Enforceability Theory

Language-based Security

Dr. Kevin W. Hamlen
Motivating Questions

• Can we prove that mechanism M enforces policy P?
 – What is the mathematical definition of a policy?
 – What does it mean to “enforce” a policy?
• Are there limits to what is enforceable?
 – Which enforcement approaches are best suited to which policies?
 – Are there some policies that are completely beyond any known enforcement strategy?
 – Are some enforcement approaches strictly more powerful than others?
• What is the mathematical landscape of policies, policy classes, and enforcement mechanisms?
Enforceable Security Policies
[Schneider, TISSEC 2000]

• Proposed a theory of Execution (a.k.a. Reference) Monitors (EMs)
 – EMs watch untrusted programs at runtime
 – impending events mediated by the EM
 – impending violations solicit EM interventions (termination)
• Example: File system access control
 – EM is inside the OS
 – decides policy violations using access control lists (ACLs)
Programs and Policies

• An execution χ is a sequence of security-relevant program events e or actions
 – sequence may be finite or (countably) infinite
 – simplifying formalism: Model program termination as an infinite repetition of e_{halt}
 – now all executions are infinite length sequences

• A program Π is a SET of possible executions
 – one execution for each possible input
 • input can be an infinite sequence read over time
 • model non-determinism/randomness as an implicit input

• A policy P is a PROPERTY of programs
 – partitions the space of all programs into two groups: permissible programs and impermissible ones
 – impermissible programs are censored somehow (e.g., terminated on violating runs)
EM-enforceable Policies

1) \(P(\Pi) \equiv \forall \chi . \hat{P}(\chi) \)
 - EM policies are expressible as universally quantified predicates over executions
 - \(P \) sometimes called the policy’s “detector”

2) Detector \(\hat{P} \) must be prefix-closed
 - \(\hat{P}(\chi e) \Rightarrow \hat{P}(\chi) \)
 - \(\hat{P}(\varepsilon) \)

3) If \(\hat{P} \) rejects something, it must do so in finite time
 - \(\neg \hat{P}(\chi) \Rightarrow \exists i . \neg \hat{P}(\chi[..i]) \)

• Main discovery #1:
 - A policy satisfies (1), (2), and (3) if and only if it is a safety policy
 - Lamport 1977: Safety policies say that some “bad thing” never happens
 - EMs enforce safety policies!
Security Automata

[Erlingsson & Schneider, NSPW ’99]

• Formalization of safety policies
 – finite state automaton
 – accepts language of permissible executions
 – alphabet = set of events
 – edge labels = event predicates
 – all states accepting (language is prefix-closed)
• Example: no sends after reads
In-lined Reference Monitors

- Disadvantages of traditional EMs
 - inefficient: context-switch on every event
 - large TCB: EM extends the OS
 - weak: EM can’t easily see internal program actions
 - non-modular: changing policy requires changing OS
In-lined Reference Monitors

- **Main idea:**
 - Implement a reference monitor by *in-lining* its logic into the untrusted code
 - In-lining procedure should be automated

- **Challenges:**
 - How to automatically generate EM code?
 - How to preserve (non-violating) program logic?
 - How to prevent (malicious) programs from corrupting the EM?
In-lining a Security Automaton

Example: Let’s in-line this security automaton

![Security Automaton Diagram]

(Policy: push exactly once before returning)

into this binary code

```
mul r1,r0,r0
push r1
ret
```
In-lining Algorithm

1) Conceptually in-line the automaton just before EVERY event

2) Partially evaluate (i.e., specialize) the automaton edges to the event it guards – some edges disappear entirely

3) Generate guard code for the remaining automaton logic
In-lining Example

<table>
<thead>
<tr>
<th>Insert security automata</th>
<th>Evaluate transitions</th>
<th>Simplify automata</th>
<th>Compile automata</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Insert security automata**
 - `mul r1,r0,r0`
 - `push r1`
 - `ret`

- **Evaluate transitions**
 - `true` to `false` to `true`
 - `false` to `true` to `false`
 - `false` to `true` to `false`

- **Simplify automata**
 - `mul r1,r0,r0`
 - `push r1`
 - `ret`

- **Compile automata**
 - `mul r1,r0,r0`
 - `if state==0 then state:=1 else ABORT`
 - `push r1`
 - `if state==0 then ABORT`
 - `ret`
IRMs vs. EMs

- Implicit assumption of the Schneider paper:
 - in-lining is just an implementation strategy
 - doesn’t affect set of enforceable policies

- Are we sure?

- Two interesting issues:
 - A policy constrains a program, right? But now the EM is *part* of the program. Can it constrain itself?
 - EM was previously a black box. But now it’s subject to the laws of the computational model.

- Big idea: Is there a link between computability and enforceability?
Review: Computation Theory

- Turing Machine
 - Alan Turing (1936)
 - simple mathematical model of a computer
 - consists of:

 a “tape”

 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | # | # | # | ... (infinite) |

 a “tape head”

 a “finite control”

 $0 \rightarrow 0, R$

 $\#$ \rightarrow $\#$, L

 $1 \rightarrow 1, R$

 $0 \rightarrow 1, R$

 $1 \rightarrow 0, R$
TM Power

• Can do simple arithmetic
• TMs don’t necessarily terminate
• Can do anything programmable with logic gates (AND, OR, XOR, ...)
• Can evaluate a C program encoded in binary
• Can simulate arbitrary TMs (given as input) on arbitrary inputs (given as input)
 – called a “universal TM”
• Intuition: Can do anything a real computer can do (but very, very slowly)
• But TMs can’t solve undecidable problems (e.g., halting problem)
Enforcement Strategy #1: Static Analysis

- **Approach:**
 - analyze untrusted code BEFORE it runs
 - return “accept” or “reject” in finite time

- **Pros:**
 - immediate answer
 - code runs at full speed

- **Cons:**
 - high load overhead
 - weak in power...?
Enforcement Strategy #1: Static Analysis

- **Approach:**
 - analyze untrusted code BEFORE it runs
 - return “accept” or “reject” in finite time

- **Pros:**
 - immediate answer
 - code runs at full speed

- **Cons:**
 - high load overhead
 - weak in power...?

Recursively Decidable Policies
Enforcement Strategy #2: Execution Monitoring

- **Approach:**
 - EM monitors events
 - intervenes to prevent violations
 - implemented outside program

- **Cons:**
 - no answer until execution
 - runtime slow-down (context-switches)

- **Pros:**
 - lower load-time overhead than static analysis
 - more powerful...?
Enforcement Strategy #2: Execution Monitoring

Approach:
- EM monitors events
- intervenes to prevent violations
- implemented outside program

Cons:
- no answer until execution
- runtime slow-down (context-switches)

Pros:
- lower load-time overhead than static analysis
- more powerful...?

co-Recursively Enumerable Policies
Arithmetic Hierarchy
Arithmetic Hierarchy

decidable

D(x)
Arithmetic Hierarchy

Example: TM x eventually halts
Arithmetic Hierarchy

- **Recursively Enumerable**
 \(\exists y. D(x, y) \)

- **Decidable**
 \(D(x) \)

- **co-RE**
 \(\forall y. D(x, y) \)

- **Recursively Enumerable**
 \(\exists y. D(x, y) \)

Example: TM \(x \) never halts

Example: TM \(x \) eventually halts
Arithmetic Hierarchy

Example: TM \(x \) never halts

Example: TM \(x \) eventually halts

Example: TM \(x \) sometimes loops
Arithmetic Hierarchy

Example: TM x always halts
\[\Pi_2 \]
\[\forall z. \exists y. D(x, y, z) \]

Example: TM x sometimes loops
\[\Sigma_2 \]
\[\exists z. \forall y. D(x, y, z) \]

Example: TM x never halts
\[\text{co-RE} \]
\[\forall y. D(x, y) \]

Example: TM x eventually halts
\[\text{Decidable} \]
\[\exists y. D(x, y) \]

\[D(x) \]
Arithmetic Hierarchy

Example: TM x always halts

Example: TM x never halts

Example: TM x eventually halts

Example: TM x sometimes loops
Computability & Enforceability

• static analysis = recursively decidable
• EM-enforceable = co-RE

• Conclusions so far:
 – EMs are strictly more powerful than static
 – but they cannot enforce RE, higher classes etc.

• What about IRMs? Same as EMs?
 – Surprising answer: No!
IRM Strategy: Rewrite-enforcement

- **Approach:**
 - transform untrusted code
 - must return new program in finite time
 - transformed code must satisfy policy
 - behavior of safe code must be preserved

- **Pros:**
 - lowest runtime overhead
 - load-time overhead is once-only
 - sometimes no answer until execution
Rewrite-enforceability

- A policy P is *rewrite-enforceable* if and only if there exists a computable function $R : M \rightarrow M$ such that...
 - $\text{image}(R) \subseteq P$ (all outputs are policy-adherent)
 - $P(M) \Rightarrow (R(M) \approx M)$ (behavior of policy-adherent programs is preserved)

- Need a definition of program-equivalence \approx
 - turns out any “reasonable” definition will do
 - Example: equal inputs produce equal outputs

- Major difference from EM model: IRM must obey policy, whereas EM has no such obligation
 - IRM’s intervention must not be a policy violation
 - IRM must possess an intervention that precludes the impending violation

- On the other hand, IRM has luxury of CHANGING the untrusted code! This is a power that EMs lack.
Main Discoveries

• There are EM-enforceable policies that are not RW-enforceable.
 – Example: Untrusted code must not print the secret stored at address a, and must not read address a.

• There are RW-enforceable policies that are not EM-enforceable.
 – Example: Untrusted code must behave identically to program M1 on all inputs.

• The class of all RW-enforceable policies is not equal to ANY class of the arithmetic hierarchy.
 – Open question: What is it, exactly?
 – See also research on Edit Automata

• Next time:
 – More practical examples of RW-enforceable, non-EM-enforceable policies, and how to enforce them
 – How the theory affects certifying IRM technologies