Enforceability Theory

CS6301-002: Language-based Security
Dr. Kevin W. Hamlen
Motivating Questions

• Can we prove that mechanism M enforces policy P?
 – What is the mathematical definition of a policy?
 – What does it mean to “enforce” a policy?
• Are there limits to what is enforceable?
 – Which enforcement approaches are best suited to which policies?
 – Are there some policies that are completely beyond any known enforcement strategy?
 – Are some enforcement approaches strictly more powerful than others?
• What is the mathematical landscape of policies, policy classes, and enforcement mechanisms?
Enforceable Security Policies
[Schneider, TISSEC 2000]

- Proposed a theory of Execution (a.k.a. Reference) Monitors (EMs)
 - EMs watch untrusted programs at runtime
 - Impending events mediated by the EM
 - Impending violations solicit EM interventions (termination)
- Example: File system access control
 - EM is inside the OS
 - Decides policy violations using access control lists (ACLs)
Programs and Policies

• An *execution* χ is a sequence of security-relevant program *events* e or *actions*
 – sequence may be finite or (countably) infinite
 – simplifying formalism: Model program termination as an infinite repetition of e_{halt}
 – now all executions are infinite length sequences
• A *program* Π is a *SET* of possible executions
 – one execution for each possible input
 • input can be an infinite sequence read over time
 • model non-determinism/randomness as an implicit input
• A *policy* P is a *PROPERTY* of programs
 – partitions the space of all programs into two groups: permissible programs and impermissible ones
 – impermissible programs are censored somehow (e.g., terminated on violating runs)
EM-enforceable Policies

1) \(P(\Pi) \equiv \forall \chi . \hat{P}(\chi) \)
 - EM policies are expressible as universally quantified predicates over executions
 - \(P \) sometimes called the policy’s “detector”

2) Detector \(\hat{P} \) must be prefix-closed
 - \(\hat{P}(\chi e) \Rightarrow \hat{P}(\chi) \)
 - \(\hat{P}(\epsilon) \)

3) If \(\hat{P} \) rejects something, it must do so in finite time
 - \(\neg \hat{P}(\chi) \Rightarrow \exists i . \neg \hat{P}(\chi[..i]) \)

- Main discovery #1:
 - A policy satisfies (1), (2), and (3) if and only if it is a safety policy
 - Lamport 1977: Safety policies say that some “bad thing” never happens
 - EMs enforce safety policies!
Security Automata

[Erlingsson & Schneider, NSPW ’99]

• Formalization of safety policies
 – finite state automaton
 – accepts language of permissible executions
 – alphabet = set of events
 – edge labels = event predicates
 – all states accepting (language is prefix-closed)
• Example: no sends after reads
In-lined Reference Monitors

• Disadvantages of traditional EMs
 – inefficient: context-switch on every event
 – large TCB: EM extends the OS
 – weak: EM can’t easily see internal program actions
 – non-modular: changing policy requires changing OS
In-lined Reference Monitors

- **Main idea:**
 - Implement a reference monitor by *in-lining* its logic into the untrusted code
 - In-lining procedure should be automated

- **Challenges:**
 - How to automatically generate EM code?
 - How to preserve (non-violating) program logic?
 - How to prevent (malicious) programs from corrupting the EM?
In-lining a Security Autoamton

Example: Let’s in-line this security automaton

\[
\begin{array}{c}
\text{0} \quad \Rightarrow \quad \neg (\text{push} \lor \text{ret}) \\
\quad \text{push} \quad \text{1}
\end{array}
\]

(Policy: push exactly once before returning)

into this binary code

```
mul r1,r0,r0
push r1
ret
```
In-lining Algorithm

1) Conceptually in-line the automaton just before EVERY event

2) Partially evaluate (i.e., specialize) the automaton edges to the event it guards — some edges disappear entirely

3) Generate guard code for the remaining automaton logic
In-lining Example

Insert security automata

\(\neg (\text{push} \lor \text{ret}) \neg \text{push} \)

\(\text{mul } r1, r0, r0 \)

\(\neg (\text{push} \lor \text{ret}) \neg \text{push} \)

\(\text{push } r1 \)

\(\neg (\text{push} \lor \text{ret}) \neg \text{push} \)

\(\text{ret} \)

Evaluate transitions

\(\begin{align*}
0 & \rightarrow 1 \\
\text{true} & \rightarrow 1 \\
\text{false} & \rightarrow 1 \\
0 & \rightarrow 1 \\
\text{true} & \rightarrow 1 \\
\text{false} & \rightarrow 1 \\
0 & \rightarrow 1 \\
\text{false} & \rightarrow 1 \\
\text{true} & \rightarrow 1 \\
0 & \rightarrow 1 \\
\text{true} & \rightarrow 1 \\
\end{align*} \)

\(\text{mul } r1, r0, r0 \)

\(\text{push } r1 \)

\(\text{ret} \)

Simplify automata

\(\begin{align*}
0,1 & \rightarrow 0,1 \\
\text{true} & \rightarrow 0,1 \\
\text{false} & \rightarrow 0,1 \\
0,1 & \rightarrow 0,1 \\
\text{true} & \rightarrow 0,1 \\
\text{false} & \rightarrow 0,1 \\
0,1 & \rightarrow 0,1 \\
\text{false} & \rightarrow 0,1 \\
\text{true} & \rightarrow 0,1 \\
0,1 & \rightarrow 0,1 \\
\text{true} & \rightarrow 0,1 \\
\end{align*} \)

\(\text{mul } r1, r0, r0 \)

\(\text{push } r1 \)

\(\text{ret} \)

Compile automata

\(\text{mul } r1, r0, r0 \)

if state==0
then state:=1
else ABORT
push r1

if state==0
then ABORT
ret
Computability Classes For Enforcement Mechanisms

Hamlen, Morrisett, and Schneider

TOPLAS 2006
IRMvs. EMs

• Implicit assumption of the Schneider paper:
 – in-lining is just an implementation strategy
 – doesn’t affect set of enforceable policies
• Are we sure?
• Two interesting issues:
 – A policy constrains a program, right? But now the EM is *part* of the program. Can it constrain itself?
 – EM was previously a black box. But now it’s subject to the laws of the computational model.
• Big idea: Is there a link between computability and enforceability?
Review: Computation Theory

- Turing Machine
 - Alan Turing (1936)
 - simple mathematical model of a computer
 - consists of:

```plaintext
0 1 1 1 0 0 1 # # # ...
```

- a “tape”
- a “tape head”
- a “finite control”
TM Power

• Can do simple arithmetic
• TMs don’t necessarily terminate
• Can do anything programmable with logic gates (AND, OR, XOR, …)
• Can evaluate a C program encoded in binary
• Can simulate arbitrary TMs (given as input) on arbitrary inputs (given as input)
 – called a “universal TM”
• Intuition: Can do anything a real computer can do (but very, very slowly)
• But TMs can’t solve undecidable problems (e.g., halting problem)
Enforcement Strategy #1: Static Analysis

• Approach:
 – analyze untrusted code BEFORE it runs
 – return “accept” or “reject” in finite time

• Pros:
 – immediate answer
 – code runs at full speed

• Cons:
 – high load overhead
 – weak in power...?
Enforcement Strategy #1: Static Analysis

- **Approach:**
 - analyze untrusted code BEFORE it runs
 - return “accept” or “reject” in finite time

- **Pros:**
 - immediate answer
 - code runs at full speed

- **Cons:**
 - high load overhead
 - weak in power...?

Recursively Decidable Policies
Enforcement Strategy #2: Execution Monitoring

- **Approach:**
 - EM monitors events
 - intervenes to prevent violations
 - implemented outside program

- **Cons:**
 - no answer until execution
 - runtime slow-down (context-switches)

- **Pros:**
 - lower load-time overhead than static analysis
 - more powerful...?
Enforcement Strategy #2: Execution Monitoring

- **Approach:**
 - EM monitors events
 - intervenes to prevent violations
 - implemented outside program

- **Cons:**
 - no answer until execution
 - runtime slow-down (context-switches)

- **Pros:**
 - lower load-time overhead than static analysis
 - more powerful...?

```
c|   | input   |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Program</td>
</tr>
<tr>
<td></td>
<td>event</td>
</tr>
<tr>
<td></td>
<td>EM</td>
</tr>
</tbody>
</table>
```

co-Recursively Enumerable Policies
Arithmetic Hierarchy
Arithmetic Hierarchy

decidable

\[D(x) \]
Arithmetic Hierarchy

Example: TM x eventually halts
Arithmetic Hierarchy

Example: TM x never halts

Example: TM x eventually halts

∀y. D(x, y)

Recursively Enumerable

∃y. D(x, y)

decidable

D(x)

co-RE
Arithmetic Hierarchy

Example: TM x never halts

Example: TM x eventually halts

Example: TM x sometimes loops
Arithmetic Hierarchy

Example: TM x always halts

Example: TM x never halts

Example: TM x eventually halts

Example: TM x sometimes loops
Arithmetic Hierarchy

- **Decidable**
 - $D(x)$

- **Recursively Enumerable**
 - $\exists y. D(x,y)$

- **Π_2**
 - $\forall z. \exists y. D(x,y,z)$

- **Σ_2**
 - $\exists z. \forall y. D(x,y,z)$

- **Π_n**
 - $\forall \ldots$

- **Σ_n**
 - $\exists \ldots$

Examples:
- **co-RE**
 - $\forall y. D(x,y)$

- **Recursively Enumerable**
 - $\exists y. D(x,y)$

- **Decidable**
 - $D(x)$

- **Π_n**
 - $\forall \ldots$

- **Σ_n**
 - $\exists \ldots$

Examples:
- **TM x always halts**
 - Π_2
 - $\forall z. \exists y. D(x,y,z)$

- **TM x sometimes loops**
 - Σ_2
 - $\exists z. \forall y. D(x,y,z)$

- **TM x never halts**
 - $\forall y. D(x,y)$

- **TM x eventually halts**
 - $\exists y. D(x,y)$
Computability & Enforceability

- static analysis = recursively decidable
- EM-enforceable = co-RE
- Conclusions so far:
 - EMs are strictly more powerful than static
 - but they cannot enforce RE, higher classes etc.
- What about IRMs? Same as EMs?
 - Surprising answer: No!
IRM Strategy: Rewrite-enforcement

- **Approach:**
 - transform untrusted code
 - must return new program in finite time
 - transformed code must satisfy policy
 - behavior of safe code must be preserved

- **Pros:**
 - lowest runtime overhead
 - load-time overhead is once-only
 - sometimes no answer until execution
Rewrite-enforceability

A policy P is *rewrite-enforceable* if and only if there exists a computable function $R : M \rightarrow M$ such that...

- $\text{image}(R) \subseteq P$ (all outputs are policy-adherent)
- $P(M) \Rightarrow (R(M) \approx M)$ (behavior of policy-adherent programs is preserved)

Need a definition of program-equivalence \approx

- turns out any “reasonable” definition will do
- Example: equal inputs produce equal outputs

Major difference from EM model: IRM must obey policy, whereas EM has no such obligation

- IRM’s intervention must not be a policy violation
- IRM must possess an intervention that precludes the impending violation

On the other hand, IRM has luxury of CHANGING the untrusted code! This is a power that EMs lack.
Main Discoveries

• There are EM-enforceable policies that are not RW-enforceable.
 – Example: Untrusted code must not print the secret stored at address a, and must not read address a.

• There are RW-enforceable policies that are not EM-enforceable.
 – Example: Untrusted code must behave identically to program M1 on all inputs

• The class of all RW-enforceable policies is not equal to ANY class of the arithmetic hierarchy
 – Open question: What is it, exactly?
 – See also research on Edit Automata

• Next time:
 – More practical examples of RW-enforceable, non-EM-enforceable policies, and how to enforce them
 – How the theory affects certifying IRM technologies