Introduction to Model-checking
CS 6301-002: Language-based Security

Kevin W. Hamlen

September 18, 2019
Software Verification Approaches

► Unit Testing / Fuzzing
 ► Throw many test inputs (often randomly generated) at software and see whether it fails.
 ► Good for fault detection. Inadequate for security.
 ► input space usually infinite
 ► attackers seek out and exploit untested inputs

► Program-Proof Co-Development (Coq)
 ► Implement software in a “nice” (e.g., functional) language.
 ► Write formal correctness properties and proofs.
 ► Proofs are *machine-checked* (not trusted).
 ► Pros: highest assurance, covers infinite state space
 ► Cons: painful to write proofs

► Today: Model-checking
 ► a middle-ground between random fuzzing and formal proofs
 ► Express software as an abstract, finite-state *model* M.
 ► Express security property as a logical predicate ϕ.
 ► Decide $M \models \phi$ by exhaustive state-space search.
Some History

- First developed in 1980s by Clarke, Emerson, and Sifakis (Turing Award 2007)
 - primarily targeted hardware verification
 - disillusionment with proofs in 80s and 90s
 - found previously undetected errors in 1992 IEEE Future+ cache coherence protocol
- 1994 Intel Pentium floating-point bug
 - passed unit testing
 - cost Intel $400–500 million
 - could have been detected by model-checking
- model-checking now routinely used by Intel, AMD, IBM, Lucent, etc.
- Rise of Software Model-checking in late 90s
 - VeriSoft (Lucent), SPIN (Holtzmann, Bell Labs)
 - Big challenge: state-space explosion
Example (from JavaPathFinder documentation)

```java
Random random = new Random();
int a = random.nextInt(2);
System.out.println("a=" + a);

// lots of code here

int b = random.nextInt(3);
System.out.println("b=" + b);
int c = a/(b+a-2);
System.out.println("c=" + c);
```

▶ Sample run:
▶ a = 1
▶ b = 0
▶ c = -1
State Space

\[
\begin{align*}
\text{start} & \quad a = 0 \\
& \quad a = 1 \\
\quad a = 0 & \quad a = 0 \\
& \quad b = 0 \\
& \quad b = 1 \\
& \quad b = 2 \\
& \quad b = 0 \\
& \quad b = 1 \\
& \quad b = 2 \\
& \quad b = 0 \\
& \quad b = 1 \\
& \quad b = 2 \\
\text{error} & \quad c = 0 \\
\end{align*}
\]
State Spaces

- Not always (or even usually) trees
 - conditionals \(\Rightarrow\) multiple in-edges
 - program loops \(\Rightarrow\) cycles
- Does not always match control-flow graph structure
 - One program line could correspond to many different states, depending on the values of its variables.
 - Abstracting coalesces states (more on this later...)
- Can be *huge*
 - How many states if we change the “2” argument in line 2?
Properties

- Typically expressed in a temporal logic
- Flagship example: Linear Temporal Logic (LTL)
- Assertions: \(\pi \models \phi \) — path \(\pi \) models property \(\phi \)
 - atomic propositions (e.g., is_error, \(a = 2 \), etc.)
 - \(\neg \phi \) — negation
 - \(\phi_1 \lor \phi_2 \) — disjunction
 - \(X(\phi) \) — next \(\phi \)
 - \(U(\phi_1, \phi_2) \) — \(\phi_1 \) until \(\phi_2 \)
 - \(F(\phi) \) — finally \(\phi \)
 - \(G(\phi) \) — globally \(\phi \)

Exercise: Do all paths from “start” model the following?
- \(X(a = 0) \)
- \(U(\neg \text{is_error}, b > 0) \)
- \(F(U(\text{false}, b \leq 2)) \)
Branching Temporal Logics

- LTL cannot express most existential properties
 - Example: “for every state there exists a non-error step”
- Solution: Branching Temporal Logics
- Flagship example: Modal μ-Calculus
- Assertions: $s \models \psi$ — state s is a member of the set of all states denoted by ψ
 - $\psi_1 \land \psi_2$ — conjunction (intersection)
 - $\psi_1 \lor \psi_2$ — disjunction (union)
 - $[a]\psi$ — all outgoing a-transitions model ψ
 - $\langle a \rangle \psi$ — some outgoing a-transitions model ψ
 - $\mu X. \psi$ — least fixed point
 - $\nu X. \psi$ — greatest fixed point
- What are least and greatest “fixed points”?
Fixed Point Semantics

Definition: A *fixed point* of a function $f : A \rightarrow A$ is a value $x \in A$ such that $f(x) = x$.

- Examples:
 - What is a fixed point of $f(x) = x + 1$?
 - What is a fixed point of $g(x) = x^2$?
 - What is a fixed point of $h(S) = \{x^2 | x \in S\}$?

- When f is a function from sets to sets, we say S is...
 - ...a *least fixed point* if S is a fixed point and all other fixed points are supersets of S.
 - ...a *greatest fixed point* if S is a fixed point and all other fixed points are subsets of S.

- Can a function have multiple least fixed points or multiple greatest fixed points?
Fixed Point Operators

- Back to modal μ-calculus:
 - $\mu X . \psi$ is the least set S such that $S = \psi[X := S]$.
 - $\nu X . \psi$ is the greatest set S such that $S = \psi[X := S]$.

- Finding least/greatest fixed points:
 - Find $\mu X . \psi$ inductively:
 - start with $X = \emptyset$
 - keep adding things to X until no progress
 - Find $\nu X . \psi$ co-inductively:
 - start with $X =$ universe of all states
 - keep removing things from X until no progress

- Examples:
 - What is $\mu X . (X \lor \langle \text{is_error} \rangle)$?
 - What is $\nu X . (\text{is_error} \lor \langle X \rangle)$?
State Space Explosion Problem

- Main challenge: What if the state space is huge?
- Example: How many states does the following program have?

```plaintext
int i = 0;
while true do
  i := i + 1;
```

- Solution: Abstract Interpretation
 - Instead of having one state for every mapping of variables to values, label states with abstract properties.
 - Example: What if we only care about whether \(i \) is zero (e.g., to avoid division-by-zero)?
 - Could instead just have one state for each possible sign of \(i \)
 - \(zero + positive =? \)
 - \(positive + positive =? \)
State Space Explosion Problem

▶ Main challenge: What if the state space is huge?
▶ Example: How many states does the following program have?

```plaintext
int i = 0;
while true do
  i := i + 1;
```

▶ Solution: Abstract Interpretation
▶ Instead of having one state for every mapping of variables to values, label states with abstract properties.
▶ Example: What if we only care about whether i is zero (e.g., to avoid division-by-zero)?
▶ Could instead just have one state for each possible sign of i
 ▶ `zero + positive = positive`
 ▶ `positive + positive = ?`
State Space Explosion Problem

- Main challenge: What if the state space is huge?
- Example: How many states does the following program have?

```c
int i = 0;
while true do
    i := i + 1;
```

- Solution: Abstract Interpretation
 - Instead of having one state for every mapping of variables to values, label states with abstract properties.
 - Example: What if we only care about whether \(i \) is zero (e.g., to avoid division-by-zero)?
 - Could instead just have one state for each possible sign of \(i \)
 - \(zero + positive = positive \)
 - \(positive + positive = positive \)
 - We’re finished with only 2 states to explore!
Counterexample Guided Abstraction Refinement (CEGAR)

- Over-abstraction Problem
 - If model-check succeeds on abstract model, then we’re done. But...
 - Abstracting often forgets information needed to prove correctness.
 - Results in false rejection (model-checker signals fault where there is none)

- Solution: Iteratively Abstract and Refine
 1. Abstract until search space is feasible.
 2. Exhaustively search the space. If model-check rejects...
 3. Test the counterexample on the original (non-abstract) search space. If it’s a real counterexample, we found a real bug. Otherwise...
 4. We must have abstracted too much. Refine (opposite of abstract) and repeat.

- Next time: Binary code analysis