Decentralized IoT Data Management Using BlockChain and Trusted Execution
Environment

Gbadebo Ayoade*, Vishal Karande*, Latifur Khan*, and Kevin Hamlen *

*Department of Computer Science
University of Texas at Dallas, Richardson, Texas 75080
Email: (gbadebo.ayoade,vishal karande,lkhan, hamlen) @utdallas.edu

Abstract

Due to the centralization of authority in the manage-
ment of data generated by IoT devices, there is a lack
of transparency in how user data is being shared among
third party entities. With the popularity of adoption of
blockchain technology, which provide decentralized man-
agement of assets such as currency as seen in Bitcoin,
we propose a decentralized system of data management
for IoT devices where all data access permission is en-
forced using smart contracts and the audit trail of data
access is stored in the blockchain. With smart contracts
applications, multiple parties can specify rules to govern
their interactions which is independently enforced in the
blockchain without the need for a centralized system. We
provide a framework that store the hash of the data in
the blockchain and store the raw data in a secure storage
platform using trusted execution environment (TEE). In
particular, we consider Intel SGX as a part of TEE that
ensure data security and privacy for sensitive part of the
application (code and data).

Keywords-1oT; Blockchain; SGX; Privacy

I. Introduction

With the advancement in embedded processors, actu-
ators, sensors and communication systems, everyday de-
vices are retrofitted with capabilities to communicate, com-
pute and complete automated tasks [1], [2]. For instance,
many of our everyday appliances have been retrofitted
with capabilities to connect to the Internet [3]. Such IoT
devices include smart pacemakers, heart rate monitors,
smart refrigerators, smart coffee makers, smart television,
smart home assistants, and smart door locks. By equipping
these devices with computational and communication ca-
pabilities, these devices collect and transmit large amount

of privacy related data [4]. For example, IoT devices such
as smart cameras, smart health monitoring devices [5] such
as heart rate monitors,glucose level monitors can reveal
privacy information about the users .

Due to the limited processing capabilities of IoT de-
vices [6], [7], IoT devices usually leverage externally con-
trolled third party service providers to perform additional
data processing. By transmitting sensitive user data to third
party services providers [1], users are forced to trust ser-
vice providers to enforce data protection and provide data
privacy guarantee. Unfortunately, service providers often
violate data privacy policies by using data collected from
users for unauthorized purposes [8]. This undue advantage
by service providers is based on centralized architecture
where trust in a third party system as a central authority
is required to manage user data. In order to eliminate
these imbalance in data access policy enforcement between
service providers and users, we propose a system of
decentralized data management using decentralized asset
management system based on Blockchain [9] and smart
contract technology [10].

With the advent of decentralized asset management sys-
tems as seen in finance sector which leverage blockchain
technology such as seen in Bitcoin [9], electronic fund
transfer can occur without the need for centralized elec-
tronic fund management system. With this technology,
money transfer can occur across international boundaries
without the bureaucracy of of centralized authorities. Due
to the decentralized nature of blockchain technology, pro-
posed applications [10] in various fields include automated
insurance management, supply chain management, decen-
tralized commercial data storage as seen in Filecoin [11].
For instance, Slock It [12] uses blockchain to provide
automated device sharing platform for IoT devices such
as smart locks.

By leveraging this decentralized architecture, we pro-
pose a system that limits the authority of centralized

data management systems. Blockchain technology [9] and
smart contracts [10] allow decentralized management of
data among untrusted parties called miners. Blockchain [9]
is a distributed ledger where transaction state integrity is
enforced by distributed consensus among decentralized un-
trusted parties. To enforce the integrity of the blockchain,
each current block generated by the miners must contain
a hash of the previous block in the blockchain Figure 2,
making it difficult to modify the transactions recorded in
the blockchain.

Smart contracts [13] are autonomous applications that
run within the blockchain. With smart contracts, we
provide a system where rules that govern interactions
among interested parties is enforced autonomously in the
blockchain network without a centralized trust. By leverag-
ing this capability, we can equip the users with the capacity
to control how their data is accessed and used since
smart contract provides them with equal data management
privilege. Furthermore, smart contracts executes in isolated
virtual machines on the miners infrastructure. By using
isolated virtual machines to run these smart contracts,
miners cannot modify application outcomes. With smart
contract and blockchain, we can provide data access audit
system to track data usage among the interested parties
leading to proper data access accountability.

All data stored in the blockchain has to be public for the
miners to be able to verify transactions [14]. Our proposed
system overcomes these challenge by storing the hash
of the encrypted data in the blockchain, while the main
data is encrypted and stored using trusted computing. By
leveraging trusted computing, we can verify the integrity
of the system used in our data storage. In our case,
we use trusted computing as implemented by Intel SGX
architecture.

By leveraging trusted execution environment based on
Intel SGX, we provide data protection from unauthorized
access from powerful adversaries. SGX offers hardware
level protection of user data by enforcing process isola-
tion by executing the programs in secure enclaves and
protecting the enclave’s memory pages by the CPU hard-
ware. These secure containers called enclaves are protected
from operating system, other processes and hypervisor
processes [15].

In this work, we make the following contribution.

o We leverage blockchain platform to provide decen-
tralized IoT data access management.

e We leverage smart contracts to provide equal data
access management privilege among IoT users and
IoT service providers.

o We provide data storage using trusted execution en-
vironment(Intel SGX) for secure data storage.

e We provide a full system implementation on real
blockchain platform using Ethereum smart contracts.

BC: Block Chain 8ot [H] [gan Third Party
BC2 D_D Contract Application

Distributed Hash Platform

loT Gateway e Trusted
Module

—————————]
! 1
|| Untrusted 1
—
-« Module :
1 1 Sealed
1 | loT Data
! 1
! 1
| 1

loT Devices

SGX Enabled Storage Platform

Figure 1: A Simplified Architecture of IOTSMARTCON-
TRACT

The rest of the paper is organized as follows. §II
provides background on Blockchain, SGX and IoT system.
SIII discusses the scope, case for blockchain and SGX and
challenges and solutions encountered in deploying SGX
based system. §IV provides the architecture of our system.
In §V, we describe our implementation approach and §VI
provides the evaluation of our approach. §VII and §VIII
provide discussion and related work respectively. Finally,
§IX concludes.

II. Background

A. Overview of Architecture

In this section, we discuss a brief overview of our
system components as shown in Figure 1. To provide de-
centralized management of data generated by IoT devices,
we store the hash of the encrypted data generated in the
blockchain and then store the data itself in an SGX enabled
storage system. As a result, the blockchain manages the
data access policy through the smart contract.

To access data, third party users will request permission
to access data from the blockchain by utilizing the smart
contract APL. If request is granted, the hash of the data is
returned and used to retrieve data from the SGX platform.
Before the SGX platform retrieves that data from secure
storage, it will independently recheck the blockchain for
access permission before returning the data needed to the
third party user. The intuition for these two step check is to
ensure all access permission policy and authority is man-
aged by the smart contract executing in the blockchain. The
access check does not incur much overhead since access
check is a read operation which has a fast execution time
on the blockchain as we will later show in our evaluation
section. In this section, we provide more background on
the components of our IOTSMARTCONTRACT system.

| Block 1 header |\ | Block 2 header l\ | Block 3 header |

Hash of Previous N Hash of Previous N Hash of Previous
Block header Block header Block header

| Txroot | | Tx root | | Tx root |
I I I

| | |

Block 1 Transactions

Block 2 Transactions Block 3 Transactions

Figure 2: A BlockChain Data Structure

B. Internet of Things

With the increase in computational and communica-
tion capabilities and technological advancement in device
miniaturization, every day devices are granted capabili-
ties to sense and react to the environment through the
use of sensors and actuators. A typical IoT architecture
comprises of devices, sensors, actuators, IoT Hubs, IoT
Gateway and a cloud service provider.loT devices are
devices with capability to sense and collect data which
can be transmitted on a connected network for storage or
further processing. IoT devices includes light bulbs, heart
rate monitors, smart cameras and many more. With the
IoT hub, different devices with disparate communication
protocol such zigbee or bluetooth can connect to the IoT
network. IoT networks includes IoT gateway which helps
to provide data aggregation on the client network. To
process the huge amount of data transmitted by the IoT
devices, cloud services are used to store and further process
the data.

C. BlockChain

Blockchain is a distributed ledger where the state of
its transactions is maintained by a distributed consensus
among untrusted entities without the need for a centralized
trusted third party authority. These decentralized entities
are called miners [16], [9]. By providing a proof of work,
the miners bundle confirmed transaction in blocks by
generating a hash of the current block which includes the
hash previous block as seen Figure 2. These proof of work
generation requires high computational CPU power, there-
fore protecting the blockchain from adversarial attacks.

The blockchain can store data and perform computa-
tions that can be executed by these decentralized entities
to determine the state of the blockchain in an autonomous
manner. These autonomous computations are called smart
contracts. By leveraging smart contracts, we provide a
system where decentralized data access policy control is
enforced without relying on third party service providers,

therefore ensuring continuous service delivery for IoT
system users. We implemented the smart contract using
Ethereum blockchain platform.

The Ethereum [10] smart contract is an implementation
of the smart contract with Turing complete computation.
The Ethereum smart contract is deployed in the blockchain
and can be executed by the miners to determine the state
of the program. By generating blocks, the miners can
autonomously ensure that the state of integrity of the
contract program.

In order to allow miners to run a deployed smart
contract, the contract owner will pay the miners some
fee called Ethereum gas. The higher the gas paid, the
faster the speed of getting the contract to execute and
generate confirmations on the blockchain. Because the
smart contracts also store data, contract owners will need
to provide gas for storage on the blockchain. In our case,
we limited the data stored on the blockchain by storing
only the the hash of the data and then encrypting the data
and storing on another system.

To interact with a smart contract, each smart contract
has a unique address in the blockchain. The address can be
used to retrieve the contract and then get the ABI (Abstract
Binary interface) which provides the API of the contract.
By getting the smart contract API, a user can execute the
smart contract API to perform some computation.

D. Trusted Execution Environment

Recent advancements in embedded hardware technol-
ogy to support trusted execution environment (TEE) (e.g.,
TPM , ARM Trust Zone [17], AMD SVM [18]), Intel
SGX [19]) allow service providers to ensure confidential-
ity and integrity of data and computations by protecting
code and data within a secure region of computation.

Intel SGX is a trusted computing architecture intro-
duced in the new Intel Skylake processors. By providing a
new set of instructions which extends the X86 and X86_64
architectures, user level applications can provide confiden-
tiality and integrity without the trust of the underlying
Operating System. With these instructions, application
developers can create a secure and isolated containers
called enclave to protect security sensitive computations.
In particular, the memory content of an enclave is stored
inside a hardware protected memory region called as
Enclave Page Cache (EPC). By leveraging the Memory
Encryption Engine (MEE), all EPC pages are encrypted
and any access to them is restricted by the hardware.
Therefore, with SGX, applications can protect sensitive
and secret data and computations from attacks from high
privilege applications like the Operating system, hyper-
visors and System Management Mode.

III. Overview
A. Scope and Assumptions

The scope of this paper considers decentralization of
data access management using blockchain and data privacy
protection using Intel SGX. The main challenge is how to
establish trust between IoT service providers and the users
of IoT services. By leveraging smart contracts, we provide
a data access management system where users have equal
privilege in controlling how their data is shared or used.
With smart contracts, we can specify data access rules that
are autonomously enforced by untrusted third party entities
on the blockchain network. For our platform, we assume
all data is encrypted before transmission and all key
exchange is performed using asymmetric cryptographic
protocols [20]. In this paper we do not consider replay
attacks and denial of service attacks.

B. Threat Model

For our threat model, we consider the IoT data man-
agement service providers as untrusted entities since they
have full control over user data, which give them undue
advantage in how they use data or share user data with
other third party entities.

Furthermore, we consider all third party users who
request access to data to be untrusted. We assume all
non data owner may leak data or use it for unauthorized
purposes such as user’s email for direct marketing.

We consider adversaries that seek to compromise the
data storage cloud services by obtaining root privilege
access to low level system resources such as memory, hard
drives and Input/Output systems. These attackers employ
techniques that compromise highly privilege applications
such as Operating System and hyper-visors.

C. The Case of Using Blockchain for IoT data
management

Decentralized Trust. As users become more knowledge-
able of data privacy leakage and its consequences, users
may demand more control over how there data is being
used. By leveraging blockchain, IoT vendors and service
providers can provide services that users can trust since
the data management system is done in publicly verifiable
smart contracts program that run in the blockchain.

SmartContract Enforced Accountability. With smart
contracts, we can provide autonomous applications that
enforce interaction rules among the system users without
the need of centralized authority. Smart contracts allow
individual entities with varied interest to generate rules

Remote
Attestation
server

Blockchain

::::;::x
Remote Contract Address.
atiestation /

Write Hash of Data
to blockchain

Trusted Module ()

Key Manager
Integrity Checker

Data sealing and
Unsealing

loT
Devices

loT
Devices

Ecall/Ocall
Wrapper

Write (Encrypted
Data,Hash(Data))

IoT Gateway

—
Sealed loT
Data

Figure 3: A IOTSMARTCONTRACT Architecture

that satisfy each participants interest. The rules are then
programmed into smart contracts which is then enforced
by the miners by independently verifying the state of
the contract. For example, in centralized access policy
management such Smartthings [1], [21], if a user grants
access or revoke access to their data, the user has to trust
the third party service provider to comply and enforce his
data restriction. With smart contracts, the users have equal
privilege on how the policy is enforced since the policy
enforcement is done by the miners on the blockchain
network.

Audit Trail Enforcement. By leveraging immutability of
blockchain ledger [9], we can provide immutable data
access history of users’ data. Since all entries in the
blockchain is cryptographically linked to previous blocks
generated on the blockchain, it is difficult for malicious
attackers to modify the blockchain entries.

IV. Architecture

As shown in Figure 3, IOTSMARTCONTRACT consists
of three main components which includes the IoT client
network, the smart contract and the secure SGX module.
The Client IoT network consist of all the IoT devices, the
IoT gateway which connects the devices to the external
network.

A. Smart Contract Component

As shown in algorithm 1, The Smart contract provides
the decentralized access control policy to user data in form
of Ethereum smart contract that executes in the blockchain.
As a result of the limited data storage and fees required
to store data in the smart contract, the smart contract only
stores the hash of the data in the blockchain. The main
data is encrypted and stored on the SGX module. The
smart contract includes the user registration module, device

Algorithm 1: Smart Contract Pseudo-code

1: HashMap deviceRegistry(key:ownerAddress,value:List[Devicelds])

2: HashMap deviceData(key:(ownerAddress,deviceld), value:List[DataHash])

3: HashMap

DataAccessRegistry(key:(ownerAddresss,thirdparty Address,deviceld),value:
bool isAllowed)

: function REGISTERDEVICE(ownerAddress,devicelD)

InsertToHashMap(deviceRegistry)

: end function

: function WRITEDATA(ownerAddress,devicelD,Data)

if owner == ownerAddress

deviceData[owner,deviceID].List.InsertData(hash(Data))

: end function

: function READDATA (ownerAddress,thirdParty Address,devicelD)

if DataAccessRegistry(thirdPartyAddress) == true

return deviceData[hash(ownerAddress,devicelD])

: end function

: function GRANTACCESS(ownerAddress,thirdParty Address,devicelD)
if owner == ownerAddress
DataAccessRegistry[hash(ownerAddress,thirdParty Address,devicelD)] =

true

18: end function

19: function REVOKEACCESS(ownerAddress,thirdParty Address,devicelD)

20: if owner == ownerAddress

21: DataAccessRegistry[hash(ownerAddress,thirdParty Address,devicelD)]
=false

22: end function

e e
QAN ALR—OYRRNDN R

registration, read and policy access module for hash data
storage.

User Registration. This module leverages the user regis-
tration system on Ethereum network. Each user joins the
Ethereum network by generating a public private key pair
which uniquely identifies the user. The private key can
then be used to interact with the smart contract to perform
functions such as device registration and data access.

Device Registration. Each authenticated user can register
their IoT devices by providing the identifier for the device.
In the smart contract, we provide a hash map that maps
the devices owned by a user to the owners address on the
blockchain as denoted mapping (address = list of owners
deviceids)

Data Write Access Policy. For a device to write data
to the blockchain, the device will provide the owners
address and the device id with the data to be written.
By using the combination of the owner address and the
device id as the key in a hash map, we can uniquely
store all data that corresponds to all devices separately as
denoted ((owner_address,device id) = list of device data).
The value of the hash map is a list of hashes of the data
written by the device. Before the smart contract allows data
to be written to the contract, the smart contract will check
if the owner address correspond to the device ID, so as to
ensure only a device owner can execute write operation.

Device Data Read Access Policy. For data access, a third
party user who needs access to a device data from another
user will request for permission to read the data. The
requesting user will provide the address of the owner of
the device and the device ID of the device. A hash map
that contains the device owner and address and the device

® (O
[Ramots
10T Gateway i
L T erenpied comect =~

®

WRITE

OO IO 1o]

Blockchain

Smart Contract
Interfaces

Integrity

I Communicator Checker

READ

Figure 4: Illustration of the Data Flow in [OTSMARTCON-
TRACT

id as key with the list of the third party users as values is
maintained within the smart contract. This is denoted as
((owner,device id,third party user address) = bool access).
Before access is granted to the data, this hash map is
checked to see if a requesting user can access the data
by ensuring only registered third party users can access
the device data.

B. I0TSMARTCONTRACT Detailed DataFlow

In Figure 4, we show a detailed data flow diagram of
IOTSMARTCONTRACT. For a device to write or read data,
first, the device communicates with the IoT gateway in
Step ® to register itself with the blockchain. For the IoT
gateway to trust the SGX platform, it performs remote
attestation as shown in Step @. To perform data write,
the device communicates with the IoT gateway in Step
@. The gateway then retrieves the smart contract address
in Step ®. The gateway will then encrypt and hash the
data. The hashed data will be written to the blockchain
using the writedata function in the smart contract. The
raw encrypted data is then written to the SGX platform in
Step @. By using the Ecall/Ocall wrapper, the untrusted
module in the SGX application communicates with the
trusted module as shown in Step ®. In Step ®, the In-
tegrity Checker module calculates the hash-based message
authentication code(HMAC) of the data and appends the
HMAC of the data before the data is sealed and written to
disk in Step @ and Step ®.

For the read operation, the user must register third
party users with the smart contract by using the
allowAccess method. To revoke access, the user calls
the revokeAccess function. The third party user com-
municates with the smart contract as shown in Step @
to obtain the hash of the data generated by the device
by supplying the device Id. The smart contract checks if
the third party user can access the data from the device
using the device Id and the address of the third party user,

if permission is granted, the hash of the data is returned
and can be used to access the data from the SGX storage
platform. In Step @, the SGX application rechecks with
the smart-contract using READDATA API to determine if
the third party user can access the data hash identifier
supplied by the third party request. If access is allowed,
the SGX application retrieves the data from secure storage
Step © . Note that the overhead for read operation from
the blockchain is insignificant as we will show in the
evaluation section in Table I. The data is then unsealed
in Step ® and the Integrity Check Step @ recalculates the
HMAC of the data which is then compared with the stored
HMAC. If the HMAC is unmodified the data is read and
returned the the user as shown in Step @ and Step @.

V. Implementation

We used five real IoT devices and a mobile phone
to evaluate [OTSMARTCONTRACT. The devices includes
Philip Hue Hub with Zigbee light bulb, Samsung Smart-
things Hub with Motion/Proximity sensor, Belkin Wemo
Switch, Wemo Wall socket and a heart rate monitor mobile
application on android.

A. Ethereum Smart Contract

We implemented the [OTSMARTCONTRACT smart con-
tract component using the Ethereum blockchain. Our
implementation consists of 50 lines of code in solidity
programming language. The code footprint needs to be
concise so as to limit the amount of Ethereum gas needed
to run a smart contract transaction. To limit storage space
needed to store data in the blockchain, we only store the
hash of the data. We ran the smart contract on the Rinkeby
Ethereum test network for evaluation.

We implemented the following interfaces
registerDevice, allowAccess, writeData,
readData and revokeAccess that enable the IoT
devices to interact with the smart contract . By using the
geth Ethereum client, we can retrieve the smart contract
address in the blockchain and performed operations such
register devices, write data, read data, write and read
access policy update and revoke access policy.

VI. Evaluation

Table 1 shows our evaluation result for each smart
contract operation in gas used by the miners to complete
an operation call. To confirm a transaction, the transaction
must be included in a generated block. The data payload
size for device 1 is 27 bytes, device 2, 47 bytes, device
3, 132 bytes, device 4 and 5, 127 bytes respectively

Smart Contract Interface | Parameters Gas Used
registerDevice Device ID 47543
allowAccess Device ID, ThirdParty Address 29517
writeData Device ID, DataHash 51049
readData Device ID, ThirdParty Address -
revokeAccess Device ID, ThirdParty Address 14792

Table I: Efficiency of Smart Contract Application based on
Gas usage

while the hash length is 256 bits. As seen in Table I,
registerDevice uses 47,543 gas to complete its oper-
ation, allowAccess required 29,517 gas, writeData
required 51,049 gas and revokeAccess required 14,792
gas. readData did not use any gas since reading from a
smart contract is done on the local blockchain which does
not require any mining.

In Figure 5, we compared the efficiency in gas usage
required by miners to complete write operation in the
blockchain. We compared two scenarios where the whole
data which is encrypted from the devices is written to
the blockchain versus writing only the hash of data. By
considering 5 device types, we show that device 1 used
59,846 gas for hashed data compared to 159,234 gas
required for raw data write which is a reduction of 169%.
Device 2 used 53,454 gas for hashed data and 92,926 gas
for raw write which gives a reduction of 73%. Device 3
and 4 used 58,974 gas for hashed data while 159,000 gas
is required to write raw data which gives a reduction of
138%.

In Figure 6, we show the impact of increasing write
workload on the blockchain. By increasing the write work-
load between 500 write requests to 2000 write requests,
we measure the transaction throughput per second on the
blockchain. Without hashing, For 500 write workload, the
write transaction throughput is 10.56 writes per second. For
1500, it is 9.26 and for 2000 writes, the write throughput
is 8.6 writes per second. With hashing, for 500 write
workload, the write transaction throughput is 8.8 writes
per second. For 1500, it is 7.9 and for 2000 writes,
the write throughput is 7.2 writes per second. The write
throughput decreases with increasing write workload. The
write throughput also decreases with hashing enabled.
Even though from Figure 5, the gas used with hashing
enabled is constant because the hashing function produces
256 bit data for storage on the blockchain, the write
throughput is lower because of the hashing process before
writing the data to the blockchain.

A. Sealing and Unsealing Overhead

In Figure 7, we show overhead for sealing and the
unsealing operation on the SGX platform. The x-axis
represents the block size and the y-axis represents the CPU
cost in milliseconds. By using a block size of 1,024 bytes,

-10°
200 —

- With Hashing 12}
-e- No_Hashing 2

oy

3
:

.

Gas used (thousands)
™)
S
Throughput(write tx/s)

[
(=]
T
[

dvi dev2 devd devd
Device Type

Figure 5: Gas utilization for Write

Operation on SmartContract.

the average time it takes to seal a single batch record of 2.8
MB is 400 milliseconds compared to 2,000 milliseconds
when using 32 bytes block size. With increasing block size,
the time to seal and and unseal data reduces. This is as a
result of reduction in frequency of number of blocks of
data between the enclave and the untrusted module of the
application.

VII. Limitations and Future Work

In this work, we leveraged the immutability of the
blockchain network to store audit information on how IoT
data is stored and read by users. One of the main limita-
tion of using blockchain is the scalability problem. This
limitation is not pertinent to our solution, since the data
is not always needed immediately and all pending writes
and read can be processed and committed to the blockchain
at a later time. In addition, this limitation does not apply
to read operation as shown in the evaluation. One way
to overcome this limitation is to use private blockchains.
By using private blockchains, we can eliminate the time
used to mine block since all participants in the network is
permissioned or known.

VIII. Related Work

In this section, first, we provide discussion on related
work on blockchain, and IoT system.

Blockchain. With the increase in adoption of blockchain
technology, various researchers have proposed different use
cases for the new technology. Zyskind et al. [13] proposed
using blockchain to decentralize storage of data. Our work
differs from theirs, since we provide a full implementation
that leveraged SGX secure computing to store raw data
in order to defeat malicious attackers. Dorri et al. [22]
proposed using blockchain to manage IoT network. By
providing a light weight blockchain consensus system,
devices with low processing power can run blockchain

-a- With Hashing 2500
-e- No_Hashing | -& Sealing
PR - . -&- Unsealing
8 % 2000+ 8
. =]
8 D\G‘B\N; 3y §
Z 1500
.g
E 1000 -
2
& 500t
1500 2000 0

de‘vS 500 1000
Number of Write Workload

Figure 6: Throughput based on In-
creasing Write Workload

256 512 768 1024 1280 1536
Block Size (KB)

Figure 7: Avg Seal and Unseal time

independently. Various works exist on how to improve the
performance of blockchain technology as seen in [23].

IoT System and Applications. In previous work by Ear-
lence et al. [1], they show how a smart lock can be com-
promised by attacking the Samsung Smart Application.
They demonstrated an attack that requested limited access
permission to only perform lock action on a smart lock,
but instead gained full control privilege to also perform
unlock action. Vijay et al. [24] show how they capture non
encrypted network traffic from Wemo device to perform a
replay attack on the device.

IX. Conclusion

As adoption of IoT device usage increases, proper
data access audit, data usage transparency and data pri-
vacy is very critical due to the vast amount of data
generated by these devices. This paper introduces I0TS-
MARTCONTRACT that offers decentralized data access
control policy system, data security and data integrity by
leveraging recent advances in blockchain technology and
trusted computing using Intel SGX. Our approach utilizes
the blockchain to manage data access to IoT data in a
decentralized way and stores the raw encrypted data in
SGX enabled platform by ensuring all data processing
and storage is done in the secure enclaves. Our platform
utilizes real blockchain platform Ethereum to evaluate our
approach. We used real Intel SGX platform to evaluate our
secure storage platform.

X. Acknowledgement

This work was supported in part by NSF award
#1513704, AFOSR award FA9550-14-1-0173, ONR
awards N00014-14-1-0030 and NO0O0014-17-1-2295, an
award from Lockheed-Martin. and NSA.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

E. Fernandes, J. Jung, and A. Prakash, “Security Analysis
of Emerging Smart Home Applications,” in Proceedings of
the 37th IEEE Symposium on Security and Privacy, May
2016.

Y. J. Jia, Q. A. Chen, S. Wang, A. Rahmati, E. Fernandes,
Z. M. Mao, and A. Prakash, “ContexloT: Towards Providing
Contextual Integrity to Appified IoT Platforms,” in Proceed-
ings of the 21st Network and Distributed System Security
Symposium (NDSS’17), San Diego, CA, February 2017.

J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami,
“Internet of things (iot): A vision, architectural elements,
and future directions,” Future generation computer systems,

vol. 29, no. 7, pp. 1645-1660, 2013.

E. Bertino, “Data privacy for iot systems: Concepts, ap-
proaches, and research directions,” in Big Data (Big Data),
2016 IEEE International Conference on. 1EEE, 2016, pp.
3645-3647.

P. A. H. Williams and V. McCauley, “Always connected:
The security challenges of the healthcare internet of things,”
in 2016 IEEE 3rd World Forum on Internet of Things (WF-
10T), Dec 2016, pp. 30-35.

N. M. Gonzalez, W. A. Goya, R. de Fatima Pereira,
K. Langona, E. A. Silva, T. C. M. de Brito Carvalho,
C. C. Miers, J. E. Mngs, and A. Sefidcon, “Fog computing:
Data analytics and cloud distributed processing on the
network edges,” in 2016 35th International Conference of
the Chilean Computer Science Society (SCCC), Oct 2016,

pp.- 1-9.

M. M. Masud, L. Khan, and B. Thuraisingham, “A
scalable multi-level feature extraction technique to detect
malicious executables,” Information Systems Frontiers,
vol. 10, no. 1, pp. 33-45, Mar. 2008. [Online]. Available:
http://dx.doi.org/10.1007/s10796-007-9054-3

H. Hu, G.-J. Ahn, and J. Jorgensen, “Detecting and
resolving privacy conflicts for collaborative data sharing
in online social networks,” in Proceedings of the 27th
Annual Computer Security Applications Conference, ser.
ACSAC ’11. New York, NY, USA: ACM, 2011, pp.
103-112. [Online]. Available: http://doi.acm.org/10.1145/
2076732.2076747

S. Nakamoto, “A peer-to-peer electronic cash system,”
bitcoin.org, 2009, (Accessed on 08/09/2017).

E. Foundation, “Ethereums white paper.” https://github.
com/ethereum/wiki/wiki/White-Paper, 2014, (Accessed on
08/09/2017).

Filecoin, “Filecoin: A decentralized storage network.” https:
/Mfilecoin.io/filecoin.pdf, 2017, (Accessed on 08/09/2017).

slock, “Initial coin offering market,” https://slock.it/, 2017,
(Accessed on 08/09/2017).

(13]

(14]

(15]

[16]

(17]

(18]

(19]

[20]

[21]

(22]

(23]

(24]

G. Zyskind, O. Nathan er al., “Decentralizing privacy:
Using blockchain to protect personal data,” in Security and
Privacy Workshops (SPW), 2015 IEEE. IEEE, 2015, pp.
180-184.

A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou,
“Hawk: The blockchain model of cryptography and privacy-
preserving smart contracts,” in Security and Privacy (SP),
2016 IEEE Symposium on. 1EEE, 2016, pp. 839-858.

V. Costan and S. Devadas, “Intel SGX explained,” JACR
Cryptology ePrint Archive, vol. 2016, p. 86, 2016. [Online].
Available: http://eprint.iacr.org/2016/086

M. Crosby, P. Pattanayak, and S. Verma, “Blockchain
technology: Beyond bitcoin,” 2016.

N. Santos, H. Raj, S. Saroiu, and A. Wolman, “Using arm
trustzone to build a trusted language runtime for mobile
applications,” in ACM SIGARCH Computer Architecture
News, vol. 42, no. 1. ACM, 2014, pp. 67-80.

L. Van Doorn, ‘“Hardware virtualization trends,” in
ACM/Usenix International Conference On Virtual Execution
Environments: Proceedings of the 2 nd international con-
ference on Virtual execution environments, vol. 14, no. 16,
2006, pp. 45-45.

V. Karande, E. Bauman, Z. Lin, and L. Khan, “Sgx-
log: Securing system logs with sgx,” in Proceedings of
the 2017 ACM on Asia Conference on Computer and
Communications Security, ser. ASIA CCS *17. New York,
NY, USA: ACM, 2017, pp. 19-30. [Online]. Available:
http://doi.acm.org/10.1145/3052973.3053034

R. L. Rivest, A. Shamir, and L.
“A method for obtaining digital
public-key cryptosystems,” Commun. ACM, vol. 21,
no. 2, pp. 120-126, Feb. 1978. [Online]. Available:
http://doi.acm.org/10.1145/359340.359342

Adleman,
signatures and

P. Hue, “Philip hue iot portal,” http://www?2.meethue.com/
en-us/, 2017, (Accessed on 08/09/2017).

A. Dorri, S. S. Kanhere, and R. Jurdak, “Towards an
optimized blockchain for iot,” in Proceedings of the
Second International Conference on Internet-of-Things
Design and Implementation, ser. IoTDI *17. New York,
NY, USA: ACM, 2017, pp. 173-178. [Online]. Available:
http://doi.acm.org/10.1145/3054977.3055003

I. Eyal, A. E. Gencer, E. G. Sirer, and R. Van Renesse,
“Bitcoin-ng: A scalable blockchain protocol.” in NSDI,
2016, pp. 45-59.

V. Sivaraman, D. Chan, D. Earl, and R. Boreli, “Smart-
phones attacking smart-homes,” in Proceedings of the 9th
ACM Conference on Security & Privacy in Wireless
and Mobile Networks, ser. WiSec *16. New York, NY,
USA: ACM, 2016, pp. 195-200. [Online]. Available:
http://doi.acm.org/10.1145/2939918.2939925

http://dx.doi.org/10.1007/s10796-007-9054-3
http://doi.acm.org/10.1145/2076732.2076747
http://doi.acm.org/10.1145/2076732.2076747
bitcoin.org
 https://github.com/ethereum/wiki/wiki/White-Paper
 https://github.com/ethereum/wiki/wiki/White-Paper
https://filecoin.io/filecoin.pdf
https://filecoin.io/filecoin.pdf
https://slock.it/
http://eprint.iacr.org/2016/086
http://doi.acm.org/10.1145/3052973.3053034
http://doi.acm.org/10.1145/359340.359342
http://www2.meethue.com/en-us/
http://www2.meethue.com/en-us/
http://doi.acm.org/10.1145/3054977.3055003
http://doi.acm.org/10.1145/2939918.2939925

	Introduction
	Background
	Overview of Architecture
	Internet of Things
	BlockChain
	Trusted Execution Environment

	Overview
	Scope and Assumptions
	Threat Model
	The Case of Using Blockchain for IoT data management

	Architecture
	Smart Contract Component
	IoTSmartContract Detailed DataFlow

	Implementation
	Ethereum Smart Contract

	Evaluation
	Sealing and Unsealing Overhead

	Limitations and Future Work
	Related Work
	Conclusion
	Acknowledgement
	References

