: Accuracy (%) of CUMUL in the open-world
setting against normal and morphed TOR data

CUMUL Attack
Defense TPR (%) FPR (%) #TP #FP F1 (%)
No Defense 96.6 6.48 8700 324 96.5
BURSTMOLDING Defense 95.31 11.14 8578 557 94.6
BIMORPHING Defense 86.91 19.64 7822 1570 85.06

TABLE 7: Bandwidth and delay overhead of various
defenses in the closed-world setting

Defense BW Overhead (%) Delay Overhead
BURSTMOLDING 86.90 Yes
BIMORPHING 56.40 No
TAMARAW >500 Yes

Pool of target websites. BIMORPHING deforms the
bursting nature of a source website by making its dis-
tribution resemble a predetermined target distribution
(i.e., one target website). In this experiment, we morph
the source website to resemble a pool of target websites.
We do that by increasing the number of target websites
and derive the distributions and run the optimization
explained in §3.2 against the combined co-occurrence
matrices. The results are presented in Figure 11. Appar-
ently, increasing the number of target websites results
in affecting the defense negatively (i.e., attack accuracy
gets higher). For instance, having a pool of two target
websites results in an accuracy of 39.01% while a ten-
target-website pool increases the accuracy to 44.97%.

Optimization. The optimization in §3.2.2 was introduced
to help BIMORPHING learn optimal distributions. Using
the same settings in Table 4, we evaluate BIMORPHING
against BIND and CUMUL without using this opti-
mization technique. The accuracy increases to 18.23%
for BIND and to 27.72% for CUMUL as represented in
Table 8. This shows the effectiveness of optimization in
the BIMORPHING defense.

5 DISCUSSION

Methodology. In this work, we proposed BIMORPH-
ING, a new defense to thwart the traffic fingerprinting
passive attack. One of the challenges that any defense
mechanism faces is the design of an effective defense
that prevents attackers from extracting knowledge from
encrypted traffic taking into account minimizing the
bandwidth and time overhead. BIMORPHING introduces
optimized size and time sampling with bi-directional
dependence that ensures the lowest bandwidth overhead
possible. The defense achieves a zero delay packet trans-
mission as it sends the extra dummy packets in gaps of
real packets that get to be sent without any delay.

Target Distributions. In order for the algorithm to
achieve its best, and as the approach leverages sampling
from target distributions, the choice of target should
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TABLE 8: Optimization effect of BIMORPHING defense
in closed-world setting

Attacks
BIMORPHING Accuracy (%)

with optimization without optimization
BIND 15.57 18.23
CUMUL 19.64 27.72

Fig. 10: Accuracy and bandwidth overhead

be made carefully. On the one hand, the bi-burst co-
occurrence distributions may become sparse if the target
does not have large sequences. This definitely affects the
overall performance of the algorithm. On the other hand,
if one chooses a target that has very large sequences, the
approach may result in a higher-than-desired bandwidth
overhead. Thus, there is a trade-off between the two
cases.

Bi-burst morphing. The introduced defense morphs bi-
bursts in both directions (uplink to downlink and down-
link to uplink). It may be trivial to think of obfuscating
downlink bursts only as this is the data coming from the
destination server and there is no need to obfuscate up-
link bursts. However, uplink traffic carries distinguishing
features that can be used by attackers to accurately
extract patterns. BIMORPHING is applied in both sides
(client and server). Client (Tor browser) and server (i.e.,
Tor entry guard) exchange control messages consisting
of uplink-downlink and downlink-uplink distributions
to be used by both sides for sending dummy packets
in gaps of the to-be-sent real packets. Both sides also
discard dummy packets and keep the real ones.

BIMORPHING computational overhead. We discuss the
computational overhead of BIMORPHING at run time.
Generating random numbers to sample from the distri-
butions is a light process and should incur negligible
delay as evaluated in [13] as well as in this work.

On the other hand, generating matrices and optimiza-
tion in the initialization step depicted in Figure 5 is
expensive. However, this step can be performed offline
before the BIMORPHING algorithm shown in Figure 9

Fig. 11: Increasing the number of target websites effect

is used. Introducing distributed system models like
Spark [26] can be a future work to speed up generat-
ing matrices and performing convex optimization with
parallel computations of gradient descent.

Dataset. This work was evaluated against the
TOR dataset [6]. The dataset has been widely used
in the Website Fingerprinting research community.
Collaborating with the TOR community [27] to collect
more and diverse datasets for possible enhancements of
BIMORPHING is an avenue of future work.

Zero-delay. The zero-delay algorithm introduced
in §3.2.3 was inspired by the Adaptive Padding
algorithm [23], [14]. The assumption is that injecting
dummy packets in gaps between real packets is done
in a bridge node located between client and the entry
node of the TOR network.

This ensures that morphing happens for both uplink
and downlink bursts (i.e., client to server and server to
client traffic). Expanding this mechanism to study the
effect of other factors that may threaten this delay-safe
model such as network congestion is a possible avenue
of future work.

6 CONCLUSION

To defeat encrypted traffic fingerprinting attacks, we
proposed the BIMORPHING defense which combines
size and time sampling with bi-directional dependence,
ensures low bandwidth overhead through the use of
mathematical optimization, and incurs zero delay for real
packets exchanged between client and server. We proved
the effectiveness of the proposed approach empirically
by examining the defense against passive attacks and
comparing it with state-of-the-art methods. The promis-
ing results, low bandwidth overhead, and real packets
zero latency give a new perspective for a more practical
website fingerprinting defense.
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