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Abstract—An Ethereum bytecode rewriting and validation
architecture is proposed and evaluated for securing smart
contracts in decentralized cryptocurrency systems without
access to contract source code. This addresses a wave of
smart contract vulnerabilities that have been exploited by
cybercriminals in recent years to steal millions of dollars from
victims. Such attacks have motivated various best practices
proposals for helping developers write safer contracts; but as
the number of programming languages used to develop smart
contracts increases, implementing these best practices can be
cumbersome and hard to enforce across the development tool
chain. Automated hardening at the bytecode level bypasses this
source-level heterogeneity to enforce safety and code integrity
properties of contracts independently of the sources whence
they were derived. In addition, a binary code verification
tool implemented atop the Coq interactive theorem prover
establishes input-output equivalence between the original code
and the modified code. Evaluation demonstrates that the system
can enforce policies that protect against integer overflow and
underflow vulnerabilities in real Ethereum contract bytecode,
and overhead is measured in terms of instruction counts.

Keywords-blockchain; Ethereum; in-lined reference moni-
tors; formal methods

I. INTRODUCTION

Recent increases in the adoption rate of smart contract
applications have spurred initial coin offerings (ICOs)' and
decentralized autonomous organizations (DAOs) to leverage
multiple applications to raise money for disparate start-ups.
This surge in investment has motivated a corresponding
surge in smart contract attacks and vulnerability discoveries.
For example, cybercriminals have leveraged re-entrancy
attacks [1], [2] and parity multisig wallet attacks [3] to
steal more than 60 million dollars in cryptocurrency.

As a result, various languages have been developed or mod-
ified to compile smart contracts as Ethereum bytecode. These
include Solidity2 (which resembles JavaScript), Haskell,?
and Vyper.* Solidity is presently the most popular of these
languages. However, developers are often reluctant to learn
new languages, and gaining the proficiency to develop correct
and secure code in a new language can be demanding.

These obstacles are exacerbated by the increasing complex-
ity and subtlety of vulnerabilities leveraged by attackers to

Uhttps://www.icohotlist.com
Zhttps://github.com/ethereum/solidity
3https://github.com/takenobu- hs/haskell-ethereum-assembly
“https://github.com/ethereum/vyper

exploit and steal cryptocurrencies from blockchain networks.
Various researchers have proposed automated tools for finding
bugs in smart contracts before deployment to the blockchain
network. Most of these tools rely on the source code to carry
out their analysis [4], [5], though a few (e.g., teEther [6])
perform bug-search at the bytecode level.

Rather than searching for bugs, our work leverages
automated bytecode rewriting to allow developers to create
smart contracts in any language, yet automatically enforce
security policies at the bytecode level without relying on
developer expertise to secure the application. Our framework
ensures that vulnerable bytecode is properly protected without
access to source code. By providing a framework that uses
a source-agnostic approach, we can enforce security policy
rules across different development tool chains.

Source-free, binary transformations are widely recognized
as more difficult to implement than source-level analyses and
transformations. Lack of contextual variable meanings [7],
irregular instruction alignment of certain architectures (e.g.,
CISC native codes) [8], and recovery of code control-flow
graphs and function entry points [9], are all perennial
challenges documented in the literature. However, Ethereum
bytecode has many syntactic properties that aid feasibility
of binary rewriting of smart contracts relative to other
binary languages, including strict instruction alignment
and whitelisting of all indirect control-flow targets with
JUMPDEST opcodes [10].

Bytecode rewriting of Ethereum contracts can therefore be
achieved in four major steps: (1) Disassemble the bytecode
to semantically equivalent assembly code. (2) Instrument the
disassembled bytecode with new security guard code that
enforces the desired policy. (3) Identify all jump locations and
rewrite their destinations to match the code motions induced
by the instrumentation step. (4) Verify that the modified code
is transparent [11] with respect to the original code (i.e.,
it implements the same input-output relation whenever the
security policy is not violated).

In this work, we build a framework that can rewrite
Ethereum bytecode and update all jump instructions to reflect
the new offset of their targets based on the modified code. Our
work differs from previous systems by creating a framework
that can modify the Ethereum bytecode without the need of
high level language source code (cf., [4], [12]). In short, our
contributions include the following.



 We propose and implement a framework to rewrite
Ethereum bytecode without access to source code.

o Our framework detects vulnerable bytecode instructions
and inserts guard code to mitigate attacker exploits.

« We implement Ethereum virtual machine code verifi-
cation in the Coq theorem prover to machine-prove
semantic transparency.

« We evaluate the system on real world smart contracts
and measure the system overhead.

The rest of the paper is organized as follows. Section II pro-
vides background on smart contract and Ethereum bytecode
vulnerabilities. Section III discusses challenges and solutions
encountered in designing a bytecode rewriter framework.
Section IV provides the architecture of our system and
Section V describes our implementation. Section VI contains
our evaluation, followed by discussion of related work in
Section VII. Finally, Section VIII examines limitations and
proposes future directions, and Section IX concludes.

II. BACKGROUND
A. Ethereum Virtual Machine

Smart contracts are autonomous computations executed
by decentralized entities on a blockchain. A popular smart
contract framework implementation is the Ethereum virtual
machine (EVM). The EVM is a stack based computer that
executes a sequence of bytecode instructions. Its state consists
of a stack of 32-byte values, a memory, and a key-value store
for persistent storage. EVM bytecode consists of more than
100 opcodes, such as ADD, SUB, PUSH, and JUMP. Each
opcode has an associated fee called gas that must be paid to
execute the instruction. Two token standards called ERC20
and ERC721 implement custom cryptocurrencies and custom
non-fungible assets.

B. Common Ethereum Smart Contract Vulnerabilities

The increased use of smart contracts has resulted in the
discovery of numerous contract vulnerabilities, including
arithmetic over/underflow, smart contract owner hijacking,
and re-entrancy attack vulnerabilities. We here focus on
arithmetic vulnerability detection and mitigation. Integer
overflows and underflows can occur during EVM code
execution, leading to loss of tokens or money. The stack
consists of up to 1024 32-byte words, each of which can
hold a maximum value of 2%°. By adding a number to the
max value, the new value rolls over to zero. Subtracting from
a zero value dually rolls the result over to the maximum
value! [13] because EVM uses unsigned int256 types [2].
Integer underflow vulnerabilities can allow an attacker to
roll over his initial balance to the maximum value, thereby
gaining access to a large token balance that he does not
own. This work focuses on mitigating these vulnerabilities
by rewriting the smart contract bytecode.

Uhttps://github.com/CoinCulture/evm-tools/blob/master/analysis/guide.md

ITII. CHALLENGES
A. EVM Control-flows and Jump Retargeting

Since the EVM is a stack-based machine, EVM bytecode
consists of a sequence of one-byte instructions (except for
PUSH instructions, which contain immediate values). To
control the flow of the program, the address of a jump
destination is first pushed to the stack as an input to the
jump instruction, which is then executed. All jump destination
addresses are marked with the JUMPDEST instruction. This
is to ensure that programs can only jump to specific unique
addresses marked in the bytecode. This mechanism is
enforced by the EVM. To enforce this policy, the EVM parses
the program bytecode and memorizes all the JUMPDEST
targets. Every jump target is checked for validity before
executing each JUMP instruction.

Unlike most native code architectures, where the machine
code contains direct jump instructions, all jumps in EVM
bytecode use the address at the top of the stack to identify
the jump target. Code transformations that move instructions
must therefore modify all jumps whose targets might have
moved. We address this challenge in Section IV-A.

B. Minimizing Overhead in Modified Bytecode

Protecting vulnerable code segments in the bytecode
requires adding more instructions to the original bytecode.
Inserting full guard code where vulnerable code exists results
in a larger bytecode size, which affects the deployment cost
on the Ethereum blockchain. For example, a smart contract
with 100 bytes of code costs 2000 gas to deploy, while a smart
contract with 50 bytes of code costs 1000 gas, resulting in a
savings of 50%. According to the Ethereum yellow paper [10],
every byte deployed on the blockchain costs 200 gas. As a
result of this, we need an efficient technique to optimize the
rewriting. We address this challenge in Section IV-C.

C. Verifying Bytecode Correctness and Transparency

Bytecode rewriting is a potentially complex operation.
To obtain high assurance, a machine-checked verification
system allows us to verify that the modified bytecode program
maintains the policy-compliant behaviors and correctness
properties of the original code. To address this need, we build
a verification tool that simulates the Ethereum stack VM
and prove the transparency of the original and the modified
bytecode. We address this challenge in Section IV-D.

IV. ARCHITECTURE

As shown in Figure 1, our system accepts policy rules
and EVM bytecode as input. The framework consists of the
Bytecode rewriter and the EVM code verifier. The bytecode
rewriter consists of a disassembler, the rewriter, and an
assembler. The bytecode rewriter output is fed to the EVM
code verifier together with the original bytecode to ensure the
rewritten program is equivalent. If the verifier succeeds, we
output the hardened bytecode. If the verifier fails, we retry the
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Figure 1: System architecture

Algorithm 1: EVM bytecode hardening

Data: EVMbytecode, EVMGuardCode, VulnerableOpcode
Result: HardenedEVMBytecode
while Inst € Instructions do

1

2 Opcode := GetOpcode(Inst);

3 Operand := GetOperand(Inst);

4 if VulnerableOpcode = Opcode then

5 | InsertCode(EVMGuardCode);

6 while Inst € Instructions do

7 Opcode := GetOpcode(Inst);

8 Operand := GetOperand(Inst);

9 if Opcode = JUMP then

10 pushlnst := GetPreviousPushInst();

11 oldTarget := getOperand(pushInst);

12 while Inst, € Instructions do

13 if oldTarget = oldlabel(Insty) N\ GetOpcode(Insty) =
JUMPDEST then

14 L rewritePushInstruction(Inst, getnewlabel(Inst;))

rewriting step with a bounded time. In our system, we propose
an in-lined bytecode insertion algorithm shown in Algorithm 1
and a function call technique shown in Algorithm 2.

A. In-lined Bytecode Rewriter

In order to rewrite the EVM bytecode as shown in
Algorithm 1, we first disassemble the bytecode to opcode
instructions and extract the opcode and the operand of each
instruction (lines 2-3). If the opcode is vulnerable, we insert
the guard code before the vulnerable opcodes (line 5).

The resulting assembly code is misaligned due to the
inserted code and JUMP instructions. To realign the code, we

scan the code again for JUMP or JUMPI instructions (line 9).

In most cases the instruction that precedes the JUMP opcode
is a PUSH instruction, whereupon we extract the argument
that specifies the jump target (line 11). We next scan the
instructions to find a match between the extracted old jump
target and the new jump target location label (line 12). After a

DUP1 // duplicate second subtraction argument
DUP 3 // duplicate first subtraction argument
GT // test for underflow

NOT

PUSH [tag] n

JUMPI

REVERT // underflow detected

tag n

JUMPDEST

10 SUB // safely perform subtraction

R R T N

Listing 1: Underflow protection bytecode

match is found, we extract the offset of the new JUMPDEST
instruction and rewrite the PUSH instruction’s argument to
the new jump target location (line 14).

B. Addressing the Policy Rule Generation Challenge

We must generate and convert a protection policy rule to
bytecode, which can then be used as guard code to protect
the vulnerable code. Since we perform our rewriting at the
bytecode level, we can generate the guard bytecode once
and apply it to any other bytecode compiled from any other
language. In our case, we write our protection policy in
Solidity and extract the compiled bytecode for the application.

For example, Listing 1 shows the code generated for
underflow code protection. The code checks whether the
subtrahend exceeds the minuend before performing the
subtraction to avoid a negative result, which is not supported
by the EVM as discussed in Section II-B [2], [13]. Program
execution is aborted if an impending underflow is detected.

C. Optimized Guard Code Rewrite

Algorithm 2 addresses the challenge of optimizing the
bytecode rewriting algorithm to minimize bytecode size and
instruction count, as mentioned in Section III-B. In order to
minimize the size of the binary file generated by inline guard
code insertion, we utilized a function call-like system in the
EVM bytecode. EVM does not support first-class function
calls at the bytecode level.

To achieve our optimization, we inserted code that allows
the program to remember how to return to the calling function
after executing the guard code. In order to achieve this,
function call code is first inserted before all vulnerable
instruction code (line 5). Guard code is next appended to the
current bytecode (line 6).

The function call code’s PUSH argument is initialized with
a placeholder location value that is later updated, the instruc-
tion is labeled as the current location, and the consecutive
instruction is labeled as the function call instruction. To
update the place holder location in the function call, we first
scan the new code for the location of the appended guard code.
Second, we scan the code for the labels; if the instruction
label is the current location (line 9), we update the PUSH
argument to the current location value to save the return



Algorithm 2: EVM bytecode optimized rewriter

Data: EVMbytecode, EVMGuardCode, Vulnerable_Opcode
Result: HardenedEVMBytecode

1 while Inst € Instructions do

2 Opcode := GetOpcode(Inst);

3 Operand := GetOperand(Inst);
4

5

if VulnerableOpcode = Opcode then
L InsertFunctionCallCode();

6 AppendCode(EVMGuardCode);

7 while Inst € Instructions do

8 instructionLabel := getInstructionLabel();

9 if instructionLabel = saveCurrentlnstAddress then
10 L UpdatePushInstrArg(Inst, currentLocation);

1 if currinstructionLabel = functioncall then
12 L UpdatePushInstrArg(Inst, appendedCodeLocation);

13 Reuse steps 6—14 of Algorithm 1 to rewrite jump targets

1 000000 PUSH (current address)
> 000002 PUSH (address of appended guard code)
3 000004 JuMP

Listing 2: Function call code in EVM bytecode

address on the stack. Third, we scan the instructions for the
function call PUSH instruction and we update the argument
to the location of the appended guard code (lines 12). Finally,
we rewrite the jump target locations using the steps from
Algorithm 1.

Listing 2 shows the code flow of the function call code
routine. To call the appended guard code, the current address
of the program instruction is first pushed to the stack. Second,
the address of the guard code function is pushed to the stack
and the jump instruction is executed to the jump to the guard
code. After execution, the guard uses the saved location to
return to the calling code position.

D. EVM Code Verification

Here we address the challenge of bytecode verification as
introduced in Section III-C. In order to verify the properties
of the modified bytecode are still correct, we need a system
that allows us to specify theorems about program behaviors
and prove their correctness. By leveraging the Coq interactive
proof assistant, we implemented an EVM stack in Coq.

Figure 2 shows a simplified and abbreviated definition of
our EVM semantics for Coq. The semantics are formalized
as a small-step machine in which bad states (e.g., stack un-
derflows, invalid jumps, etc.) are intentionally left undefined.
This makes unprovable any theorems that depend upon the
EVM’s behavior upon encountering such states. As a result,
proved theorems guarantee that bad states are avoided.

A program p is formalized as a partial mapping from
offsets to instructions t. The program’s current state includes
the current instruction offset (program counter pc), the stack
contents ¢, and the memory contents m. Each semantic

N—=1
1::=PUSH n | POP | SUB | JUMP | STOP | ---

(program)
(instruction)

©

u == {(o,m) | (pc,o,m) (machine state)
cu=-|n:o (stack)
m:N—~N (memory)
p(pc) =PUSH n
pt(pc,o,m) = (pc+1,n:: c,m) (PUSH)
p(pc) = POP
pt{pc,n::o,m)— (pc+1,0,m) (POP)
p(pc) = SUB ny > ny
pE{pc,niinyio,m) = (pc+1,(n; —ny) :: 6,m) (SUB)
p(pc)=JUMP  p(n) = JUMPDEST
pt{pc,n::o,m)— (n,0,m) (JUMP)
p(pc) = STOP (STOP)

P F <P07(77m> —1 <67m>

Figure 2: EVM semantics (abbreviated and simplified)

rule executes one instruction by reading the opcode located
at the current program counter offset and manipulating the
stack and/or memory accordingly. Fall-through instructions
increment the program counter, whereas jumps assign it a
target offset. Programs that halt normally enter final state
(o,m).

E. Proving Transparency

Proving transparency of our bytecode rewriter entails
proving that all policy-adherent behaviors of the program
are preserved after rewriting. For a given rewriter R: p — p,
the transparency theorem can be formalized as follows.

Theorem 1: For all programs p, if p F (0,-,m) —*
(o’,m’) is derivable, then R(p) i (0,-,m) —* (¢’,m’) is
derivable, where —* is the reflexive, transitive closure of
small-step relation —.

Proof: The theorem is proved by first generalizing
the theorem statement’s initial program counter for the
original program (0) to an arbitrary offset pc, and rewriting
the rewritten program’s initial program counter 0 to r(pc),
where 7 : N — N is the mapping from old offsets to new
(relocated) offsets implemented by R. Initial stack - is likewise
generalized to an arbitrary stack o. This generalization
of the theorem facilitates a natural number induction over
the number of steps n in transitive relation —*. By case
distinction, each small-step semantic rule in Figure 2 yields
a modified state that satisfies the theorem by inductive
hypothesis. The rule for instruction STOP satisfies the base
case of the induction, completing the proof. [ ]

V. IMPLEMENTATION

We implemented our bytecode rewriter in Python. We
utilized the Ethereum dataset of all smart contract bytecode
stored on the Google big-query platform. We extracted a
total of 155,175 unique smart contracts from a total of
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2,195,890 smart contracts deployed on the Ethereum network.
Of the 155,175 smart contracts, we extracted 64,033 ECR20
Ethereum smart contracts and 1,515 ECR721 Ethereum
smart contracts. For each of the smart contract types, we
instrumented 1,000 smart contracts with code protection
for integer overflow and underflow for both addition and
subtraction instructions. We executed our bytecode rewriter
on an Intel Core i5 with 8GB of memory.

We implemented our EVM verification by extending a
stack computer developed in Coq [14]. As discussed in
Section IV-D, we implemented the following instructions in
Coq: PUSH, ADD, SUB, MULT, POP, DIV, LT, GT, DUPL,
DUP2, SWAP1, SWAP2, EXP, ISZERO, and STOP. This
subset encompasses all instructions needed for our guard
code implementations. Since all other EVM opcodes are
preserved by our rewriter, their semantics are not needed in
the proof of Theorem 1.

VI. EVALUATION

In this section, we discuss the overhead in terms of
instruction counts, as shown in Figures 3 and 4. The x-axis
lists the different types of Ethereum smart contract interfaces
as ECR20, ECR720, and normal smart contracts. The y-axis
records the overhead as the increase in the instruction count
of the modified code relative to the original code, giving
the minimum, average, and maximum overhead for each.
The non-optimized result represents the in-lined rewriting
algorithm, and the optimized result represents the function
call method.

For Figure 3, the minimum instruction count percentage
overhead for normal smart contracts is 30% for the non-

Protection ECR20 ECR721 Norm
Overflow 350% 360% 300%
Underflow 180% 150% 180%
Protection ECR20opt ECR721opt Normopt
Overflow 16% 13% 31%
Underflow 9% 7% 3%

Table I: Average instruction count overheads

optimized rewriter and 2% for the optimized rewriter. The
average percentage overhead is 300% for non-optimized
versus 31% for the optimized rewriter for normal smart
contracts. Figure 4 shows similar results. Table I contains
the average overheads for each type of contract.

To evaluate the overhead based on gas usage, we used
the EVM simulator program developed by the Ethereum
foundation to run a normal smart contract that is vulnerable
to integer overflow and integer underflow, and we compared
the gas usage to the smart contract protected by our rewriting
framework. The execution overhead for the protected program
from integer overflow and underflow is 300% for both. This
result is due to similar instructions used to check if the
parameters for addition or subtraction will not roll over to a
zero or a maximum number as discussed in Section II-B.

VII. RELATED WORK

Smart Contract Code Defense. Various researchers have
explored finding vulnerabilities in smart contracts. Oyente [4]
uses symbolic execution to run smart contracts and find
predefined bugs such as re-entrancy attacks and insufficient
balance. Osiris [15] extends Oyente to discover arithmetic
vulnerabilities by using taint propagation techniques. Machine
learning [16] based methods to classify code to detect
vulnerable code have been explored. TeEther [6] allows
automatic generation of exploits for smart contracts. Zeus [5]
leverages LLVM to generate LLVM IR code from an abstract
syntax tree generated from solidity source code. The system
needs access to the original source code to mitigate attacks.

Formal Verification. Machine-verifying the correctness of
security-sensitive programs for high assurance is becoming
more important with the increase in security breaches. One
main work in the area of program verification is compiler
certification. Coq has been used to develop the first C
compiler with an end-to-end, machine-checked proof of
semantic transparency [17]. In order to verify the safety
properties of smart contracts in Ethereum, an Ethereum
smart contract verification system has been implemented
in Isabelle/HOL [18]. Our work differs from these works
by developing a framework that provably mitigates smart
contract vulnerabilities by inserting guard code in the raw
bytecode.



VIII. D1SCUSSION AND FUTURE WORK

In this work, we identified arithmetic vulnerabilities by
searching for the occurrence of ADD and SUB instructions.
Other instructions, such as the SIGNEXTEND opcode, can
also be used to determine the bitwidth [15] and type inference
of the result address. This instruction can help to determine
whether an arithmetic overflow will occur. In addition, we
identified jump target locations where the address of the
JUMP instruction is pushed to the stack before the jump is
executed.

For our formal verification, we focused mainly on verifying
the operations of the Ethereum stack where most of the
arithmetic operations occur. In future work, we will focus on
adding the verification of memory access operations that can
be useful in protecting against other Ethereum smart contract
vulnerabilities.

For future work, we will identify other common jump
operation patterns that involve function call patterns. In
addition, we will use machine learning methods to detect
vulnerabilities in smart contract bytecode.

IX. CONCLUSION

This work explored bytecode rewriting as a mechanism for
defending against smart contract vulnerabilities. Hardened
EVM bytecode exhibited an average overhead of between
3% and 31% for both integer overflow and integer underflow
guard code rewriting using our optimized bytecode rewriter.
In addition, we implemented a code verification system within
the Coq interactive theorem prover to machine-verify the
transparency of the modified bytecode.
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