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ABSTRACT
Most conventional cyber defenses strive to reject detected attacks as quickly and decisively as possible;
however, this instinctive approach has the disadvantage of depriving intrusion detection systems (IDSes)
of learning experiences and threat data that might otherwise be gleaned from deeper interactions with
adversaries. For IDS technology to improve, a next-generation cyber defense is proposed in which cyber
attacks are unconventionally reimagined as free sources of live IDS training data. Rather than aborting
attacks against legitimate services, adversarial interactions are selectively prolonged to maximize the
defender’s harvest of useful threat intelligence. Enhancing web services with deceptive attack-responses
in this way is shown to be a powerful and practical strategy for improved detection, addressing several
perennial challenges for machine learning-based IDS in the literature, including scarcity of training data, the
high labeling burden for (semi-)supervised learning, encryption opacity, and concept differences between
honeypot attacks and those against genuine services. By reconceptualizing software security patches as
feature extraction engines, the approach conscripts attackers as free penetration testers, and coordinates
multiple levels of the software stack to achieve fast, automatic, and accurate labeling of live web streams.

Prototype implementations are showcased for two feature set models to extract security-relevant network-
and system-level features from cloud services hosting enterprise-grade web applications. The evaluation
demonstrates that the extracted data can be fed back into a network-level IDS for exceptionally accurate, yet
lightweight attack detection.

1. Introduction
Cyber attackers breach computer networks using a myriad of

techniques, with web application vulnerabilities corresponding
to 25% of all exploitable attack vectors [51]. Detecting cyber
attacks before they reach unpatched, vulnerable web servers (or
afterward, for recovery purposes) has become a vital necessity
for many organizations. In 2018 alone, the average window of
exposure for critical web application vulnerabilities was 69 days,
with a new vulnerability found every hour—an increase of 13%
over the previous year’s rate—and over 75% of all legitimate
web sites have unpatched vulnerabilities, 20% of which afford
attackers full control over victim systems [110, 51]. The cost of
data breaches resulting from software exploits is expected to
escalate to an unprecedented $2.5 trillion by 2022 [66].

Intrusion detection [47] is an important means of mitigating
such threats, since it offers a means of automatically analyzing
large, continuous data streams in which a relatively small number
of threats may be concealed. IDSes capitalize on the observation
that the most damaging and pernicious attacks discovered in the
wild often share similar traits, such as the steps intruders take to
open back doors, execute files and commands, alter system con-
figurations, and transmit gathered information from compromised
machines [103, 48, 63, 94]. Starting with the initial infection,
such malicious activities often leave telltale traces that can be
identified even when the underlying exploited vulnerabilities are
unknown to defenders. The challenge is therefore to capture and
filter these attack trails from network traffic, connected devices,
and target applications, and develop defense mechanisms that
can effectively leverage such data to disrupt ongoing attacks
and prevent future attempted exploits. Specifically, machine
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learning-based IDSes alert administrators when deviations from
a model of normal behavior are detected [53, 79, 123].

However, despite its great promise, the advancement of
machine learning approaches for web intrusion detection have
been hindered by a scarcity of realistic, current, publicly available
cyber attack data sets, and by the difficulty of accurately and
efficiently labeling such data sets, which are often prohibitively
large and complex [115]. This has frustrated comprehensive,
timely training of IDSes, and has resulted in an overreliance on
unrealistic closed-world assumptions [107], thereby raising IDS
false alarm rates and elevating their susceptibility to attacker
evasion [17, 26, 55, 96, 107]. The general inadequacy of static
attack datasets also introduces severe impediments to machine
learning-based IDS deployment. Models trained with labeled
data from a specific domain doesn’t usually transfer, or generalize,
to other domains. For example, data streams obtained from
cloud-based Linux services cannot be used to predict cyber
attacks against enterprise Windows endpoints, due to the intrinsic
differences between the operating environments. This limitation
impairs IDS model evolution and the adaptation of machine
learning defenses against new and emergent attack techniques.

This paper proposes and examines a new deception-based
approach to enhancing IDS data streams through crook-sourcing—
the conscription and manipulation of attackers into performing
free penetration testing for improved IDS model training and
adaptation [7]. Unlike conventional intrusion detection, this
deception-enhanced IDS incrementally builds attack detection
models based on attacker behaviors collected from successful
deceptions. The deceptions leverage user interactions at the
network, endpoint, or application layers to solicit extra communi-
cation with adversaries and automatically label attack data. This
augments the classifier with security-relevant feature extraction
capabilities not available to typical network intrusion detectors.
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Deception has long been recognized as a key ingredient of
effective cyber warfare (cf., [124]), but its applications to IDS
have heretofore been limited to contexts where the deception is
isolated and separate from the data stream in which intrusions
must actually be detected. For example, dedicated honeypots
collect attack-only data streams [116] but have limited IDS
training value in that they can mistrain models to recognize
only attacks against honeypots, including false positives from
scans and accidental connections, or attacks by unsophisticated
adversaries unable to identify and avoid honeypots. Attacks
with substantial interactivity can be missed, since the honeypot
offers no legitimate services, and therefore collects no data
characterizing attacks against legitimate services.

Our approach overcomes this limitation by integrating decep-
tive attack response capabilities directly into live, production
server software via honey-patching [9]. Honey-patches are
software security patches that are modified to avoid alerting
adversaries when their exploit attempts fail. Instead of merely
blocking the attempted intrusion, the honey-patch transparently
redirects the attacker’s connection to a carefully isolated decoy
environment running an unpatched version of the software. Ad-
versaries attempting to exploit a honey-patched vulnerability
observe software responses that resemble unpatched software,
even though the vulnerability is actually patched. This allows the
system to observe subsequent attack actions until the deception
is eventually uncovered. Honey-patches offer equivalent security
to conventional patches, but can potentially enhance IDS web
data streams with a semantically rich stream of pre-labeled
(attack-only) data for training purposes. These crook-sourced
data streams thus provide IDSes with concept-relevant, cur-
rent, feature-filled information with which to detect and prevent
sophisticated, targeted attacks.

To enable the creation and maintenance of public and on-
premise cloud environments for crook-sourcing, we propose con-
tainer technologies as a foundation for practical honey-patching
in service-oriented architectures. Our monitoring framework
transparently collects network and system telemetry from ap-
plication endpoints, and automates the extraction and labeling
of crook-sourced data streams for timely IDS evolution. Such
deception-as-a-service (ΔaaS) leverages the replication and vir-
tualization capabilities of modern cloud computing architectures
to create a “hall of mirrors” that attackers must navigate in order
to distinguish valuable targets from traps.

We demonstrate the potential effectiveness of this new IDS
approach through the design, implementation, and analysis of
DEEPDIG (DEcEPtion DIGging), a framework for deception-
enhanced web intrusion detection. Evaluation shows that extra
information harvested through mini-deceptions (1) improves
precision of anomaly-based IDSes by feeding back attack traces
into the classifier, (2) provides feature-rich, multi-dimensional
attack data for classification, and (3) can detect exploit variants
previously unseen by defenders. Our goal is to assess whether
successful deceptions are helpful for intrusion detection, and
to what degree. Given the scarcity of good, current intrusion
data sets and the costs of conducting large-scale empirical data
collection, we believe that the approach’s facility for generating
richer, automatically-labeled, web attack data streams offers
exceptional promise for future IDS research and deployments.

Our contributions can be summarized as follows:

• We propose a software patching methodology that facili-
tates semi-supervised learning for intrusion detection, in
which deceptive security patches naturally modulate and
automate the attack labeling and feature extraction.

• We present a feature-rich attack classification that more
accurately characterizes malicious web activities.

• To harness training and test data, we present the design
of a framework for the replay and generation of real web
traffic, which statistically mutates and injects scripted
attacks into the generated output streams.1

• We describe a service-oriented deployment model for
transparently enabling and scaling crook-sourcing in pub-
lic an on-premise cloud environments for attack data
collection through honey-patching.

• We evaluate our approach on large-scale network and
system events gathered through simulation and red team
evaluations over a test bed built atop production web
software deployed on a AWS EC2 cloud stack, including
the Apache web server, OpenSSL, and PHP.

Section 2 outlines our approach and presents a system
overview, followed by a more detailed architecture descrip-
tion in Section 3. Section 4 shows how our approach supports
accurate characterization of attacks through decoy data. Imple-
mentation is summarized in Section 5, followed by evaluation
methodology and results in Section 6. Finally, discussion and
related work are presented in Sections 7 and 8 (respectively),
and Section 9 concludes with outcomes and future directions.

2. Approach Overview
We first outline practical limitations of traditional machine

learning techniques for intrusion detection, motivating our re-
search. We then overview our approach for automatic attack
labeling and feature extraction via honey-patching.
2.1. Intrusion Detection Challenges

Despite the increasing popularity of machine learning in
intrusion detection applications, its success in operational envi-
ronments has been hampered by specific challenges that arise in
the cyber security domain. Fundamentally, machine learning
algorithms perform better at identifying similarities than at dis-
covering previously unseen outliers. Since normal, non-attack
data is usually far more plentiful than realistic, current attack
data, many classifiers must be trained almost solely from the
former, necessitating an almost perfect model of normality for
any reliable classification [107].

Feature extraction [18] is also unusually difficult in intrusion
detection contexts because security-relevant features are often not
known by defenders in advance. The task of selecting appropriate
features to detect an intrusion (e.g., features that generate the most
distinguishing intrusion patterns) often creates a bottleneck in
building effective models, since it demands empirical evaluation.
Identification of attack traces among collected workload traces
for constructing realistic, unbiased training sets is particularly

1The implementation and datasets used in this paper are available in https:
//github.com/cyberdeception/deepdig.
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challenging. Current approaches usually require manual analysis
aided by expert knowledge [26, 17], which severely reduces
model evolution and update capabilities to cope with attacker
evasion strategies.

A third obstacle is analysis of encrypted streams, which
are ubiquitously employed to prevent unauthorized users from
accessing sensitive web data transmitted through network links
or stored in file systems. Since network-level detectors typically
discard cyphered data, their efficacy is greatly reduced by the
widespread use of encryption [55]. In particular, attackers benefit
from encrypting their malicious payloads, making it harder for
standard classification strategies to distinguish attacks from
normal activity.

High false positive rates are another practical challenge for
adoption of machine learning approaches [96]. Raising too many
alarms renders IDSes meaningless in most cases, since actual
attacks are lost among the many alarms. Studies have shown that
effective intrusion detection therefore demands very low false
alarm rates [12].

These significant challenges call for the exploration and
development of new, accurate anomaly detection schemes that lift
together information from many different layers of the software
stack. Toward this end, our work extends machine learning-
based intrusion detection with the capability to effectively detect
malicious activities bound to the application layer, affording
detection approaches an inexpensive tool for automatically and
continuously extracting security-relevant features for attack
detection.
2.2. Cyberdeceptive Defenses

Cyber deception has become increasingly important for
protecting organizational and national critical infrastructures
from asymmetric cyber threats. Market forecasts predict an
industry in excess of $2 billion for cyberdeceptive products by
2022 [39], including major product releases by Rapid7, TrapX,
LogRhythm, Attivo, Illusive Networks, Cymmetria, Thinkst
Canary, and many others in recent years [102].

These new defense layers are rising in importance because
they enhance conventional defenses by shifting asymmetries that
traditionally burden defenders back on attackers. For example,
while conventional defenses invite adversaries to find just one crit-
ical vulnerability to successfully penetrate the network, deceptive
defenses challenge adversaries to discern which vulnerabilities
among a sea of apparent vulnerabilities (many of them traps) are
real. As attacker-defender asymmetries increase with the increas-
ing complexity of networks and software, deceptive strategies for
leveling those asymmetries will become increasingly essential
for scalable defense.
2.3. Digging Deception-Enhanced Threat Data

DEEPDIG is a new approach to enhance intrusion detection
with threat data sourced from honey-patched [9] applications.
Figure 1 shows an overview of the approach. Unlike conven-
tional techniques, DEEPDIG incrementally builds a modelM of
legitimate and malicious behavior based on audit streams and
attack traces A collected from successful deceptions, and uses
this continuously updated model to detect attacks observed in
the monitoring stream T . The deceptions leverage user interac-
tions at the network, endpoint, or application layers to solicit

crook-sourced IDS

embedded 
deception

M⊭T

M ⤎ update(M, A)

monitoring stream (T)

audit stream &
attack traces (A)

alerts

service
service with
embedded deceptions

legend:

security
perimeter

Figure 1: Crook-sourcing approach overview.

extra communication with adversaries and waste their resources,
misdirect them, and gather intelligence. This augments the
classifier with security-relevant feature extraction capabilities
not available to typical network intrusion detectors. Specifically,
honey-patches [9, 10, 34] introduce application layer deceptions
by selectively replacing software security patches with decoy
vulnerabilities. Attempted exploits transparently redirect the
attacker’s session to a decoy environment where the exploit is
allowed to succeed. This allows the system to observe subsequent
phases of the attacker’s killchain without risk to genuine assets.
Decoy environments can host genuinely unpatched software to
make their responses precisely match adversarial expectations of
vulnerable, compromised systems.

Our central enabling insight is that software security patches
can be repurposed as feature extractors for semi-supervised
learning. The maintenance of the feature extractors is crowd-
sourced (by the software development community’s ongoing
discovery and creation of new security patches), and the data
analyzed by the patches is crook-sourced (as attackers contribute
their TTP patterns to the data streams processed by the embedded
deceptions). Honey-patching transduces these two data sources
into a highly accurate, rapidly co-evolving feature extraction
module for an IDS. The extractor can effortlessly detect previ-
ously unseen payloads that exploit known vulnerabilities at the
application layer, which can be prohibitively difficult to detect by
a network-level IDS.

These capabilities are transparently built into the framework,
requiring no additional developer effort (apart from routine
patching) to convert the target application into a potent feature
extractor for anomaly detection. Traces extracted from decoys are
always contexts of true malicious activity, yielding an effortless
labeling of the data and higher-accuracy detection models.

By living inside web servers that offer legitimate services,
our deception-enhanced IDS can target attackers who use one
payload for reconnaissance but reserve another for their final
attacks. Deceiving such attackers into divulging the latter is
useful for training the IDS to identify the final attack payload,
which can reveal attacker strategies and goals not discernible
from the reconnaissance payload alone.

For example, consider a skilled adversary who knows that
asset A is not a honeypot (e.g., because traffic analysis reveals
it is delivering real services to real end-users), and attempts to
exploit a known vulnerability V to inject beaconing malware
M . If V is patched, the attack is rejected and the adversary

F. Araujo et al.: Preprint submitted to Elsevier Page 3 of 20



Crook-sourced Intrusion Detection as a Service

1 read a[i]

1 if (i ≥ lengtℎ(a))
2 abort();
3 read a[i]

1 if (i ≥ lengtℎ(a))
2 fork_to_decoy();
3 read a[i]

Figure 2: Pseudo-code for a buffer overflow vulnerability (left), a
patch (middle), and a honey-patch (right).

continues probing, eventually finding an unpatched vulnerability
V ′ and exploiting it to uploadM followed by a more destructive,
previously unseen malware variantM ′. However, if V is honey-
patched then the attack appears to succeed, so the adversary
exploits V to uploadM ′, revealingM ′ to defenders before it
is used in a successful attack. The defender’s ability to thwart
future attacks therefore derives from a synergy between the
application-level feature extractor and the network-level intrusion
detector to derive a more complete model of attacker behavior.
2.4. Honey-patching Approach

Prior work has observed that many vendor-released software
security patches can be honeyed by replacing their attack-rejection
responses with code that instead maintains and forks the attacker’s
connection to a confined, unpatched decoy [9, 10]. This approach
retains the most complex part of the vendor patch (the security
check) and replaces the remediation code with some boilerplate
forking code [8], making it easy to implement.

Figure 2 demonstrates the approach using pseudo-code for a
buffer-overflow vulnerability, a conventional patch, and a honey-
patch. The honey-patch retains the logic of the conventional
patch’s security check, but replaces its remediation with a decep-
tive fork to a decoy environment. The decoy contains no valuable
data; its purpose is to monitor attacker actions, such as shellcode
or malware introduced by the attacker after abusing the buffer
overflow to hijack the software. The infrastructure for redirecting
attacker connections to decoys can remain relatively static, so
that honey-patching each newly discovered vulnerability only
entails replacing the few lines of code in each patch that respond
to detected exploits.

This integrated deception offers some important advantages
over conventional honeypots. Most significantly, it observes
attacks against the defender’s genuine assets, not merely those
directed at fake assets that offer no legitimate services; and it can
observe attacks that are transparent to higher service layers, such
as the system API, VM/OS, and network [58]. It can therefore
capture data from sophisticated attackers who monitor network
traffic to identify service-providing assets before launching
attacks, who customize their attacks to the particular activities of
targeted victims (differentiating genuine servers from dedicated
honeypots), and who may have already successfully infiltrated
the victim’s network before their attacks are detected. We next
examine how deception-enhanced data harvested in this way can
be of particular value to network-level defenses, such as firewalls
armed with machine learning-based intrusion detection.
2.5. Deception as a Service

Cloud computing has attracted significant attention in recent
years as a model for scalable service consumption and as a
delivery platform for service-oriented computing. Revolution-
ary advances in hardware and virtualization technologies have

elevated cloud computing to a thriving industry that affords
enterprises the ability to shrink IT expenditures, adapt quickly to
variable workloads, and reduce administration overhead. These
successes have been achieved principally by reinventing a wide
variety of traditionally on-site computing resources as deliver-
able services according to the mantra Everything as a Service
(XaaS) [14]. Pillars of the XaaS mantra typically include Soft-
ware as a Service (SaaS), Platform as a Service (PaaS), and
Infrastructure as a Service (IaaS).

Our central observation is that the technological advances at
the heart of the cloud computing movement have now converged
to cultivate a remarkably fertile ground for mass-scale cyber
deception as a defense. In particular, many foundational cloud
technologies, including massive replication, high performance
process migration and load balancing, hardware and software
heterogeneity, aggressive multitenancy, and multi-layer virtual-
ization, have led to computing environments ideal for assembling
a “hall of mirrors” in which legitimate services are interlaced
with deceptive computations, platforms, data, and software, all
designed to misdirect attackers away from valuable targets. We
refer to this vision as Deception as a Service (ΔaaS).
ΔaaS leverages rapid advances in cloud computing capa-

bilities by introducing new, deception-powered defenses that
leverage facilities and opportunities unique to cloud environ-
ments, and that cannot be realized as effectively on traditional,
non-distributed computing platforms. This counterpoints public
fears about the data security of cloud computing systems (cf.,
[22]) by championing clouds as a new cyber security opportunity,
rather than merely a security resistant environment to which
traditional defenses are transitioned. Our approach enables the au-
tomatic deployment and scaling of DEEPDIG for crook-sourcing
conceptually-relevant threat data on hybrid cloud architectures
and environments, affording cyber-defenders a new form of active
response to attacks in commodity cloud and service-oriented
infrastructures. It is therefore envisioned as a complement
(not a replacement) to cloud defenses for computation integrity
[69, 104, 31], data security and privacy [112, 20, 93, 68, 97],
and non-deceptive cloud IDS (e.g., [70, 71]).

3. Architecture
DEEPDIG’s architecture, depicted in Figure 3a, leverages

application-level threat data gathered from attacker sessions
redirected to decoys to train and adapt a network-level IDS live.
Within this framework, honey-patches misdirect attackers to
decoys that automatically collect and label monitored attack data.
The intrusion detector consists of an attack modeling component
that incrementally updates the anomaly model data generated by
honey-patched servers, and an attack detection component that
uses this model to flag anomalous activities in the monitored
perimeter.
3.1. Monitoring & Threat Data Collection

The decoys into which attacker sessions are forked are man-
aged as a pool of continuously monitored Linux containers. Each
container follows the life cycle depicted in Fig. 3b. Upon attack
detection, the honey-patching mechanism acquires the first avail-
able container from the pool. The acquired container holds an
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Figure 3: Overview of (a) deceptive IDS training and (b) decoy lifecycle management.

attacker session until (1) the session is deliberately closed by the
attacker, (2) the connection’s keep-alive timeout expires, (3) the
ephemeral container crashes, or (4) a session timeout is reached.
The last two conditions are common outcomes of successful
exploits. In any of these cases, the container is released back to
the pool and undergoes a recycling process before becoming
available again.

After decoy release, the container monitoring component
extracts the session trace (delimited by acquire and release),
labels it, and stores it outside the decoy for subsequent feature
extraction. Decoys only host attack sessions, so precisely collect-
ing and labeling their traces (at both the network and OS level)
is effortless.

DEEPDIG distinguishes between three input data streams: (1)
the audit stream, collected at the target honey-patched server; (2)
attack traces, collected at decoys; and (3) the monitoring stream,
the actual test stream collected from regular servers. Each of
these streams contains network packets and OS events captured
at each server environment. To minimize performance impact,
we used two powerful and highly efficient software monitors:
sysdig [111] (to track system calls and modifications made to the
file system), and libpcap [114] (to monitor ingress and egress of
network packets). Specifically, monitored data is stored outside
the decoy environments to avoid possible tampering with the
collected data.

Our monitoring and data collection solution is designed to
scale for large, distributed on-premise and cloud deployments.
The host-level telemetry leverages a mainstream kernel module
that implements non-blocking event collection and memory-
mapped event buffer handling for minimal computational over-
head. This architecture allows system events to be safely collected
(without system call interposition) and compressed by a con-
tainerized user space agent that is oblivious to other objects
and resources located in the host environment. The event data
streams originated from the monitored hosts are conveniently
exported to a high-performance, distributed S3-compatible object
storage server [91], designed for large-scale data infrastructures.
3.2. Attack Modeling & Detection

Using the continuous audit stream and incoming attack
traces as labeled input data, DEEPDIG incrementally builds a
machine learning model that captures legitimate and malicious
behavior. The incremental updates accommodate the evolving
TTPs of attackers and defenders as attack surfaces and adversarial

experiences change over time. The raw training set (viz. the
audit stream and attack traces) is piped into a feature extraction
component that selects relevant, non-redundant features (see §4)
and outputs feature vectors—audit data and attack data—that
are grouped and queued for subsequent model update. Since
the initial data streams are labeled and have been preprocessed,
feature extraction becomes very efficient and can be performed
automatically. This process repeats periodically according to
an administrator-specified policy. Finally, the attack detection
module uses the most recently constructed attack model to detect
malicious activity in the runtime monitoring data.
3.3. Deployment Automation

Modern computing environments typically require the con-
figuration and orchestration of multiple services for applications
to function. These can range from a few instances (e.g., a web
server and a database), to very complex setups such as IaaS
deployments requiring many components to be installed, config-
ured, and interconnected (e.g., OpenStack). To ease the task of
creating and maintaining such service-oriented environments,
configuration management tools like Chef [29], Ansible [6], and
Puppet [100], or even general-purpose scripting languages such
as Python or Bash, automate the configuration of machines to a
particular specification.

More recently, Juju [25] has been introduced as a model
specification for service oriented architectures and deployments,
enabling transparent and efficient management of cloud services
on both public cloud infrastructures (e.g., Amazon EC2, Mi-
crosoft Azure, Joyent Triton) and private infrastructures (e.g.,
OpenStack, physical servers, containers). Juju abstracts and
simplifies cloud deployment and scaling, and provides users
with client-side command-line tools to uniformly manage locally
and remotely deployed services. Application-specific knowledge
such as dependencies, operational events like backups and up-
grades, and integration options with other pieces of software
are encapsulated in Juju’s charms. A charm defines everything
required to deploy a particular service, and is composed of
user-implemented hooks which Juju invokes at different stages
of the service’s lifecycle.
A Service-Oriented Architecture for Crook-Sourcing. Us-
ing Juju as underlying framework, we implemented a charm that
automates the deployment and scaling of DEEPDIG on top of
IaaS environments, therefore augmenting cloud infrastructures
with ΔaaS capabilities through honey-patching. Figure 4 shows
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Figure 4: Overview of a ΔaaS architecture.

an overview of the ΔaaS architecture, which outlines its main
components and services. It builds atop of mainstream IaaS tech-
nologies, leveraging Juju to provision and orchestrate different
ΔaaS deployment modes (e.g., load balanced, containerized,
high-availability). Deployment packages (charms) are main-
tained and sourced from a centralized repository, and a remote
command line interpreter is used to manage the deployments.

Users of our platform can easily deploy our crook-sourcing
framework on a variety of environments including KVM, Xen,
and LXC. Physical deployment is also supported through bare-
metal containers and metal-as-a-service, which lets physical
servers be treated like virtual machines in the cloud. For example,
the command line instruction

juju-deploy deepdig –to machine:0/lxc

instructs the juju state service component to deploy a new unit
of DEEPDIG on environment 2. This triggers the automatic
instantiation of a new container (i.e., machine 0), and the juju
agent running on the container is tasked with the execution of
the charm specification.
Scalability. One of the main benefits of this service-oriented
architecture is the simplicity of scaling services up and down. For
example, to scale DEEPDIG up horizontally, users first instruct
juju to add the desired number of units to the existent deployment
(e.g., juju add-unit deepdig –to machine:1/maas), and
then setup load balancing to distribute the work load among
units. To achieve this, one option is to use the infrastructure’s
built-in load balancing capabilities. An alternative option is to
deploy a load balancing service such as HAProxy:

juju-deploy haproxy –to machine:0/maas;

juju add-relation deepdig haproxy

Conversely, scaling down follows a similar procedure to remove
deployed units.
ServiceModeling. EachDEEPDIG service instance goes through
a series of events during its lifecycle: install, configure, start,
upgrade, and stop. Figure 5a depicts these events and the associ-
ated state transitions. Two special events, bootstrap and destroy,
result in pre-defined actions executed by Juju, and correspond
to the creation and destruction of the deployment environment,

ready started stopped
deploybootstrap

stop

destroy

start
upgrade

(a) Service lifecycle

installconfiguration
charm

configure

start

setup target
environment

install application 
proxy

setup decoy
environment

setup internal
network
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control
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legend:
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Figure 5: Overview of (a) service lifecycle and (b) deployment
hooks and configuration.

respectively. For each of the remaining events, Juju executes
specific hooks specified in the deepdig charm. Hooks are exe-
cutable scripts in a charm’s hooks directory, and are invoked by
the unit’s juju agent at particular times in the service lifecycle.
We designed deepdig hooks to be idempotent, meaning that there
is no observable difference between running a hook once and
running it multiple times.

Figure 5b details hooks associated with DEEPDIG’s de-
ployment. Hooks setup target environment and setup decoy
environment pre-installs onto the deployment environment the
target and decoy containers file systems according to the charm’s
configuration parameters (e.g., string prefix for decoy names,
container pool size). Hook install applications fetches all ap-
plications specified in the configuration (e.g., a honey-patched
Apache HTTP) and installs them into the target container. Finally,
hooks install reverse proxy and setup internal network install the
proxy on the unit and isolate the target container from the pool
of decoys as a separate subnet, respectively.

4. Attack Detection
To assess our framework’s ability to enhance IDS data

streams, we have designed and implemented two familiar feature
set models: (1) Bi-Di detects anomalies in security-relevant
network streams, and (2) N-Gram finds anomalies in system
call traces. Our approach is agnostic to the particular feature
set model chosen; we choose these two models for evaluation
purposes because they are simple and afford direct comparisons
to non-deceptive prior works. The goal of the evaluation is hence
to measure the utility of the deception for enhancing data streams
for intrusion detection, not to assess the utility of novel feature
sets.
4.1. Network Packet Analysis

Bi-Di (Bi-Directional) extracts features from sequences of
packets and bursts—consecutive same-direction packets (viz.,
uplinks from client Tx, or downlinks from server Rx) for network

F. Araujo et al.: Preprint submitted to Elsevier Page 6 of 20



Crook-sourced Intrusion Detection as a Service

Table 1
Packet, uni-burst, and bi-burst features.

Category Features

Packet (Tx/Rx) Packet length

Uni-Burst (Tx/Rx) Uni-Burst size
Uni-Burst time
Uni-Burst count

Bi-Burst (Tx-Rx/Rx-Tx) Bi-Burst size
Bi-Burst time

behavior analysis. It uses distributions from individual burst
sequences (uni-bursts) and sequences of two adjacent bursts
(bi-bursts), constructing histograms using features extracted
from packet lengths and directions. To overcome dimensionality
issues associated with burst sizes, bucketization is applied to
group bursts into correlation sets (e.g., based on frequency of
occurrence).

Table 1 summarizes the features used, including features from
prior works [3, 50, 95, 119]. For robustness against encrypted
payloads, we here limit feature extraction to packet headers.
Uni-burst features include burst size (the sum of the sizes of
all packets in the burst), time (the duration for the entire burst to
be transmitted), and count (the number of packets in the burst).
Taking direction into consideration, one histogram for each is
generated.
Bi-burst features include time and size attributes of Tx-Rx-
bursts and Rx-Tx-bursts. Each is comprised of a consecutive pair
of downlink and uplink bursts. The size and time of each are the
sum of the sizes and times of the constituent bursts, respectively.

Bi-bursts capture dependencies between consecutive TCP
packet flows. Based on connection characteristics, such as
network congestion, the TCP protocol applies flow control
mechanisms (e.g., window size and scaling, acknowledgement,
sequence numbers) to ensure a level of consistency between
Tx and Rx. This influences the size and time of transmitted
packets in each direction. Each packet flow (uplink and downlink)
thereby affects the next flow or burst until communicating parties
finalize the connection.

4.2. System Call Analysis
Monitored data also includes system streams comprised of OS

events, each containing multiple fields, including event type (e.g.,
open, read, select), process name, and direction. Our prototype
was developed for Linux x86_64 systems, which exhibit about
314 distinct system call events. We build histograms from these
using N-Gram, which extracts features from event subsequences.
Each feature type consists of between 1 (uni-events) and 4 (quad-
events) consecutive events, with each event classified as an enter
or exit.

Bi-Di and N-Gram differ in feature granularity; the former
uses coarser-grained bursting while the latter uses individual
system call co-occurrences.

Algorithm 1: Ens-SVM
Data: training data: T rainX, testing data: T estX
Result: a predicted label  for each testing instance 

1 begin
2 // build SVM models for Bi-Di and N-Gram
3 B ← updateModel(Bi-Di, T rainX);
4 ℕ ← updateModel(N-Gram, T rainX);
5 for each  ∈ T estX do
6 B ← label(B,);
7 ℕ ← label(ℕ,);
8 if B == ℕ then
9  ← B;

10 else

11  ← label
(

argmax
c∈{B,ℕ}

confidence(c,), 
)

;
12 end
13 end
14 end

4.3. Classification
We evaluate our approach’s practicality using two supervised

learning models: SVM [46] and deep learning [78]. Our main
objective is to show that our deception-enhanced framework
facilitates incremental supervised learning for intrusion detection.
Ens-SVM. This method builds SVM models for Bi-Di and N-
Gram. Using convex optimization and mapping non-linearly
separated data to a higher dimensional linearly separated feature
space, SVM separates positive (attack) and negative (benign)
training instances by a hyperplane with the maximum gap possi-
ble. Prediction labels are assigned based on which side of the
hyperplane each monitoring/testing instance resides.

We combine the two classifiers into an ensemble that clas-
sifies new input data by weighing the classification outcomes
of Bi-Di and N-Gram based on their individual accuracy in-
dexes. Ensemble methods tend to exhibit higher accuracy and
avoid normalization issues raised by the alternative (brute force)
approach of concatenating the dissimilar features into a single
feature vector.

Algorithm 1 describes the voting approach for Ens-SVM.
For each instance in the monitoring stream, if both Bi-Di and
N-Gram agree on the predictive label (line 8), Ens-SVM takes
the common classification as output (line 9). Otherwise, if the
classifiers disagree, Ens-SVM takes the prediction with the
highest SVM confidence (line 11). Confidence is rated using
Platt scaling [98], which uses the following sigmoid-like function
to estimate confidence:

P (y = 1|x) = 1
1 + exp (Af (x) + B)

(1)

where y is the label, x is the testing vector, f (x) is the SVM out-
put, and A and B are scalar parameters learned using Maximum
Likelihood Estimation (MLE). This yields a probability measure
of a classifier’s confidence in assigning a label to a testing point.
Metric Learning. To classify instances to classes, we use on-
line adaptive metric learning (OAML) [54, 13]. OAML is better
suited to our task than off-line approaches (e.g., k-nearest neigh-
bors), which yield weak predictors when the separation between
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Figure 6: OAML network structure. Each layer Li is a linear
transformation output to a rectified linear unit (ReLU) activation.
Embedding layers Ei connect to corresponding input or hidden
layers. Linear model E0 maps the input feature space to the
embedding space.

different class instances is small. Online similarity metric learn-
ing (OML) [81, 28, 62, 64, 21] improves instance separation
by finding a new latent space to project the original features,
learning similarity from a stream of constraints. Pairwise and
triplet constraints are typically employed: a pairwise constraint
takes two dissimilar/similar instances, while a triplet constraint
(A,B, C) combines similar instances A and B with a dissimilar
instance C .

We choose adaptive OML since non-adaptive OML usu-
ally learns a pre-selected linear metric (e.g., Mahalanobis dis-
tance [122]) that lacks the complexity to learn non-linear seman-
tic similarities among class instances, which are prevalent in
intrusion detection scenarios. Moreover, it derives its metric
model from well-defined input constraints, leading to bias to-
wards the training data. OAML overcomes these disadvantages
by adapting its complexity to accommodate more constraints in
the observed data. Its metric function learns a dynamic latent
space from the Bi-Di and N-Gram feature spaces, which can
include both linear and highly non-linear functions.

OAML leverages artificial neural networks (ANNs) to learn
a metric similarity function and can adapt its learning model
based on the complexity of its input space. It modifies common
deep learning architectures so that the output of every hidden
layer flows to an independent metric-embedding layer (MEL).
The MELs output an n-dimensional vector in an embedded space
where similar instances are clustered and dissimilar instances
are separated. Each MEL has an assigned metric weight to
determine its importance for the models generated. The output
of this embedding is used as input to a k-NN classifier. The
approach is detailed below.
Problem Setting. Let S = {(xt,x+t ,x−t )}Tt=1 be a sequence oftriplet constraints sampled from the data, where {xt,x+t ,x−t } ∈
d , and xt (anchor) is similar to x+t (positive) but dissimilar to
x−t (negative). The goal of online adaptive metric learning is to
learn a model F ∶ d ↦ d′ such that ||F (xt) − F (x+t )||2 ≪
||F (xt) − F (x−t )||2. Given these parameters, the objective is to
learn a metric model with adaptive complexity while satisfying
the constraints. The complexity of F must be adaptive so that its
hypothesis space is automatically modified.
Overview. Consider a neural network with L hidden layers,
where the input layer and the hidden layer are connected to an

independent MEL. Each embedding layer learns a latent space
where similar instances are clustered and dissimilar instances are
separated.

Figure 6 illustrates our ANN. Let El ∈ {E0, E1,… , EL}denote the ltℎ metric model in OAML (i.e., the network branch
from the input layer to the ltℎ MEL). The simplest OAMLmodel
E0 represents a linear transformation from the input feature space
to themetric embedding space. Aweight �(l) ∈ [0, 1] is assigned
to El , measuring its importance in OAML.

For a triplet constraint (xt,x+t ,x−t ) that arrives at time t, its
metric embedding f (l)(x∗t ) generated by El is

f (l)(x∗t ) = ℎ
(l)Θ(l) (2)

where ℎ(l) = �(W (l)ℎ(l−1)),with l ≥ 1, l ∈ ℕ, and ℎ(0) = x∗t .Here x∗t denotes any anchor (xt), positive (x+t ), or negative (x−t )instance, and ℎ(l) represents the activation of the lth hidden
layer. Learned metric embedding f (l)(x∗t ) is limited to a unit
sphere (i.e., ||f (l)(x∗t )||2 = 1) to reduce the search space andaccelerate training.

For every triplet (xt,x+t ,x−t ) arriving during the training
phase, we first retrieve the metric embedding f (l)(x∗t ) fromthe lth metric model using Eq. 2. A local loss (l) for El is
evaluated by calculating the similarity and dissimilarity errors
based on f (l)(x∗t ). Thus, the overall loss introduced by this
triplet is given by

overall(xt,x+t ,x
−
t ) =

L
∑

l=0
�(l) ⋅ (l)(xt,x+t ,x

−
t ) (3)

ParametersΘ(l), �(l), andW (l) are learned during the online
learning phase. The final optimization problem to solve in OAML
at time t is therefore:

minimize
Θ(l),W (l),�(l)

overall
subject to ||f (l)(x∗t )||2 = 1,∀l = 0,… , L.

(4)

We evaluate the similarity and dissimilarity errors using an
adaptive-bound triplet loss (ABTL) constraint [54] to estimate
(l) and update parameters Θ(l),W (l) and �(l).
Continual Learning. Novel classes may appear at any time in
the monitoring streams (e.g., new attacks and new deceptions).
To cope with such concept-evolving data streams, we include
a novel class detector that extends traditional classifiers with
automatic detection of novel classes before the true labels of the
novel class instances arrive. Once a novel class is detected, the
current batch of input data is used to incrementally retrain our
supervised models. Such continual learning technique utilizes
the production data streams to retrain the model based on the
new activity, thus enabling DEEPDIG to continuously adapt to
changes in the operating environment.
Data stream classification. Novel class detection observes that
data points belonging to a common class are closer to each other
(cohesion), yet far from data points belonging to other classes
(separation). Building upon ECSMiner [88, 2], our approach
segments data streams into equal, fixed-sized chunks, each
containing a set of monitoring traces, efficiently buffering chunks
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for online processing. When a buffer is examined for novel
classes, the classification algorithm looks for strong cohesion
among outliers in the buffer and large separation between outliers
and training data. When strong cohesion and separation are
found, the classifier declares a novel class.
Training & model update. A new classifier is trained on each
chunk and added to a fixed-sized ensemble ofM classifiers,
leveraging audit and attack instances (traces). After each iteration,
the set ofM + 1 classifiers are ranked based on their prediction
accuracies on the latest data chunk, and only the firstM classifiers
remain in the ensemble. The ensemble is continuously updated
following this strategy and thus modulates the most recent
concept in the incoming data stream, alleviating adaptability
issues associated with concept drift [88]. Unlabeled instances
are classified by majority vote of the ensemble’s classifiers.
Classification model. Each classifier in the ensemble uses a
k-NN classification, deriving its input features from Bi-Di and
N-Gram feature set models. Rather than storing all data points of
the training chunk in memory, which is prohibitively inefficient,
we optimize space utilization and time performance by using
a semi-supervised clustering technique based on Expectation
Maximization (E-M) [89]. This minimizes both intra-cluster
dispersion and cluster impurity, and caches a summary of each
cluster (centroid and frequencies of data points belonging to
each class), discarding the raw data points.
Feature transformation. To make the learned representations
robust to partial corruption of the input patterns and improve
classification accuracy, abstract features are generated from the
original feature space during training via a stacked denoising
autoencoder (DAE) [117, 118] using the instances of the first
few chunks in the data stream. Stacked DAE builds a deep neural
network that aims to capture the statistical dependencies between
the inputs by reconstructing a clean input from a corrupted version
of it, thus forcing the hidden layers to discover more robust
features (yielding better generalization) and prevent the classifier
from learning the identity (while preserving the information
about the input). Figure 7 illustrates our approach. The first step
creates a corrupted version x̃ of input x ∈ ℝd using additive
Gaussian noise [30]. In other words, a random value vk is addedto each feature in x: x̃k = xk + vk where k = [1… d] and
vk ∼ (0, �2) (cf., [16]). The output of the training phase is a
set of weightsW and bias vectors b. We keep the learned weights
and biases to transform the feature values of the subsequent
instances of the stream. Finally, the transformed features are
then used to retrain the classifier.

5. Implementation
We developed an implementation of DEEPDIG for 64-bit

Linux (kernel 3.19). It consists of two main components: (1)
The monitoring controller performs server monitoring and attack
trace extraction from decoys. It consists of about 350 lines of
Node.js code, and leverages tcpdump, editcap, and sysdig for
network and system call tracing and preprocessing. (2) The attack
detection component is implemented as two Python modules: the
feature extraction module, comprising about 1200 lines of code
and feature generation; and the classifier component, comprising

(W, b)
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Figure 7: Overview of feature transformation.

230 lines of code that references the Weka [57] wrapper for
LIBSVM [27]. The OAML components comprise about 500
lines of Python code referencing the PyTorch [101] library.

The source-code modifications required to honey-patch vul-
nerabilities in Apache HTTP, Bash, PHP, and OpenSSL consist
of a mere 35 lines of C code added or changed in the original
server code, showing that the required deceptive capabilities can
be added to production-level web services with very little effort.
(The forking framework [9, 8] is fixed, and thus not included in
this count.)

To validate our ΔaaS architecture, we have implemented a
Juju charm for DEEPDIG, and used it to deploy honey-patching as
a service both on premise (on LXC containers running on top of
a Linux VM) and remotely on Amazon EC2. To test our deploy-
ments, we streamed into each instance scripted attacks generated
by our testing framework (see Section 6.1). Overall, our hooks
consist of about 460 lines of Bash code, and expose a rich set of
configuration parameters to ease deployment customization.

6. Evaluation
A central goal of our research is to quantitatively measure the

impact of embedded deception on IDS accuracy. Our evaluation
approach therefore differs from works that seek to measure
absolute IDS accuracy, or that do not separate the impact of
deception from the rest of the detection process. We first present
our evaluation framework, which we harness to automatically
generate training and test datasets from real web traffic for
our experiments. Then we discuss our experimental setup and
investigate the effects of different attack classes and varying
numbers of attack instances on the predictive power and accuracy
of the intrusion detection. Finally, we assess the performance
impact of the deception monitoring mechanism that captures
network packets and system events.

All experiments were performed on a 16-core hosts with
24 GB RAM running 64-bit Ubuntu 16.04. We used our ΔaaS
automation to deploy regular and honey-patched servers as LXC
containers [82] running atop the hosts using the official Ubuntu
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Figure 8: Overview of automated workload generation and testing
harness.

container image. Red teaming validation was performed on a
similar environment comprising of EC2 instances deployed on
AWS (Amazon Web Services).
6.1. Experimental Framework

Figure 8 shows an overview of our evaluation framework,
inspired by related work [19, 13]. It streams encrypted legitimate
and malicious workloads (both simulated and real) simultane-
ously onto a honey-patched web server, resulting in labeled audit
streams and attack traces (collected at decoys) for training set
generation. This strategy facilitates the reproducibility of our
experiments while allowing for the validation of our approach in
a realistic setting. Table 2 summarizes the collected network
traffic and systems events used in our experiments.
Legitimate workload. In order to collect normal data, we used
both real user interactions with a web browser and automated
simulation of various user actions on the browser. For the real
user interaction, we monitored and recorded web traffic from
users in a local area network (comprising 20 endpoints) over a
two-day period, resulting in more than 30GB of audit pcap data.
The recorded sessions are replayed by our framework and include
users exhibiting normal browsing activities, such as accessing
social media websites, search engines, online shopping websites,
web email, video sharing, and news websites.

For the simulated interaction, normal traffic is created by
automating complex user actions on a typical web application,
leveraging Selenium [105] to automate user interaction with a
web browser (e.g., clicking buttons, filling out forms, navigating
a web page). We generated web traffic for 12 different user
activities (each repeated 200 times with varying data feeds)
over a span of three weeks, including web page browsing, e-
commerce website navigation, blog posting, and interacting with
a social media web application. The setup included a CGI web
application and a PHP-based Wordpress application hosted on a
monitored Apache web server. To enrich the set of user activities,
the Wordpress application was extended with Buddypress and
Woocommerce plugins for social media and e-commerce web
activities, respectively.

To create realistic interactions with the web applications, our
framework feeds from online data sources, such as the BBC text
corpus [56], online text generators [92] for personally identifiable
information (e.g., usernames, passwords), and product names to
populate web forms. To ensure diversity, we statistically sampled
the data sources to obtain user input values and dynamically
generated web content. For example, blog title and body are

Table 2
Summary of collected network traffic and system events.

Type Source Description

Legitimate Real users 30GB web traffic collected from
a local network comprising 20
endpoints over a two-day period.

Simulated 12GB web traffic and systems
events generated using our au-
tomated testing framework for
12 different user activities types
over a span of three weeks.

Attack Red teaming Web traffic and system events
collected from a penetration test-
ing exercise comprising 10 stu-
dents with varied skill levels in
offensive security perform an av-
erage of 45 minutes of penetra-
tion testing on their own time,
over a span of three days.

Simulated Web traffic and system events
generated from scripted remote
attacks (cf. Table 3) and au-
tomatically interleaved to legiti-
mate traffic (set at 0.5–1% of the
overall traffic) using our testing
framework.

Table 3
Summary of attack workload.

# Attack Type Description Software

1 CVE-2014-0160 Information leak Openssl
2 CVE-2012-1823 System remote hijack PHP
3 CVE-2011-3368 Port scanning Apache

4–10 CVE-2014-6271 System hijack (7 variants) Bash
11 CVE-2014-6271 Remote Password file read Bash
12 CVE-2014-6271 Remote root directory read Bash
13 CVE-2014-0224 Session hijack and information leak Openssl
14 CVE-2010-0740 DoS via NULL pointer dereference Openssl
15 CVE-2010-1452 DoS via request that lacks a path Apache
16 CVE-2016-7054 DoS via heap buffer overflow Openssl

17–22 CVE-2017-5941∗ System hijack (6 variants) Node.js

∗used for testing only, as n-day vulnerability.

statistically sampled from the BBC text corpus, while product
names are picked from the product names data source.
Attackworkload. Attack traffic is generated based on real-world
vulnerabilities, and corresponds to 0.5–1% of the overall network
traffic, to approximate the results found in prior studies on targeted
attacks [49]. Table 3 lists 22 exploits for nine well-advertised,
high-severity vulnerabilities. These include CVE-2014-0160
(Heartbleed), CVE-2014-6271 (Shellshock), CVE-2012-1823
(improper handling of query strings by PHP in CGI mode), CVE-
2011-3368 (improper URL validation), CVE-2014-0224 (Change
Cipher specification attack), CVE2010-0740 (Malformed TLS
record), CVE-2010-1452 (the Apache mod_cache vulnerabilty),
CVE-2016-7054 (Buffer overflow in openssl with support for
ChaCha20-Poly1305 cipher suite), and CVE-2017-5941 (Node.js
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error handling vulnerability). In addition, nine attack variants
exploiting CVE-2014-6271 (Shellshock) were created to carry
out different malicious activities (i.e., different attack payloads),
such as leaking password files, dropping malware, and invoking
bash shells on the remote server. These vulnerabilities are
important as attack vectors because they range from sensitive
data exfiltration to complete control and remote code execution.

Similarly, we generated attack traffic using CVE-2017-5941
as an additional remote execution attack and executed 6 attack
payloads. The post-infection payloads executed tasks such as tool
acquisition from remote host, basic environment reconnaissance
(e.g., active scanning with Nmap, passive inspection of system
logs), remote password file access, root certificate exfiltration,
and attempts at gaining access to other machines in the network.
Red teaming. To validate our results, we conducted a small-
scale penetration testing experiment using a red team composed
of graduate students in cyber security who were tasked with
performing reconnaissance and attacking a collection of moni-
tored web server instances deployed on AWS. The deployment
comprised unpatched and honey-patched web servers exposing
(real or apparent) Shellshock vulnerabilities. Special care was
taken not to open unpatched software to the broad Internet. The
attack team was composed by 10 students with basic (e.g., script-
kidding) to advanced skills (e.g., penetration testing, reverse
engineering) in offensive security. After a preliminary leveling
and preparation, each student spent an average of 45 minutes
completing the exercise on their own time. Each student were
assigned separate, identical EC2 instances. Students were not
permitted to repeat any exercise more than once. Network and
system data was collected over a span of 3 days and used as
testing and control data.

After successfully completing the initial infection, observed
data show that students performed different malicious activities,
such as searching for password files, printing user sessions on
the system, listing network interfaces, injecting boot loaders,
and installing root kits. For example, collected attack samples
included modification of rc.local to launch a listening pro-
cess in the background at boot time, network traffic redirection
through iptables, file exfiltration over the network, file deletions
and access permission modification, and cleanup of event logs
and shell history to cover attack paths. No students were able to
distinguish honey-patched from unpatched web servers during
the experiment; they reported they had compromised genuine
assets even when they had not.
Noise injection. Rather than testing with existing, publicly
available intrusion datasets (which are inappropriate evaluations
of DEEPDIG, since they lack concept-relevance for deception
and are generally stripped of raw packet data), our evaluation
interleaves attack and normal traffic following prior work on
defense-in-depth [19], and injects benign payloads as data into
attack packets to mimic evasive attack behavior. The generated
traffic contains attack payloads against recent CVEs for which
we created and tested realistic exploits, and our framework
automatically extracts labeled features from the monitoring
network and system traces to (re-)train the classifiers.
Dataset. Web traffic was generated from a separate host to
avoid interference with the test bed server. To account for opera-
tional and environmental differences, our framework simulated

different workload profiles (according to time of day), against
various target configurations (including different background
processes and server workloads), and network settings, such as
TCP congestion controls. In total, we generated 42 GB of (un-
compressed) network packets and system events over a period of
three weeks. After feature extraction, the training data comprised
1800 normal instances and 1600 attack instances. Monitoring
or testing data consisted of 3400 normal and attack instances
gathered at unpatched web servers, where the distribution of
normal and attack instances varies per experiment.
Detection accuracy. Using this dataset, we trained the classi-
fiers presented in §4 and assessed their individual performance
against test streams containing both normal and attack work-
loads. In the experiments, we measured the true positive rate
(tpr), where true positive represents the number of actual attack
instances that are classified as attacks; false positive rate (fpr),
where false positive represents the number of actual benign
instances classified as attacks; accuracy (acc); and F2 score ofthe classifier, where the F2 score is interpreted as the weighted
average of the precision and recall, reaching its best value at 1
and worst at 0. We also calculated a base detection rate (bdr)
to estimate the success of intrusion detection (§6.3). An RBF
kernel with Cost = 1.3 × 105 and  = 1.9 × 10−6 was used
for SVM [95]. OAML employed a ReLU network with n=200,
L=1, and k=5 (defined in §4.3).

To evaluate the accuracy of intrusion detection, we verified
each classifier after incrementally training it with increasing
numbers of attack classes. Each class consists of 100 distinct
variants of a single exploit, as described in §6.1, and an n-class
model is one trained with up to n attack classes. For example, a
3-class model is trained with 300 instances from 3 different attack
classes. In each run, the classifier is trained with 1800 normal
instances and 100 ∗ n attack instances with n ∈ [1, 16] attack
classes sourced from decoys. Each run executes ten experiments
where the attacks are shuffled in a cross-validation-like fashion,
and the average is reported. This ensures training is not biased
toward any specific attacks.
6.2. Experimental Results

Table 4 measures the accuracy of classifiers that were trained
using deceptive servers, and then tested on attacks against un-
patched servers (to evaluate protection against patching lapses).
Attacks are uniformly distributed across all synthetic attack
classes and variants described in §6.1. Each result is compared
(in parentheses) against the same experiment performed without
deception. Leveraging deception yields an 8–22% increase in
classification accuracy, with an 8–20% increase in true positives
and a 5–41% reduction in false positives. Env-SVM achieves
97% accuracy with almost no false positives (0.01%).

These significant gains demonstrate that the detection models
of each classifier learned from deception-enhanced data gen-
eralize beyond data collected in decoys. This showcases the
classifier’s ability to detect previously unseen attack variants.
DEEPDIG thus enables administrators to add an additional level
of protection to their entire network, including hosts that can-
not be promptly patched, via the adoption of a honey-patching
methodology.
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Table 4
Detection rates (%) for scripted attack scenarios (PA ≈ 1%) compared with results from
non-deceptive training (parenthesized).

Classifier tpr fpr acc F2 bdr

Bi-Di OML 91.00 (+13.2) 0.01 (-41.2) 91.14 (+22.2) 90.00 (+30.3) 98.92 (+97.1)

N-Gram OML 65.00 (-19.9) 0.01 (-5.1) 88.58 (+0.0) 80.00 (-8.4) 98.50 (+84.0)

Bi-Di SVM 79.00 (+1.2) 0.78 (-40.5) 89.88 (+20.9) 78.69 (+19.0) 50.57 (+36.1)

N-Gram SVM 92.42 (+7.5) 0.01 (-5.1) 96.89 (+8.3) 93.84 (+5.5) 99.05 (+84.6)

Ens-SVM 93.63 (+8.8) 0.01 (-5.1) 97.00 (+8.4) 94.89 (+6.5) 99.06 (+84.6)

Table 5
Detection rates (%) for red team evaluation (PA ≈ 1%) compared with results from non-deceptive
training (parenthesized).

Classifier tpr fpr acc F2 bdr

Bi-Di-OML 94.00 (-4.0) 0.39 (-52.6) 93.10 (+23.1) 94.00 (+7.0) 70.88 (+69.1)

Ngram-OML 99.00 (+1.0) 0.01 (-50.0) 99.90 (+26.9) 94.00 (+5.0) 99.01 (+97.1)

Bi-Di-SVM 99.56 (+1.6) 1.15 (-51.9) 99.19 (+29.2) 99.39 (+12.4) 46.65 (+44.8)

N-Gram-SVM 92.25 (-6.75) 0.01 (-50.0) 96.35 (+23.4) 93.70 (+4.7) 98.94 (+97.0)

Ens-SVM 99.56 (+0.56) 0.01 (-50.0) 99.19 (+26.2) 99.39 (+10.4) 99.02 (+97.1)

Figure 9a shows that as the number of training attack classes
(which are proportional to the number of vulnerabilities honey-
patched) increases, a steep improvement in the true positive rate
is observed, reaching an average above 93% for Ens-SVM, while
average false positive rate in all experiments remains low (< 1%).
This demonstrates that deception has a feature-enhancing effect—
the IDS learns from the prolonged adversarial interactions to
detect more attacks.
Testing on an “unknown” vulnerability. We also measured
our approach’s ability to detect a previously unseen, unpatched
remote code execution exploit (CVE-2017-5941) carrying attack
payloads (classes 17–22) resembling the payloads that have
been used to exploit honey-patched vulnerabilities (CVE-2014-
6271). In this experiment, CVE-2017-5941 is used as an n-day
vulnerability for which no patch has been applied. The resulting
98.6–99.8% tpr and 0.01–0.67% fpr show that crook-sourcing
helps the classifier learn attack patterns unavailable at initial
deployment, but revealed by deceived adversaries during decoy
interactions, to learn exploits for which the classifier was not
pre-trained.
Red teaming validation. Table 5 summarizes detection accu-
racy against the red team. We incrementally train our previously
trained model with new attack instances collected from live
decoys, and use it to detect human attacks against unpatched
servers. The accuracy rates are much higher against human
opponents than against the synthetic attacks, indicating that our
synthetic data constitutes a challenging test. This may be in part
because replicating the high diversity of the synthetic attacks
would require an extremely large-scale human study.
False alarms. Figure 9b plots the false positive rates for classi-
fiers that have undergone 30 incremental training iterations, each
with 1–30 normal/attack instances per class. With just a few
attack instances (≈ 5 per attack class), the false positive rates

 0

 20

 40

 60

 80

 100

 0  2  4  6  8  10  12  14  16

%

number of attack classes

ens-SVM

(a) tpr

 0

 20

 40

 60

 0  5  10  15  20  25  30

%

number of instances per attack class

Bi-Di
N-Gram

ens-SVM
Bi-Di-OML

Ngram-OML

(b) fpr

Figure 9: Experimental results showing (a) Ens-SVM classification
tpr for 0–16 attack classes for training on decoy data and testing
on unpatched server data; (b) False positive rates for various
training set sizes.

drop to almost zero, demonstrating that DEEPDIG’s continuous
feeding back of attack samples into classifiers greatly reduces
false alarms.
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6.3. Base Detection Analysis
In this section we measure the success of DEEPDIG in detect-

ing intrusions in the realistic scenario where attacks are a small
fraction of the interactions. Although risk-level attribution for
cyber attacks is difficult to quantify in general, we use the results
of a prior study [49] to approximate the probability of attack
occurrence for the specific scenario of targeted attacks against
business and commercial organizations. The study’s model
assumes a determined attacker leveraging one or more exploits
of known vulnerabilities to penetrate a typical organization’s
internal network, and approximates the prior of a directed attack
to PA = 1% (based on real-world threat statistics).

To estimate the success of intrusion detection, we use a base
detection rate (bdr) [65], expressed using the Bayes theorem:

P (A|D) =
P (A) P (D|A)

P (A) P (D|A) + P (¬A) P (D|¬A)]
, (5)

where A and D are random variables denoting the occurrence of
a targeted attack and the detection of an attack by the classifier,
respectively. We use tpr and fpr as approximations of P (D|A)
and P (D|¬A), respectively.

The final columns of Tables 4–5 present the bdr for each
classifier, assuming P (A) = PA. The parenthesized comparisons
show how our approach overcomes a significant practical problem
in intrusion detection research: Despite exhibiting high accuracy,
typical IDSes are rendered ineffective when confronted with
their extremely low base detection rates. This is in part due to
their inability to eliminate false positives in operational contexts.
In contrast, the fpr-reducing properties of deception-enhanced
defense facilitate much more effective detection of intrusions in
realistic settings, with bdr increases of up to 97%.
6.4. Resistance to Attack Evasion

To properly challenge deceptive defenses, it is essential to
simulate adversaries who adapt and obfuscate their behaviors in
response to observed responses to their attacks. Attackers employ
various evasion techniques to bypass protections, including packet
size padding, packet timing sequence morphing, and modifying
data distributions to resemble legitimate traffic.

In our study, we considered three encrypted traffic evasion
techniques published in the literature: Pad-to-MTU [50], Direct
Target Sampling [121], and TrafficMorphing [121]. Pad-to-MTU
(pMTU) adds extra bytes to each packet length until it reaches the
Maximum Transmission Unit (1500 bytes in the TCP protocol).
Direct Target Sampling (DTS) is a distribution-based technique
that uses statistical random sampling from benign traffic followed
by attack packet length padding. Traffic Morphing (TM) is
similar to DTS but it uses a convex optimization methodology to
minimize the overhead of padding. Each of these are represented
using the traffic modeling approach detailed in §3 and analyzed
using the machine learning approaches detailed in §4.

Table 6 shows the results of the deceptive defense against
our evasive attack techniques compared with results when no
evasion is attempted. In each experiment, the classifier is trained
and tested with 1800 normal instances and 1600 morphed attack
instances. Our evaluation shows that the tpr drops slightly and the
fpr increases with the introduction of attacker evasion techniques.
This shows that the system could resist some of the evasions but

Table 6
Detection performance in adversarial settings.

Evasion technique tpr fpr acc F2
No evasion 93.63 0.01 97.00 99.06
pMTU 75.84 0.96 85.78 79.57
DTS 82.78 6.02 87.58 84.91
TM 79.29 6.17 85.52 81.91
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Figure 10: Accuracy when training the classifier with increasingly
large proportions (0–100%) of morphed packets.

not all. Classifier retraining frequency might also need to be
increased to accommodate the drop in performance. This might
be a challenge as shorter time intervals result in fewer data points
to retrain the classifier to maintain its detection performance.
Analysis. Since our goal is to mine attack patterns from entire
data streams rather than merely to classify individual packets as
attacks, mixing benign with malicious activities in the decoy
environment does not impair DEEPDIG’s ability to learn attacker
patterns, even in the presence of evasive behavior. In the above
experiments, we trained the classifier in the presence of attacker
evasion. This is practical and reveals that DEEPDIG captures the
entirety of the attacker’s activity, feeding it back to the classifier.

Figure 10(a)–(b) shows the measured tpr and fpr when grad-
ually training the classifier with increasingly large proportions
of morphed packets in the training set. The horizontal axis
represents the percentage of the morphed packets in the training
phase. For instance, 25% signifies that the classifier was trained
with 1∕4 of morphed packets and 3∕4 of non-morphed packets.

Although tpr remains stable after 25% of morphed traffic,
the results highlight an improvement for the false positive rate.
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(a) tm=0% (b) tm=50% (c) tm=100%

Figure 11: High-dimensional visualization of decision boundary convergence in the presence of evasion, showing traffic morphing (tm) at
0%, 50%, and 100%. t-SNE transformation [83] was used to reduce the dimensionality to two dimensions for this visualization.

Table 7
Novel attack class detection performance.

Features Classifier tpr fpr

Bi-Di OneSVM 44.06 31.88
DAE & OneSVM 76.54 85.61
ECSMiner 74.91 26.66
DAE & ECSMiner 84.73 0.01

N-Gram OneSVM 54.25 45.13
DAE & OneSVM 80.09 71.49
ECSMiner 76.36 34.89
DAE & ECSMiner 89.67 2.95

This underscores the positive impact of honey-patching on
overcoming adversarial behavior: The more morphed, evading
samples attackers feed DEEPDIG, the better the IDS becomes in
classifying future attack patterns. Thus, adversarial attempts
to obfuscate attacks against honey-patched vulnerabilities are
actually a gift to the defender, since they only help train the
classifier to learn the attacker’s obfuscation strategies. Figure 11
illustrates this by showing the convergence of the classifier’s
decision boundary as it observes morphed samples.
6.5. Novel Class Detection Accuracy

To test the ability of our novel class classifier (§4.3) to detect
novel classes emerging in the monitoring stream, we split the
input stream into equal-sized chunks. A chunk of 100 instances
is classified at a time where one or more novel classes may
appear along with existing classes. We measured the tpr (total
incremental number of actual novel class instances classified
as novel classes) and the fpr (total number of existing class
instances misclassified as belonging to a novel class).
One-class SVM Ensemble. For our comparisons, we built an
ensemble of one-class SVM classifiers. One-class SVM is an
unsupervised learning method that learns the decision boundary
of training instances and predicts whether an instance is inside
it. We train one classifier for each class. For instance, if our

training data consists of instances of k classes, our ensemble
must contain k one-class SVM classifiers, each trained with
one of the k class’s instances. During classification, once a
new unlabeled instance x emerges, we classify it using all the
one-class SVM classifiers in the ensemble.
Analysis. Table 7 shows the results for OneSVM and ECSMiner.
Here ECSMiner outperforms OneSVM in all measures. For
example, for Bi-Di features, ECSMiner observes an fpr of 26.66%
while OneSVM reports an fpr of 31.88%, showing that the binary-
class nature of ECSMiner is capable of modeling the decision
boundary better than OneSVM. To achieve better accuracy, we
augmented ECSMiner with extracted deep abstract features
using our stacked denoising autoencoder approach (DAE &
ECSMiner). For DAE, we used two hidden layers (where the
number of units in the first hidden layer is 2∕3 of the original
features, and the number of units in the second hidden layer is
1∕3 of the first hidden layer units). For the additive Gaussian
noise, which is used for data corruption, we assigned � = 1.1. As
a result, fpr reduced to a minimum (0.01%), showing a substantial
improvement over ECSMiner. Notice that using the abstract
features with OneSVM does not help as shown in the table.

These results show that our novel class detection technique is
effective in detecting concept drifts, and can be used as a powerful
heuristics for timely updating the IDS detection models with
additional training data to adapt to the new concepts observed in
the monitoring stream.
6.6. Monitoring Performance

To assess the performance overhead of DEEPDIG’s monitor-
ing capabilities, we used ab (Apache HTTP server benchmarking
tool) to create a massive user workload (more than 5,000 re-
quests in 10 threads) against two web server containers, one
deployed with network and system call monitoring and another
unmonitored.

Figure 12 shows the results, where web server response
times are ordered ascendingly. Our measurements show average
overheads of 0.2×, 0.4×, and 0.7× for the first 100, 250, and
500 requests, respectively, which is expected given the heavy
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Figure 12: DeepDig performance overhead measured in average
round-trip times (workload ≈ 500 req/s)

workload profile imposed on the server. Since server computation
accounts for only about 10% of overall web site response delay
in practice [108], this corresponds to observable overheads of
about 2%, 4%, and 7% (respectively).

While such overhead characterizes feasibility, it is irrelevant
to deception because unpatched, patched, and honey-patched
servers are all slowed equally by the monitoring activity. The
overhead therefore does not reveal which apparent vulnerabilities
in a given server instance are genuine patching lapses and which
are deceptions, and it does not distinguish honey-patched servers
from servers that are slowed by any number of other factors (e.g.,
fewer computational resources).

7. Discussion
Role of deception. Leveraging advanced machine learning to
effortlessly detect and pwn cyberattackers (similar to how ML
now dominates other games, like chess) has long been a dream of
defenders. Although the power of ML has grown exponentially
thanks to Moore’s Law, this dream has remained unrealized due
to the scarcity of large, realistic, evolving, labeled streams of
attack data needed to train ML models. Our approach facili-
tates supervised learning, whose widespread use in the domain
of intrusion detection has been impeded by many challenges
involving the manual labeling of attacks and the extraction of
security-relevant features [26, 107]. Results demonstrate that
even short-term deceptive responses to cyberattacks can signifi-
cantly ameliorate both of these challenges. Just a few strategically
chosen honey-patched vulnerabilities accompanied by an equally
small number of honey-patched applications provide a machine
learning-based IDS sufficient data to perform substantially more
accurate intrusion detection, thereby enhancing the security
of the entire network. This suggests that deception can and
should play a more significant role in machine learning-based
IDS deployments.
Generalization. The results presented in §6 show that our ap-
proach substantially improves the accuracy of intrusion detection,
reducing false alarms to much more practical levels. This is
established experimentally with moderate- to large-scale syn-
thetic attacks and a small-scale red teaming study. Future work
should explore larger numbers of attack classes and larger (e.g.,
industrial scale) datasets to simulate threats to high-profile targets.

Due to the high-dimensional nature of the collected data, we
chose OAML and SVM in Bi-Di and N-Gram. However, our
approach is agnostic to the feature set and classification model;
therefore, future work should study the effectiveness of deception
for enhancing a variety of learning frameworks.

An avenue of future work is to leverage system call arguments
in addition to the features we collected. A common technique is
to use pairwise similarity between arguments (as sequences) of
different streams [26], and then implement a k-NN (k-Nearest
Neighbors) algorithm with longest common subsequence (LCS)
as its distance metric. Generally, packet- and system-level data
are very diverse and contain other discriminating features that
should be explored.
Online training. The flood of data that is continuously streamed
into a typical IDS demands methods that support fast, online
classification. Prior approaches update the classification model
incrementally using training batches consisting of one or more
training instances. However, this strategy necessitates frequently
re-training the classifier, and requires a significant number of
instances per training. Future research should investigate more
appropriate conditions for re-training the model. Change point
detection (CPD) [59] is one promising approach to determine
the optimal re-training predicate, based on a dynamic sliding
window that tracks significant changes in the incoming data, and
therefore resists concept-drift failures.
Class imbalance. Standard concept-learning IDSes are fre-
quently challenged with imbalanced datasets [60]. Such class
imbalance problems arise when benign and attack classes are not
equally represented in the training data, since machine learning
algorithms tend to misclassify minority classes. To mitigate
the effects of class imbalance, sampling techniques have been
proposed [32], but they often discard useful data (in the case
of under-sampling), or lead to poor generalizations (in the case
of oversampling). This scarcity of realistic, balanced datasets
has hindered the applicability of machine learning approaches
for web intrusion detection. By feeding back labeled attack
traces into the classifier, DEEPDIG alleviates this data drought
and enables the generation of adequate, balanced datasets for
classification-based intrusion detection.
Intrusion detection datasets. One of the major challenges in
evaluating intrusion detection systems is the dearth of publicly
available datasets [40], which is often aggravated by privacy and
intellectual property considerations. To mitigate this problem,
security researchers often resort to synthetic dataset generation,
which affords the opportunity to design test sets that validate
a wide range of requirements. Nonetheless, a well-recognized
challenge in custom dataset generation is how to capture the
multitude of variations and features manifested in real-world
scenarios [17]. Our evaluation approach builds on recent break-
throughs in dataset generation for IDS evaluation [19] to create
statistically representative workloads that resemble realistic web
traffic, thereby affording the ability to perform a meaningful
evaluation of IDS frameworks.

One of the major challenges for evaluation of deceptive
IDSes is the general inadequacy of static attack datasets, which
cannot react to deceptive interactions. Testing deceptive defenses
with these datasets renders the deceptions useless, missing their
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Table 8
Summary of related IDS techniques (cf. [55, 26, 96, 87, 90, 36, 44] for comprehensive surveys on intrusion detection).

Features Learning Deception

Type Technique Source Type Self-labeling Supervised Model Continual Type Site

N
ID

S

Eskin et al. [52],
Awad et al. [11] Network traffic Connection

attributes 7 3 SVM 7 7 —

Valdes and Skinner [42] Network traffic TCP bursts 7 7
Bayesian
network 7 7 —

Lee and Xiang [80] Network traffic Statistical
features 7 7 Entropy 7 7 —

Kruegel et al. [77, 75, 76] Network traffic Histogram 7 7 Statistical 7 7 —

H
ID

S

Marceau [85], Cohen [33],
Warrender et al. [120] System calls Histogram 7 7 Cluster 7 7 —

Shu et al. [106] System calls Event (co-)
occurrence 7 7 Cluster 7 7 —

Liu et al. [38] Log entries Graph
embedding 7 7 Cluster 7 7 —

Han et al. [37] System calls Graph
embedding 7 7 Cluster 7 7 —

Yuan et al. [43] User activity Temporal
features 7 3 CNN 7 7 —

Yuan et al. [45] User activity Temporal
features 7 7

RNN-
LSTM 7 7 —

D
ec
ep
ti
ve

ID
S

Portokalidis et al. [99],
Tang and Chen [113],
Kreibichi and Crowcroft [74],
Anagnostakis et al. [5, 4]

Network traffic — 7 7 Signature 3∗ Honeypot Standalone

DeepDig (ΔaaS) Network traffic,
System calls Histogram 3 3

SVM
OAML 3

Honey-
patch Embedded

∗attack signatures are generated from honeypots to update a signature-based IDS.

value against reactive threats. Establishing a straight comparison
of our results to prior work is therefore frustrated by the fact
that the majority of machine learning-based intrusion detection
techniques are still tested on extremely old datasets [1, 107], and
approaches that account for encrypted traffic are scarce [73].
For instance, recently-proposed SVM-based approaches for
network intrusion detection have reported true positive rates in the
order of 92% for the DARPA/KDD datasets, with false positive
rates averaging 8.2% [84, 125]. Using the model discussed in
§6.3, this corresponds to an approximate base detection rate
of only 11%, in contrast to 99.06% estimated for our approach.
However, the assumptions made by DARPA/KDD do not reflect
the contemporary attack protocols and recent vulnerabilities
targeted in our evaluation, so this might not be a fair comparison.
Future work should consider reevaluating these prior approaches
using updated datasets reflective of modern attacks (cf. DARPA
TC [35], CSE-CIC-IDS2018 [41]), for reproducible comparisons.
Hybrid cloud. ΔaaS transparently enhances existing cloud
infrastructures with crook-sourced data streams, enabling a new
form of attack-defenses co-evolution in commodity cloud and
service-oriented infrastructures. Assessing how the unique set
of features and characteristics of each cloud provider affects
deception delivery in public clouds is planned for future work.
In particular, we plan to investigate architectural properties (e.g.,
container runtimes and orchestration, storage services, serverless
computing) that will facilitate the implementation of multi-layer
deception strategies across the deception stack.

8. Related Work
The scarcity of labeled, concept-relevant attack data intro-

duces significant limitations in deploying and scaling conven-
tional machine learning approaches to intrusion detection [55,
26, 96, 87, 90, 36, 44]. This data limitation hinders timely
IDS model adaptation to cope with new and emergent attack
patterns. Deceptive IDSes [5, 4, 99, 74, 113] overcome these dis-
advantages by building detection models with attack interactions
collected from successful deceptions.

Table 8 summarizes these IDS techniques. Compared to prior
intrusion detection approaches, DEEPDIG employs embedded
deceptions (i.e., they integrate into the production service) to
continuously train an IDS with self -labeled, concept-relevant
attack data gathered from the deceptions. This enhances intrusion
detection by enabling domain adaptation, and facilitates the
implementation of more accurate supervised IDS approaches.
8.1. ML-based Intrusion Detection

Machine learning-based IDSes [55, 26, 96] find patterns that
do not conform to expected system behavior, and are typically
classified into host-based and network-based approaches.

Host-based detectors recognize intrusions in the form of
anomalous system call trace sequences, in which co-occurrence
of events is key to characterizing malicious behavior. For exam-
ple, malware activity and privilege escalation often manifest
specific system call patterns [26]. Seminal work in this area
has analogized intrusion detection via statistical profiling of
system events to the human immune system [53, 61]. This has
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been followed by a number of related approaches using his-
tograms to construct profiles of normal behavior [85]. Another
frequently-used approach employs a sliding window classifier to
map sequences of events into individual output values [120, 33],
converting sequential learning into a classic machine learning
problem. More recently, long call sequences have been studied
to detect attacks buried in long execution paths [106].

Network-based approaches detect intrusions using network
data. Since such systems are typically deployed at the network
perimeter, they are designed to find patterns resulting from attacks
launched by external threats, such as attempted disruption or unau-
thorized access [17]. Network intrusion detection has been ex-
tensively studied in the literature (cf., [17, 1]). Major approaches
can be grouped into classification-based (e.g., SVM [52], [11],
Bayesian network [42]), information-theoretic [80], and statisti-
cal [77, 75, 76] techniques.

Network-based intrusion detection systems can monitor a
large number of hosts at relatively low cost, but they are usually
opaque to local or encrypted attacks. On the other hand, intrusion
detection systems operating at the host level have complete
visibility of malicious events, despite encrypted network payloads
and obfuscation mechanisms [72]. Our approach therefore
complements existing techniques and incorporates host- and
network-based features to offer protective capabilities that can
resist attacker evasion strategies and detect malicious activity
bound to different layers of the software stack.

Another related area of research is web-based malware de-
tection that identifies drive-by-download attacks using static
analysis, dynamic analysis, and machine learning [67, 24]. In
addition, other studies focus on flow-based malware detection by
extracting features from proxy-logs and using machine learn-
ing [15].
8.2. Cyber-Deception in Intrusion Detection

Honeypots are information systems resources conceived to
attract, detect, and gather attack information [109]. They are
designed such that any interaction with a honeypot is likely to
be malicious. Previous works have utilized honeypots for au-
tomating the generation of IDS signatures [99, 74, 113]. Shadow
honeypots [4] are a hybrid approach in which a front-end anomaly
detection system forwards suspicious requests to a back-end
instrumented copy of the target application, which validates
the anomaly prediction and improves the anomaly detector’s
heuristics through feedback. Although the target and instru-
mented programs may share similar states for detection purposes,
shadow honeypots make no effort to deceive attackers into think-
ing the attack was successful—attack detection and the decision
of decoying attacker sessions are driven solely by the network
anomaly detection component.
8.3. Feature Extraction for Intrusion Detection

A variety of feature extraction and classification techniques
have been proposed to perform host- and network-based anomaly
detection [86]. Extracting features from encrypted network
packets has been intensively studied in the domain of website
fingerprinting, where attackers attempt to discern which web-
sites are visited by victims. Users typically use anonymous
networks, such as Tor, to hide their destination websites [119].

However, attackers can often predict destinations by training
classifiers directly on encrypted packets (e.g., packet headers
only). Relevant features typically include packet length and
direction, summarized as a histogram feature vector. HTML
markers, percentage of incoming and outgoing packets, bursts,
bandwidth, and website upload time have also been used [95, 50].
Packet-word vector approaches additionally leverage natural
language processing and vector space models to convert packets
to word features for improved classification [3].

Bi-Di leverages packet and uni-burst data and introduces
bi-directional bursting features for better classification of network
streams. On unencrypted data, host-based systems have addi-
tionally extracted features from co-occurrences and sequences
of system events, such as system calls [23, 85]. DEEPDIG uses
a hybrid scheme that combines both host- and network-based
approaches via a modified ensemble technique.

9. Conclusion
This paper introduced, implemented, and evaluated a new

service-oriented security model for enhancing web intrusion
detection systems with threat data sourced from deceptive,
application-layer, software traps. Unlike conventional machine
learning-based detection approaches, DEEPDIG incrementally
builds models of legitimate and malicious behavior based on
audit streams and traces collected from these traps. This aug-
ments the IDS with inexpensive and automatic security-relevant
feature extraction capabilities. These capabilities require no
additional developer effort apart from routine patching activities.
This results in an effortless labeling of the data and supports a
new generation of higher-accuracy detection models.
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