Coq Tactic Quick Reference

Context Manipulation
- **intro/revert**: shift goal premises to/from context
- **rename**: rename a hypothesis in the context
- **clear**: drop a hypothesis from the context
- **assert**: add a hypothesis to the context (proving it first)

Theorems and Assumptions
- **assumption**: goal is identical to a hypothesis
- **apply**: use theorem \(A \rightarrow B \) to reduce goal \(B \) to subgoal \(A \), or convert hypothesis \(A \) to hypothesis \(B \)

Simplification
- **simpl**: evaluate expressions until no more progress is possible
- **unfold**: expand an identifier into its definition
- **fold**: contract a definition back to its identifier

Equalities
- **reflexivity**: prove equality of two identical expressions
- **symmetry**: change \(e_1 = e_2 \) to \(e_2 = e_1 \)
- **transitivity**: reduce goal \(e_1 = e_2 \) to two subgoals \(e_1 = e \) and \(e = e_2 \)
- **rewrite**: use hypothesis \(e_1 = e_2 \) to replace \(e_1 \) with \(e_2 \) or vice versa
- **subst**: use and clear hypothesis \(v = e \) by replacing all \(v \)'s with \(e \)'s
- **inversion**: from equality of structures, infer equality of substructures
- **remember**: introduce a new variable that names a subexpression

Logical Operators
- **split**: prove \(A \land B \) by proving \(A \) and \(B \)
- **left/right**: prove \(A \lor B \) by proving \(A \) (left) or \(B \) (right)
- **exists**: prove an existential by supplying a witness
- **destruct**: decompose an and/or/exists hypothesis or pair variable
- **specialize**: instantiate a forall hypothesis

Case Distinction and Induction
- **destruct**: introduce separate cases for each possible constructor
- **induction**: same as **destruct**, but generate an inductive hypothesis
- **inversion**: perform case distinction on an inductive proposition

Negation and Contradiction
- **discriminate**: drop a goal by identifying a contradictory hypothesis
- **exfalso**: drop a goal by proving False