Introduction to Model-checking
CS 6301-005: Language-based Security

Kevin W. Hamlen

September 26, 2022
Software Verification Approaches

▶ Unit Testing / Fuzzing
 ▶ Throw many test inputs (often randomly generated) at software and see whether it fails.
 ▶ Good for fault detection. Inadequate for security.
 ▶ input space usually infinite
 ▶ attackers seek out and exploit untested inputs

▶ Program-Proof Co-Development (Coq)
 ▶ Implement software in a “nice” (e.g., functional) language.
 ▶ Write formal correctness properties and proofs.
 ▶ Proofs are *machine-checked* (not trusted).
 ▶ Pros: highest assurance, covers infinite state space
 ▶ Con: painful to write proofs

▶ Today: Model-checking
 ▶ a middle-ground between random fuzzing and formal proofs
 ▶ Express software as an abstract, finite-state *model* \mathcal{M}.
 ▶ Express security property as a logical predicate ϕ.
 ▶ Decide $\mathcal{M} \models \phi$ by exhaustive state-space search.
Some History

- First developed in 1980s by Clarke, Emerson, and Sifakis (Turing Award 2007)
 - primarily targeted hardware verification
 - disillusionment with proofs in 80s and 90s
 - found previously undetected errors in 1992 IEEE Future+ cache coherence protocol
 - 1994 Intel Pentium floating-point bug
 - passed unit testing
 - cost Intel $400–500 million
 - could have been detected by model-checking
 - model-checking now routinely used by Intel, AMD, IBM, Lucent, etc.
- Rise of Software Model-checking in late 90s
 - VeriSoft (Lucent), SPIN (Holtzmann, Bell Labs)
 - Big challenge: state-space explosion
Example (from JavaPathFinder documentation)

```java
Random random = new Random();
int a = random.nextInt(2);
System.out.println("a=" + a);

// lots of code here

int b = random.nextInt(3);
System.out.println("b=" + b);
int c = a/(b+a-2);
System.out.println("c=" + c);
```

Sample run:
- A = 1
- B = 0
- C = -1
State Space

- $a = 0$
 - $b = 0$
 - $c = 0$
 - $b = 1$
 - $c = 0$
- $a = 1$
 - $b = 0$
 - $c = -1$
 - Error
 - $b = 1$
 - Error
 - $b = 2$
 - $c = 1$
State Spaces

- Not always (or even usually) trees
 - conditionals = multiple in-edges
 - program loops = cycles
- Does not always match control-flow graph structure
 - One program line could correspond to many different states, depending on the values of its variables.
 - Abstracting coalesces states (more on this later...)
- Can be huge
 - How many states if we change the “2” argument in line 2?
Properties

- Typically expressed in a temporal logic
- Flagship example: Linear Temporal Logic (LTL)
- Assertions: $\pi \models \phi$ — path π models property ϕ
 - atomic propositions (e.g., is_error, $a = 2$, etc.)
 - $\neg \phi$ — negation
 - $\phi_1 \lor \phi_2$ — disjunction
 - $X(\phi)$ — next ϕ
 - $U(\phi_1, \phi_2)$ — ϕ_1 until ϕ_2
 - $F(\phi)$ — finally ϕ
 - $G(\phi)$ — globally ϕ

- Exercise: Do all paths from “start” model the following?
 - $X(a = 0)$
 - $U(\neg \text{is_error}, b > 0)$
 - $F(U(\text{false}, b \leq 2))$
Branching Temporal Logics

- LTL cannot express most existential properties
 - Example: “for every state there exists a non-error step”
- Solution: Branching Temporal Logics
- Flagship example: Modal μ-Calculus
- Assertions: $s \models \psi$ — state s is a member of the set of all states denoted by ψ
 - $\psi_1 \land \psi_2$ — conjunction (intersection)
 - $\psi_1 \lor \psi_2$ — disjunction (union)
 - $[a]\psi$ — all outgoing a-transitions model ψ
 - $\langle a \rangle \psi$ — some outgoing a-transitions model ψ
 - $\mu X . \psi$ — least fixed point
 - $\nu X . \psi$ — greatest fixed point
- What are least and greatest “fixed points”?
Definition: A fixed point of a function \(f : A \rightarrow A \) is a value \(x \in A \) such that \(f(x) = x \).

Examples:

- What is a fixed point of \(f(x) = x + 1 \)?
- What is a fixed point of \(g(x) = x^2 \)?
- What is a fixed point of \(h(S) = \{x^2 \mid x \in S\} \)?

When \(f \) is a function from sets to sets, we say \(S \) is...

- ...a least fixed point if \(S \) is a fixed point and all other fixed points are supersets of \(S \).
- ...a greatest fixed point if \(S \) is a fixed point and all other fixed points are subsets of \(S \).

Can a function have multiple least fixed points or multiple greatest fixed points?
Fixed Point Operators

- Back to modal μ-calculus:
 - $\mu X . \psi$ is the least set S such that $S = \psi[X := S]$
 - $\nu X . \psi$ is the greatest set S such that $S = \psi[X := S]$

- Finding least/greatest fixed points:
 - Find $\mu X . \psi$ inductively:
 - start with $X = \emptyset$
 - keep adding things to X until no progress
 - Find $\nu X . \psi$ co-inductively:
 - start with $X =$ universe of all states
 - keep removing things from X until no progress

- Examples:
 - What is $\mu X . (X \lor \langle \text{is-error} \rangle)$?
 - What is $\nu X . (\text{is-error} \lor \langle X \rangle)$?
State Space Explosion Problem

- Main challenge: What if the state space is huge?
- Example: How many states does the following program have?

```plaintext
int i = 0;
while true do
  i := i + 1;
```

- Solution: Abstract Interpretation
 - Instead of having one state for every mapping of variables to values, label states with abstract properties.
 - Example: What if we only care about whether `i` is zero (e.g., to avoid division-by-zero)?
 - Could instead just have one state for each possible sign of `i`
 - `zero + positive = ?`
 - `positive + positive = ?`
State Space Explosion Problem

- Main challenge: What if the state space is huge?
- Example: How many states does the following program have?

```plaintext
int i = 0;

while true do
    i := i + 1;
```

- Solution: Abstract Interpretation
 - Instead of having one state for every mapping of variables to values, label states with abstract properties.
 - Example: What if we only care about whether i is zero (e.g., to avoid division-by-zero)?
 - Could instead just have one state for each possible sign of i
 - $zero + positive = positive$
 - $positive + positive = ?$
State Space Explosion Problem

- Main challenge: What if the state space is huge?
- Example: How many states does the following program have?

```c
int i = 0;
while true do
    i := i + 1;
```

- Solution: Abstract Interpretation
 - Instead of having one state for every mapping of variables to values, label states with abstract properties.
 - Example: What if we only care about whether `i` is zero (e.g., to avoid division-by-zero)?
 - Could instead just have one state for each possible sign of `i`:
 - `zero + positive = positive`
 - `positive + positive = positive`
 - We’re finished with only 2 states to explore!
Counterexample Guided Abstraction Refinement (CEGAR)

- Over-abstraction Problem
 - If model-check succeeds on abstract model, then we’re done. But...
 - Abstracting often forgets information needed to prove correctness.
 - Results in false rejection (model-checker signals fault where there is none)

- Solution: Iteratively Abstract and Refine
 1. Abstract until search space is feasible.
 2. Exhaustively search the space. If model-check rejects...
 3. Test the counterexample on the original (non-abstract) search space. If it’s a real counterexample, we found a real bug. Otherwise...
 4. We must have abstracted too much. Refine (opposite of abstract) and repeat.

- Next time: Information flow analysis