
Control-Flow Integrity (CFI)
M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti

Language-based Security
Dr. Kevin W. Hamlen

Motivation

• Goal: Enforce uncircumventable “control-flow integrity” policy
• Must prevent untrusted code from “jumping over” guard code
• Must prevent untrusted code from overwriting guard code
• Must prevent untrusted code from corrupting security state data

• Two policies to enforce:
• Control-flow Integrity (constrain jumps)
• Memory safety (constrain writes)

• Why are these two policies harder to enforce for compiled native
code languages than for bytecode-based languages like Java?

Software Fault Isolation

• Enforce control-flow safety and memory safety
• Control-flow policy:

• All reachable, in-module instructions appear in a static, fall-thru disassembly
• Inter-module flows target exported function entrypoints
• No jumps into middle of “chunks”

• Example Implementations:
• PittSFIeld [McCamant, Morrisett, USENIX Security ’06]

• Google NaCl [Yee, Sehr, Dardyk, Chen, Muth, Ormandy, Okasaka, Narula, Fullagar, S&P ’09]

• Reins [Wartell, Mohan, Hamlen, ACSAC ’12]

Main Problem: Computed Jumps

• Many jump instructions compute their destinations at runtime – can
potentially go anywhere!

• Examples:
• jmp eax // start executing bytes at the address stored in eax
• call eax // call a subroutine at address stored in eax
• ret // load an address off the stack and jump to it

• Defense cannot safely impose guard code before dangerous
operations if any computed jump in the entire program might jump
over the guard code directly to the dangerous operation.

Problem #2: Writable Code, Executable Data

• By default, native code can write to any bytes in the address space –
including its own code!

• Cannot protect dangerous operations if any memory-write in the entire
program might replace the guard code.

• By default, native code can jump to any bytes in the address space –
including its data segment!

• Cannot protect dangerous operations in runtime-generated code, since no
guard code lives there.

• Hardware solution: Set code pages non-writable (NW) and data
pages non-executable (NX)

• How to prevent untrusted code from unsetting the protection bits?

CFI Workflow

Binary Code

Rewriter Safe
Binary Verify

Policy:
CFG

CFI:
PDB File

Control-Flow Integrity Policy
• Static Control-Flow Graph (CFG)

• Derivable from application source code
• Derivable from debug symbols (PDB file) yielded by Microsoft compilers

• Avoids disclosure of full source code
• Limits one to Microsoft-compiled code in practice
• Requires code-producer cooperation!

• Example:

Enforce the CFG
• Label jump targets with unique binary IDs
• Guard jumps with ID-checks

Requirements/Limitations

• Unique IDs
• Must be able to find enough unique binary IDs not appearing in code
• Not usually a problem in practice, but some tricky engineering problems

• Non-writable code
• Use page-level write-protection
• Runtime code self-modification not supported

• Non-executable data
• Use Data Execution Prevention (DEP) NX-bit
• Just-In-Time (JIT) compilation not supported (rules out many interpreters)

Limits of Static CFG Policies
• Call-return matching policy not expressible as CFG!

Enforcing Call-Return Matching
• Enforce CFG to get uncircumventable guard code
• Use guard code to implement memory safety (SMAC)
• Use memory safety to implement a protected shadow-stack

• Copy of the call stack that contains only the return addresses pushed by calls
• Only protected guard code may write to it

• Reference shadow-stack to enforce call-return matching

Software Memory Access Control (SMAC)

• Goal: Write-protect certain memory regions from subsets of the code
• Memory region is process-writable (e.g., so guard code can write to it)
• But prohibit non-guard code from writing to it (e.g., integrity enforcement)

• Enforcement Strategy
• Mask write-addresses

• and eax, 0x0000FFFF
• mov [eax], <data>

• CFG-policy prevents circumvention of masking instruction

• Now we can implement secure data structures
• Only writable by guard code

Call-return Matching

• Secure data structure: Shadow-stack
• call L1
• …
• L1: mov [shadow_stack], [esp]
• inc shadow_stack_ptr

• Check shadow stack on returns
• mov [esp], [shadow_stack]
• dec shadow_stack_ptr
• ret

Impact

• What happens if attacker exploits a buffer-overflow vulnerability to
smash the stack?

• Caveat: Our experience is that most legacy Windows binaries do not
obey call-return matching!

• Tail-recursive calls
• Exception-handling
• Weird binary optimizations that don’t correspond to any source-level features

Microsoft’s Rewriting System
• Microsoft Vulcan

• Multi-architecture rewriting
• Requires .pdb file to accurately disassemble and analyze

binary

MSIL

x86

IA-64

MSIL

x86

IA-64

Abstract
Representation

Analyses
API

Transformations
API

Original
Binary

Rewritten
Binary

Discussion

• What attacks continue to succeed against CFI?
• What attacks are thwarted?
• What are the challenges for widespread adoption?
• Compelling usage scenarios?

	Control-Flow Integrity (CFI)
	Motivation
	Software Fault Isolation
	Main Problem: Computed Jumps
	Problem #2: Writable Code, Executable Data
	CFI Workflow
	Control-Flow Integrity Policy
	Enforce the CFG
	Requirements/Limitations
	Limits of Static CFG Policies
	Enforcing Call-Return Matching
	Software Memory Access Control (SMAC)
	Call-return Matching
	Impact
	Microsoft’s Rewriting System
	Discussion

