
The Science of Security

18 COPUBLISHED BY THE IEEE COMPUTER AND RELIABILITY SOCIETIES 1540-7993/11/$26.00 © 2011 IEEE MAY/JUNE 2011

C omputer security, as a field, is the study of
how to make computer systems resistant to
misuse. Some areas of computer security
have established technical frameworks, such

as access control, network security, and malware de-
tection. However, those new to the area might see
computer security research as a disorganized collec-
tion of disconnected efforts. Many conference papers
point out a flaw in some system or design, suggest
what might seem like an ad hoc repair, and wrap up
without showing conclusively that the repaired system
is free of further flaws. In addition, it’s often unclear
how to use one such point solution to solve similar
problems in other systems. To make ongoing research
more effective, results should be stated in a uniform
conceptual framework with precise definitions. This
allows progressive case studies to improve scientific
and systematic engineering methods while solving
specific practical problems.

Evaluating system security requires a precise defi-
nition of security. We can’t answer the question, “Is
this system secure?” without asking more specific
questions, such as whether a network protocol is se-
cure against man-in-the-middle attacks, or whether
an access control mechanism is secure against insider
attacks. Even these questions aren’t fully specified be-
cause they don’t tell us what it means for an attack
to succeed. To assess a system’s security, we must be
clear about three things: system behavior, attackers’
resources, and the system’s security properties.

We describe a conceptual framework for defining
system security and explain how modeling can help

analyze security,
support compar-
ative evaluation,
and develop use-
ful insight into design, implementation, and deploy-
ment decisions.

Security Modeling and Analysis
Our security modeling and analysis framework re-
flects decades of research in specific areas, such as net-
work protocol security. However, this framework has
also been broadly adapted to study the security of a
wide variety of systems, including custom processor
architectures,1 OS microkernels,2 permissions models
for mobile OSs,3 and the World Wide Web platform.4

Security Modeling
A security model has three components:

•	System model. We need a clear definition of the sys-
tem of interest to understand how the system be-
haves when subjected to its intended operating
conditions, as well as unintended input or operat-
ing conditions. A system model might be based on a
standards document specifying behavioral require-
ments, a design specification, or a specific version or
set of versions of source code.

•	Threat model. A clear definition of attackers’ com-
putational resources and system access is necessary.
For example, network attackers might have access
to network messages but not to the internal state
of hosts communicating on the network. Or, they

A uniform conceptual framework that precisely defines

system security will help analyze security, support

comparative evaluation, and develop useful insight into

design, implementation, and deployment decisions.

Jason Bau
and John C.
MitChell

Stanford
University

Security Modeling and Analysis

The Science of Security

 www.computer.org/security 19

might have unbounded storage but insufficient
computational power to break cryptography. OS at-
tackers might be able to place malicious code in a
user process but unable to modify the OS kernel.

•	Security properties. We must clearly define the proper-
ties that we hope to prevent attackers from violating.
For each behavior, such as a sequence of inputs, out-
puts, and state changes, we must clearly determine
whether the desired security properties hold or fail.

A security model is secure if the system design
achieves the desired properties against the chosen
threat model. A system model might consist of a set of
traces (action sequences) or some other set of possible
behaviors. Some traces might occur only through
actions intended by the system designers, and oth-
ers might occur when attackers perform actions that
aren’t expected. In some cases, the desired properties
might be trace properties—for every trace, the securi-
ty properties either hold or fail. Such a system is secure
if no trace that could arise as the result of intended
or attacker actions causes any of the desired security
properties to fail. Thus, no definition of security exists
apart from the security model. Unless we know how
a system behaves, what attackers might do, and which
security properties are intended, we can’t determine
whether the system is secure.

Common security properties include confidenti-
ality (no sensitive information is revealed), integrity
 (attackers can’t destroy the system’s meaningfully op-
erable condition), and availability (the attacker can’t
render the system unavailable to intended users).
However, there’s no foundational understanding of
why these properties are considered security proper-
ties and others aren’t, and there’s no standard way to
decompose a given property into confidentiality, in-
tegrity, and availability components. Therefore, in fu-
ture research, we should clearly define different classes
of security properties and their relationships.

Security Analysis
Security models provide a basis for security analy-
sis—the process of evaluating whether the system
design achieves the desired properties against the cho-
sen threat model. It also lets us compare the relative
strengths of different system designs.

Analysts use traditional methods such as manual
inspection, team discussion, and mathematical proof
to examine whether a design achieves its desired goals.
Formal and automated methods can also aid human
reasoning and are often effective because of the com-
plexity of many systems and the difficulty of ensur-
ing that all details have been properly considered.
Formal methods require an analysis conforming to
specific rules and procedures that often originate in

mathematical logic, and automated methods provide
computer support for formal methods.

Two automated methods are model checkers and
automated theorem provers. Model checking is a
broad topic that includes tools that enumerate all pos-
sible executions of a finite-state system and symbolic
model checkers. When a security model is formulated
or approximated as a finite-state system, these tools are
effective for finding security flaws. When abstraction
methods “collapse” an infinite-state system to a finite
state,5 a finite-state tool can also demonstrate security
by the absence of any sequence of attacker actions that
causes the desired security properties to fail. However,
model checkers are often insufficient in showing the
absence of successful attacks. In contrast, automated
theorem provers can establish a model’s security by
mathematically demonstrating that no combination of
attacker actions that the threat model allows can cause
the desired properties to fail.6

Evaluation. Security analysis evaluates models ac-
cording to threats and intended security properties.
Another important issue is whether these threats and
properties adequately reflect practical use. Email sys-
tems are an interesting example. Originally, the sys-
tem’s purpose was to convey every email message to
its specified address. Later, users discovered that this
wasn’t the complete specification for the desired sys-
tem; now its recognized purpose is to carry wanted
email from a sender to a receiver and discard or set
aside spam.

Metrics. Although security models don’t intrinsically
provide a numeric security metric, we can compare
them by comparing the relative strengths of system
defenses, threat models, and security properties. For
example, we can develop qualitative comparisons by
ordering properties and threat models—systems satis-
fying a stronger security property will satisfy a weaker
property in the same threat model, and systems sat-
isfying a stronger threat model’s security property
will satisfy that property in a weaker threat model.
We hope that future research will develop simulation
relations between systems, so we can compare the
strength of two different systems for the same prop-
erty against the same threat model. Once we establish
comparative techniques for varying the system, the
threat model, and the properties individually, we can
combine them to produce a multidimensional com-
parative security theory.

We illustrate the security modeling and analysis
process using model-checking examples from net-
work protocol security, hardware security, and Web
security; however, we only scratch the surface of the
topic with these examples.

The Science of Security

20 IEEE SECURITY & PRIVACY MAY/JUNE 2011

Network Protocol Modeling
and Analysis
Network protocols with security requirements are
critically important to Internet security. Some well-
known examples are the Secure Sockets Layer (SSL)
protocol and its successor for Transport Layer Security
(TLS); protocols for using wireless access points, such
as Wired Equivalency Privacy (WEP) and Wi-Fi Pro-
tected Access (WPA); and secure versions of network
infrastructure protocols, such as Domain Name Sys-
tem (DNSSEC).

Security modeling and analysis is a natural fit for
studying network protocol security because

•	 the protocols’ distributed nature makes manual rea-
soning about the full implications of multiparty par-
ticipation difficult, and

•	we can derive a protocol operation model directly
from the protocol standard, making analysis results
directly relevant to the standardization process.

Therefore, network protocol modeling might be
the most significant and successful example of the se-
curity modeling and analysis process. It has become a
robust field, with publications every year at academic
conferences. For instance, the 2010 IEEE Computer
Security Foundations Symposium program included
publications using security modeling and analysis to
verify the ad hoc mobile routing7 and RFID8 proto-
cols’ security properties.

Because it’s easily accessible, we describe some as-
pects of network protocol security modeling using
the Needham-Schroeder (NS) public-key protocol
(see Figure 1).9 Surprisingly, after its publication, it
took nearly 10 years of academic research on proto-
col security before Gavin Lowe found a subtle prob-
lem with the protocol while conducting security
analysis.10 The problem isn’t an actual attack on a
property that the designers claimed for their proto-
col, but the failure of a property that many protocol
users might expect. In addition, Lowe proposed a

very simple modification to the protocol that clearly
improves its security.

Modeling System Behavior
The first step of security modeling is to describe the
protocol operations down to an appropriate detail
level. The NS protocol uses public-key cryptography
to exchange private random numbers, NonceA and
 NonceB, between two parties, A and B, without re-
vealing them to observers. Public-key cryptography
provides party A with a public key, Ka, and a private
key, Ka

-1, and lets any other party use Ka to encrypt a
message M to A, denoted as { }M Ka, with only A pos-
sessing the ability to decrypt it.

This protocol has been modeled in many ways,
including with formal languages10 and finite-state
enumerator languages such as Murphi.11,12 Here, we
focus on finite-state modeling. In the model, parties
A and B are represented as a set of states with a set of
state action rules. The states denote both the proto-
col’s progress and the actual knowledge gained from
the protocol, such as the nonce of the other party.
For the NS protocol, each party stores its own nonce
as well as a possible nonce from the network. Each
party has three states: initial sleep, waiting for response,
and committed.

The set of action rules “perform” the next protocol
step on the basis of the current state and the validity of
information received from the network. Party A has
two state-transition rules:

•	 sending message 1 and proceeding to the waiting-
for-response state, and

•	verifying message 2 as containing NonceA and, if
properly verified, sending message 3 and changing
to the committed state.

Party B also has two rules:

•	accepting message 1, sending message 2, and mov-
ing to the waiting-for-response state, and

(a) (b)

A B

{A, NonceA}Kb

{NonceA, NonceB}Ka

{NonceB}Kb

A E

{A, NonceA}Ke

{NonceA, NonceB}Ka

{NonceB}Ke

B

{A, NonceA}Kb

{NonceA, NonceB}Ka

Figure 1. Needham-Schroeder protocol. (a) Legitimate parties A and B participate in the protocol by transmitting the messages indicated

by the arrows. (b) Attacker E can compromise the protocol by intercepting and retransmitting messages. It poses as party A from party B’s

perspective and gains the secrets shared between A and B.

The Science of Security

 www.computer.org/security 21

•	verifying message 3 as containing NonceB and, if
properly verified, moving to the committed state.

The network is modeled as shared states between
the parties, and thus each specific network message is
represented as a particular network state setting.

Modeling Threat Behavior
The next aspect of security modeling is to explicitly
define attackers’ capabilities and operations. In net-
work protocol security, attackers are typically given
the following abilities, commonly referred to as the
Dolev-Yao model and used in many studies (including
John Mitchell and his colleagues’ “Automated Analy-
sis of Cryptographic Protocols Using Murphi”12):

•	eavesdropping on any network message and break-
ing its content (as captured) into parts,

•	 recording parts of any eavesdropped packet into
storage,

•	 removing messages from the network, and
•	 sending network messages containing new or eaves-

dropped content to any legitimate party.

The attackers’ knowledge, with which they might
forge network messages, is formalized as the union of a
set of initial knowledge, such as public keys and partici-
pants’ names, and the data obtained from eavesdropping.
Also, each attacker capability is distinctly represented as
a rule reading or manipulating network state, similar
to legitimate participants’ protocol steps. The ability to
represent each attacker action in a fine-grained manner
enables direct comparison of threat models.

Modeling Cryptography
Because network protocols use cryptography, we
must include it in the model. One simple but surpris-
ingly effective approach involves idealized cryptogra-
phy. In a model with idealized cryptography, attackers
can’t compromise cryptographic protections, such as
encryption and signatures, without the appropriate
key. In the NS model, attackers can only record and
replay the ciphertext form of encrypted data captured
from the network and can’t compromise the plaintext
content. Attackers can also create ciphertext using
their own private key, assuming proper decryption
can only be performed using the attackers’ identifying
public key.

Modeling Security Properties
The third aspect of security modeling is to represent
the security properties in the modeling framework.
Security properties conveying integrity or confiden-
tiality are typically expressed as invariants—logical
expressions on the state of the model that must be

guaranteed. For example, in the NS model, the in-
tegrity invariants specify that, for party A, reaching
the committed state means that the accepted secret is
NonceB—and vice versa for party B. The NS model’s
secrecy invariant will specify that no attackers can
decrypt and learn secrets from any intended parties,
despite their expressed capabilities.

Integrity and secrecy invariants are common in
many protocols’ security models. Availability or live-
ness, on the other hand, are often more difficult to
express, especially in a finite-state model.

Protocol Vulnerabilities and Fixes
Figure 1b illustrates the weakness uncovered using the
automated model-checking tools for the NS proto-
col. The tool finds a protocol-execution trace where
the attacker E learns secrets meant to be kept between
parties A and B by acting as a man in the middle.
The discovery of this trace triggers violations of the
model’s secrecy and integrity invariants.

Beyond simply finding vulnerabilities, security
modeling and analysis can also verify fixes for these
vulnerabilities—we simply add the fixing protocol
feature to the model, then recheck against attacker
capabilities to ensure that the previously violated se-
curity properties are now inviolate. For NS, the fix—
which requires party B to send its identity encrypted
in message 2, and party A to validate that identity
against message 1’s intended recipient—was verified
in the model as upholding the security invariants.

Hardware Security Modeling
and Analysis
Researchers have used security modeling and analysis
to study hardware and software system security such
as the Execute Only Memory (XOM) processor ar-
chitecture3 and Google Android’s permissions-based
security.5 In addition, related verification techniques,
such as formal verification of software against speci-
fication and model checking for bug finding (which
differ from our security modeling and analysis defi-
nition by the omission of a threat model), have been
fruitful academic fields, producing interesting results
such as the full verification of the seL4 OS micro-
kernel4 and the discovery of serious bugs in widely
used file systems.13

In this example, we focus on the XOM processor’s
architecture to further illustrate the security model-
ing and analysis framework’s adaptability. XOM is a
generic microprocessor architecture that maintains
secure memory compartments for programs while as-
suming attacker control over privileged code, such as
OSs.3 XOM tries to guarantee that a user program’s
memory integrity would be equivalent to making the
program the only code executing on the machine. To

The Science of Security

22 IEEE SECURITY & PRIVACY MAY/JUNE 2011

this end, XOM provides a tamper-resistance property
that guarantees other privileged programs, including
operating systems, won’t read or manipulate user pro-
gram data without detection.

XOM Operational Overview
XOM creates a tamper-resistant memory hierarchy by
tagging data at the processor, register, and cache levels
and encrypting data in the main memory.

Each user program in an XOM machine has a
unique key, called a compartment key, associated (one to
one) with an XOM ID tag. The program is initially
encrypted with the compartment key, and when the
code executes, it’s read from memory, decrypted, and
tagged with the program’s XOM ID. Any on-chip data
or code that belongs to a program is also tagged with
that program’s XOM ID. The tag identifies the data
writer and thus determines who can read the data. The
XOM machine tags data with the XOM ID as a proxy
for encrypting it, deferring the encryption to when the
data leaves the chip boundary to be stored in memory.

When data is stored to memory, it’s encrypted
with the compartment key, and a hash of the data
and its address is added to protect against tampering
with memory values. Only a program that knows the
compartment key can correctly modify or view that
compartment’s content. The architecture records the
data writer and ensures it matches the reader. Thus,
if attackers try to tamper with data by overwriting it
with a faulty value, the architecture will detect a user/
writer mismatch when the user program tries to read
that data.

By using cryptography, XOM defends against at-
tacks in which adversaries have subverted the OS to
their needs. Although attackers’ OSs can execute both
privileged and unprivileged instructions, they can’t
forge the user’s XOM ID. Thus, the XOM machine
should prevent attackers from tampering with user
data by checking the data’s XOM ID tag against the
active program’s tag.

Modeling System Behavior
Similar to the network protocol model, the XOM
model is divided into a set of states and state-transition
functions. The modeled XOM state consists of regis-
ters, cache lines, and memory words. Modeled regis-
ters contain fields for data and the XOM ID tag—as
well as two fields used when one register stores an
encrypted copy of another (for example, when the OS
performs a context switch)—the key, and the hash
of the original register location. Modeled cache lines
have fields for the data value, the tag, and the memory
address. Modeled memory words have fields for the
data value, the hash of the address for preventing at-
tacks that copy ciphertext from another address, and
the key—associated with the XOM ID tag—used for
encryption and hashing.

The XOM model’s state-transition functions es-
sentially model the XOM architecture, which (as in
the actual hardware design) manipulates the register,
cache, and memory states, depending on a set of security
checks, which are a function of the current state. Table 1
shows the modeled user- and kernel-level instructions.

Modeling Threat Behavior
In the XOM model, users have access to only the
user-level instructions, whereas attackers have ac-
cess to all user- and kernel-level instructions. Using
Murphi’s exhaustive state exploration capabilities, the
model interleaves all possible user-instruction streams
with all possible combinations of instructions by an
attacker’s OS, subject to ideal cryptography in which
the attacker can’t forge hashes or decrypt without the
proper key.

Modeling Security Properties
The model expresses the two goals of tamper resis-
tance in the XOM design: attackers can’t read user
data or modify it without detection. The first invari-
ant, “no observation,” states that user-created data
should never be tagged with attackers’ XOM ID.

Table 1. Modeled XOM instructions.

User-level instructions Kernel-level instructions

Instruction Description Instruction Description

Register use Read a register Register save Encrypt a user register into another register

Register define Write a register Register restore Decrypt an encrypted user register

Store Store register to memory Prefetch cache Move data from memory into cache

Load Load register from memory Write cache Overwrite data in the cache

Flush cache Flush cache line into memory

Trap Interrupt user

Return from trap Return execution to user

The Science of Security

 www.computer.org/security 23

The model’s data fields contain only values from one
of two complementary finite sets—one originating
only from users and another originating only from
 attackers—thus enabling this type of check.

The second invariant, “no modification,” checks
that the user-observable state of the model with an
attacker is identical to the user-observable state of
a “golden” model without an attacker. This golden
model is a simpler version of the full XOM model,
eliminating all kernel-level instructions (and thereby
the attacker) as well as cache states, which are opaque
to user programs. The two models’ synchronic-
ity is guaranteed by manipulating the states of both
the golden model and the full model together in the
state-transition rules covering user-level instructions.
Thus, the model checks the “no modification” in-
variant by ensuring that the user-observable state—
which amounts to only the registers in XOM’s load/
store reduced-instruction-set computing (RISC)
architecture —is identical across both models after ev-
ery state transition owing to user-level instructions.

Analysis Results
Analysis using Murphi’s finite-state enumerator pro-
duced two types of feedback on the XOM design.
First, the model verified a finite-state form of correct-
ness. This analysis replicated two previously known
errors, uncovered two new errors, and validated
design fixes for these errors. One attack trace that
Murphi found let attackers replay a memory location
because the write to memory and the hash calculation
weren’t atomic. Table 2 shows the sequence of events
that leads to the attack. Analysis also validated a fix
for this attack. The model containing the bug fix—
making the write and the hash atomic—eliminated
the previous safety property violations.

Second, we used Murphi analysis to evaluate
whether any checks performed by the hardware and
present in the model were extraneous. We compared
system models with incrementally removed security
checks from the state-transition functions. If a re-
moved action doesn’t cause a safety property viola-
tion in the new system, then the checking action is
extraneous. This process found one extraneous check.
When a user loads data from memory, checking that
the data is encrypted with the user’s key is unneces-
sary. It’s sufficient to simply tag the register in which
the data is stored with the key that encrypted the data.

Web Security Modeling and Analysis
In our third example, we attempt to abstract the
World Wide Web platform into a model that serves
as a basis for security analysis of several current Web
mechanisms and expanded models for analyzing Web
mechanisms.6 Because of the Web’s complexity, its se-

curity model is too involved for us to describe in its
entirety here. Instead, we highlight one case study in
which various HTTP header fields are used to defend
against breaches in integrity assumptions for client-
server Web sessions, which can result in attacks such
as cross-site request forgery (CSRF).

CSRF and HTTP Header Defense
Briefly, CSRF is an attack in which remote adver-
saries commandeer users’ credentials on a third-party
site to perform malicious actions. Attackers control a
website (attack site) with content, such as a script, that
can cause victims’ browsers to issue HTTP requests to
a third-party target site, such as a bank. If victims have
valid credentials from the target site, such as a logged-
in cookie, then these attackers’ requests to the target
site will carry these credentials and might confuse the
target into granting an action, such as a funds transfer.

CSRF is an example of a breach in a user session’s
integrity assumption: only users’ willful interaction
with a site will cause the site to manipulate their ac-
count. Several proposed defenses for this type of attack
require sites to check the HTTP request header for evi-
dence that the request legitimately resulted from user
action.14 One form of this defense uses the referer field,
which carries the full URL of the webpage that caused
the request. In this scenario, this field would contain a
reference to a page located at the attack site, allowing
the target site to reject the request. Because the referer
field is sometimes suppressed—for example, because of
proxying or for privacy—researchers proposed another
HTTP header, origin, which indicates the domain, in-
stead of the full URL, that caused the HTTP request.14

Modeling System Behavior
The Web security model’s implementation is ex-
pressed in Alloy, a logical language that allows a
higher-level expression of the model than the more
literal finite-state description languages in the previ-
ous examples.

The formal Web model in this example describes
what could occur if a user navigates the Web and
visits sites according to the Web’s design intention.
Many details regarding the Web must be modeled to

Table 2. XOM error found by security model analysis.

Action Cache Hash Memory

User program writes A to cache A Ø Ø

Machine flushes cache Ø A H(A)

User program writes B to cache B A H(A)

Adversary invalidates cache Ø A H(A)

User program reads memory (should be B!) Ø A H(A)

The Science of Security

24 IEEE SECURITY & PRIVACY MAY/JUNE 2011

analyze a simple mechanism, such as the header vali-
dation defenses for CSRF. To effectively model the
browser and its interaction with the attack page, the
model uses the ScriptContext concept, which em-
bodies the execution environment for a remote script
in a client browser. ScriptContext is parameterized
by the set of HTTP requests and responses it has gen-
erated and the executing script’s origin. Origins are
parameterized by DNS name, port, and so on. DNS
names exist as a many-to-many relationship to serv-
ers at network locations to capture the mechanisms
for DNS resolution.

The model also includes networks as the medium
of communication between browsers and servers. It
models these communications, basically HTTP re-
quests and responses, with significant internal struc-
ture. Most relevant to our header validation defenses
against CSRF is the retention of many HTTP seman-
tics, such as response codes (ok and redirect) and
headers (referer and origin).

A final relevant detail of the Web model is the desig-
nation of Web roles. The model contains principals —
which own a set of DNS names and servers and are
either malicious or legitimate—and browsers, which
stand for individual users. All HTTP requests and
responses record all the principals and browsers that
helped generate them in a causal chain.

Modeling Threat Behavior
This model includes three distinct attacker types: a
Web attacker, an active network attacker, and a gadget
attacker. The most relevant threat model for CSRF is
the Web attacker. A Web attacker operates a malicious
website and might use a browser, but can see only re-
quests or responses directed to the hosts it operates.
Active network attackers have all the abilities of Web
attackers plus the ability to eavesdrop, block, and forge
network messages, and gadget attackers can inject cer-
tain content into otherwise honest Web sites.

Modeling Security Properties
This model formulates two widely applicable security
goals that we can evaluate for various mechanisms:

•	new mechanisms shouldn’t violate any of the com-
mon practices that websites have come to rely on as
invariants, and

•	a mechanism should exhibit session integrity—
attackers must be completely unable to cause honest
servers to undertake harmful actions.

The session integrity condition prohibits instantia-
tions in which an HTTP request or response that its
recipient considers legitimate was in fact generated
with an attacker principal in the causal chain.

Analysis Results
Using Alloy to conduct security analysis, we discov-
ered that HTTP redirects violated the security mod-
el’s session integrity condition, especially as it pertains
to CSRF defense. The referer field’s semantics only
captures the site that originated the request and omits
intermediate redirects. Thus, it’s possible for an at-
tacking site to include itself undetected in an HTTP
request’s causal chain by redirecting a request origi-
nally targeted at it to a victim site.

Interestingly, the analysis also found that the pro-
posed origin header had the same drawbacks as the
referer header in neglecting redirects. After this analy-
sis, the researchers eliminated the possibility of such
attacks by updating the origin header to record all do-
mains involved in redirects.15 In test runs, Alloy veri-
fied that sites using the updated origin header properly
disregarded any requests with attackers in their causal
chain, thus maintaining session integrity.

T hrough these brief examples of security modeling
and analysis, we’ve described a framework that pro-

vides a scientific basis for defining, evaluating, and com-
paring computing systems’ security. We hope that by
grounding the diverse range of ongoing security work
in a uniform conceptual framework, future research will
prove more effective, and results will prove more widely
applicable as solutions for the security community.

Our continuing research aims to use this frame-
work to analyze and improve the security of complex
and important platforms, such as cloud computing
and the Web. We’ve also made security modeling and
analysis a part of our security curriculum at Stanford
University, with a graduate-level course in which stu-
dents conduct quarter-long projects performing secu-
rity modeling and analysis on a wide range of real-life
protocols and systems.

Acknowledgments
We acknowledge the support of the US National Science
Foundation, the Air Force Office of Scientific Research,
and the Office of Naval Research.

References
1. D. Lie et al., “Specifying and Verifying Hardware for

Tamper-Resistant Software,” Proc. 2003 IEEE Symp.
Security and Privacy, IEEE CS Press, 2003, pp. 166–177.

2. G. Klein et al., “seL4: Formal Verification of an OS
Kernel,” Proc. ACM SIGOPS 22nd Symp. Operating Sys-
tems Principles, ACM Press, 2009, pp. 207–220.

3. W. Shin et al., “Towards Formal Analysis of the Per-
mission-Based Security Model for Android,” Proc. 5th
Int’l Conf. Wireless and Mobile Comm., IEEE CS Press,
2009, pp. 87–92.

The Science of Security

www.computer.org/security 25

4. D. Akhawe et al., “Towards a Formal Foundation of
Web Security,” Proc. 23rd IEEE Computer Security Foun-
dations Symp., IEEE CS Press, 2010, pp. 290–304.

5. C. Flanagan and S. Qadeer, “Predicate Abstraction for
Software Verifi cation,” Proc. 29th ACM SIGPLAN-
SIGACT Symp. Principles of Programming Languages
(POPL 02), ACM Press, 2002, pp. 191–202.

6. L.C. Paulson, “The Inductive Approach to Verifying
Cryptographic Protocols,” J. Computer Security, vol. 6,
vol. 1–2, 1998, p. 85128.

7. M. Arnaud, V. Cortier, and S. Delaune, “Modeling and
Verifying Ad Hoc Routing Protocols,” Proc. 23rd IEEE
Computer Security Foundations Symp., IEEE CS Press,
2010, pp. 59–74.

8. M. Bruso, K. Chatzikokolakis, and J. den Hartog,
“Formal Verifi cation of Privacy for RFID Systems,”
Proc. 23rd IEEE Computer Security Foundations Symp.,
IEEE CS Press, 2010, pp. 75–88.

9. R.M. Needham and M.D. Schroeder, “Using Encryp-
tion for Authentication in Large Networks of Comput-
ers,” Comm. ACM, vol. 21, no. 12, 1978, pp. 993–999.

10. G. Lowe, “Breaking and Fixing the Needham-Schroeder
Public-Key Protocol Using FDR,” Proc. 2nd Int’l Work-
shop on Tools and Algorithms for Construction and Analysis of
Systems (TACA 96), Springer-Verlag, 1996, pp. 147–166.

11. D.L. Dill, “The Murphi Verifi cation System,” Proc.
8th Int’l Conf. Computer Aided Verifi cation (CAV 96),
Springer- Verlag, 1996, pp. 390–393.

12. J. Mitchell, M. Mitchell, and U. Stern, “Automated
Analysis of Cryptographic Protocols Using Murphi,”
Proc. 1997 IEEE Symp. Security and Privacy, IEEE CS

Press, 1997, pp. 141–151.
13. J. Yang et al., “Using Model Checking to Find Serious

File System Errors,” ACM Trans. Computer Systems, vol.
24, no. 4, 2006, pp. 393–423.

14. A. Barth, C. Jackson, and J.C. Mitchell, “Robust De-
fenses for Cross-Site Request Forgery,” Proc. 15th ACM
Conf. Computer and Comm. Security (CCS 08), ACM
Press, 2008, pp. 75–88.

15. A. Barth, “The Web Origin Concept,” 26 Nov. 2010;
http://tools.ietf.org/html/draft-abarth-origin.

Jason Bau is a PhD student at Stanford University’s Computer

Security Lab. His research interests include analyzing and en-

hancing network protocol and Web application security using

formal techniques and automated tools. Bau has an MEng

in electrical engineering from the Massachusetts Institute of

Technology. Contact him at jbau@stanford.edu.

John C. Mitchell is the Mary and Gordon Crary Family Pro-

fessor at Stanford University’s Department of Computer Sci-

ence. His research focuses on Web security, network security,

privacy, programming language analysis and design, formal

methods, and applications of mathematical logic to computer

science. Mitchell has a PhD in computer science from the Mas-

sachusetts Institute of Technology. He’s editor in chief of the

Journal of Computer Security and has been actively involved

in IEEE and ACM conference organization and program com-

mittees. Contact him at mitchell@cs.stanford.edu.

Selected CS articles and columns are also available for
free at http://ComputingNow.computer.org.

Silver
Bullet
Security
Podcast

Sponsored by

www.computer.org/security/podcasts
*Also available at iTunes

In-depth interviews
with security gurus.

Hosted by Gary McGraw.

