
Model-Checking In-lined
Reference Monitors

Language-based Security

In-lined Reference Monitors (IRMs)
[Schneider, TISSEC, ‘00]

OS/VM

REFERENCE
MONITOR

grant/denyevent

UNTRUSTED CODE

 enforce safety policies by injecting security
guards directly into untrusted binaries

 maintain history of security-relevant events

 Advantages:

o deployment flexibility (OS/VM remains
unmodified)

o enforce richer policies, sequence-sensitive
policies

o code recipient can specify security policy

o application-specific policies

4

In-lined Reference Monitors

int count = 0;
...

if (count ≤ 10)
{

email.Send;
count ++;

}
else

halt;
...

Policy: ≤ 10 email sends

untrusted
binary code

instrumented
binary code

Rewriter

...
email.Send;
...

5

Rewriter: instruments the
untrusted code with IRMs

Reified security state variable:
keeps track of security state

Advice

common desired
functionality

Aspect-Oriented IRMs

6

Aspect-Oriented Programming [Kiczales et al, ECOOP, 1997] has become a standard approach
for implementing IRMs

Pointcut

code point at which to
add common desired

functionality

+

Aspect

Aspect-Oriented IRMs

Policy: at most 10 calls to Mail.mail(Mail.Send,…)
AspectJ implementation:

pointcuts: identify security-
relevant operations (events)

advice: implement guards
and interventions

reified security state
aspect Monitor {
 private static int counter = 0;

 pointcut sendevent(x): call(Mail.mail(int,..)) &&
 if(thisJoinPoint.getArgs()[0]==x);

 before() : sendevent(Mail.Send) {
 if (counter >= 10)
 throw new Exception(“security violation”);
 ++counter;
 }
}

7

Aspect-Oriented Programming [Kiczales et al, ECOOP, 1997] has become a standard approach
for implementing IRMs

 EXAMPLE:

In-lined Reference Monitors

• Long history of IRM Implementations
– SASI/PoET [Erlingsson & Schneider, NSPW 99]

– MOBILE [Hamlen, Morrisett, & Schneider, PLAS 06]

– Polymer [Ligatti, Bauer, & Walker, TISSEC 09]

– Java-MOP [Chen & Roşu, TACAS 05]

– ConSpec [Aktug & Naliuka, SCP 08]

– FIRM [Li & Wang, ACSAC 10]

– many others

8

IRM Example: Web Ad Security
[Louw, Ganesh, Venkatakrishnan, USENIX Security, 2010]

9

Third Party Ad content given full page access by default! – Confidentiality and Integrity issues
1. Banner ad
2. Skyscraper ad – needs to read page for contextual targeting – risk of exposing private content such as email ids
3. Inline text ad – contextual targeting – same risk
4. Floating ad – needs control of page real estate – may interfere with trusted components

Phu H. Phung, Maliheh Monshizadeh, Meera Sridhar, Kevin Hamlen and V.N. Venkatakrishnan. Between Worlds:
Securing Mixed JavaScript/ActionScript Multi-party Web Content. IEEE Transactions on Dependable and Secure
Computing, November 2014.

Certifying In-lined Reference Monitors

Policy
untrusted
binary code

rewritten
binary code

Rewriter

10

1. rewriters contain disassemblers, binary
analysis tools, compilers, optimizers, code-
generators

2. rewriters may be outsourced to third parties
with different security interests

3. policy specifications can change rapidly as
new attacks appear and new vulnerabilities
are discovered

Without certification, TCB large & complex!

Certifying In-lined Reference Monitors

Rewriter

untrusted
code

Policy

Verifier

reject
(rewriter
failure)

execute

rewritten
code

Trusted Computing Base

11

• certifying IRMs easier
than verifying safety of
arbitrary code!

• lighter weight
– SPIN vs. our early work

• different from Proof-
Carrying Code (PCC)

– PCC rewriters (certifying
compilers) leverage source
level info typically unavailable
to binary rewriters

• Related work:
– ConSpec (certification via

contracts)
– MoBILe (certification via

type-checking)

Bottom Line: Runtime monitoring is very powerful,
but we want the high assurance of static analysis.

Solution: Static verification of IRMs yields best of
both worlds! Combine the power & flexibility of
runtime monitoring with strong formal guarantees
of static analysis.

Certifying In-lined Reference Monitors

12

Certifying In-lined Reference Monitors

13

What do we want from the certifier?

• automatic, machine-certification of IRMs on-
demand

• formal guarantees of
 soundness
 transparency (behavior-preservation)

• light-weight certifier (embedded systems)

TRUSTEDpolicy

Aspect-Oriented IRM In-lining and Certification

binary
code

self-monitoring
 code

Verifier

execute

reject

14

aspect

Aspect weaver/in-liner

SPoX Policy Example [Hamlen, Jones, PLAS, 2008]

¬sendevent ¬sendevent

s=0 s=1
sendevent sendevent . . . s=10

sendevent

¬sendevent

Security Automaton:

Policy: at most 10 calls to Mail.mail(Mail.Send,…)

abstract security state

pointcuts: automaton edge
labels (events)

edges: security state
transitions

(state name=“s”)
(pointcut name=“sendevent”
 (and (call Mail.mail) (argval 1 (inteq Mail.Send))))
(forall “i” from 0 to 9
 (edge name=“increment”
 (pc name=“sendevent”)
 (nodes “s” i, i+1)))
(edge name=“violation”
 (pc name=“sendevent”)
 (nodes “s” 10, #))

SPoX formalization:

15

TRUSTEDpolicy

Aspect-Oriented IRM In-lining and Certification

binary
code

self-monitoring
 code

Verifier

execute

reject

16

aspect

Aspect weaver/in-liner

Approach: Model-checking
• policy model + new binary code are the two inputs to

model-checker
• model-checking process

– abstract-interpret new binary code
– interpreter bi-simulates code and automaton
– model-checker proves that there are no automaton-rejected

states in any reachable flows
• Main Challenge: How to curb state-space explosion?

Meera Sridhar and Kevin W. Hamlen. Model Checking In-Lined Reference Monitors. In Proc. of
the Eleventh International Conference on Verification, Model Checking, and Abstract
Interpretation (VMCAI), Jan 2010.

Kevin W. Hamlen, Micah M. Jones, and Meera Sridhar. Aspect-oriented Runtime Monitor
Certification. In Proceedings of the 18th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), March 2012.

17

In-lining Example

Mail.mail(x,…);

if (x == Mail.Send) {
 if (counter >= 0 && counter <= 9)
 temp_counter = counter + 1;
 else
 throw new Exception(“security violation”);
 counter = temp_counter;
}
Mail.mail(x,…);

18

Policy: at most 10 calls to Mail.mail(Mail.Send,…)

Abstract Interpretation Example

Mail.mail(x,…);

if (x == Mail.Send) {
 if (counter >= 0 && counter <= 9)
 temp_counter = counter + 1;
 else
 throw new Exception(“security violation”);
 counter = temp_counter;
}
Mail.mail(x,…);

Legend:
 s = abstract security state (from SPoX policy)
 c = counter (reified state)
 t = temp_counter (reified state)

s≤10 Λ s=c

s≤10 Λ s=c Λ x≠Mail.Send

19

Policy: at most 10 calls to Mail.mail(Mail.Send,…)

Abstract Interpretation Example

Mail.mail(x,…);

if (x == Mail.Send) {
 if (counter >= 0 && counter <= 9)
 temp_counter = counter + 1;
 else
 throw new Exception(“security violation”);
 counter = temp_counter;
}
Mail.mail(x,…);

Legend:
 s = abstract security state (from SPoX policy)
 c = counter (reified state)
 t = temp_counter (reified state)

s≤10 Λ s=c

s≤10 Λ s=c Λ x=Mail.Send

… Λ c≥0 Λ c≤9

… Λ t=c+1

… Λ s=c0 Λ c0≤9 Λ t=c0+1 Λ c=t

20

Policy: at most 10 calls to Mail.mail(Mail.Send,…)

Abstract Interpretation Example

Mail.mail(x,…);

if (x == Mail.Send) {
 if (counter >= 0 && counter <= 9)
 temp_counter = counter + 1;
 else
 throw new Exception(“security violation”);
 counter = temp_counter;
}
Mail.mail(x,…); // s=s+1

Legend:
 s = abstract security state (from SPoX policy)
 c = counter (reified state)
 t = temp_counter (reified state)

s≤10 Λ s=c

s≤10 Λ s=c Λ x=Mail.Send

… Λ c≥0 Λ c≤9

… Λ t=c+1

… Λ s=c0 Λ c0≤9 Λ t=c0+1 Λ c=t

s0=c0 Λ … Λ s=s0+1

s≤10 Λ s=c

SYNC!

21

Policy: at most 10 calls to Mail.mail(Mail.Send,…)

Synchronization States
• Definition

– A state is synchronized when the abstract and reified security states “match”
– different definition of “match” for each aspect implementation
– each binary rewriter declares its definition of “match”
– definition remains untrusted by verifier!

• Certification
– verifies that initial symbolic state is synchronized
– abstracts state to just “sync” whenever possible
– uses “sync” as a loop invariant whenever possible
– conservatively rejects if “sync” is insufficient to verify safety

• Controlling state-space explosion
– vast majority of state-exploration reduces to linear-time sync-preservation checks
– remaining exploration verifies that small blocks of in-lined code are sync-preserving, and that

sync-preservation implies safety
– “wrong” definition of sync just causes conservative rejection or slow convergence

Kevin W. Hamlen, Micah M. Jones, and Meera Sridhar. Aspect-oriented Runtime Monitor Certification. In
Proceedings of the 18th International Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), March 2012.

22

Model-checking Certifier Implementation for SPoX IRM System

• IRM system for Java bytecode
• Prolog (about 5200 lines)

– implements abstract interpreter
– implements model-checker

• decides boolean sentences over symbolic states
• implemented with Constraint Logic Programming (CLP)

• Java code (about 9100 lines)
– parses Java bytecode binaries using BCEL
– outputs Prolog structures for certification
– answers Prolog’s questions(e.g., class inheritence)

• Capabilities and limitations
– certifier fully inter-procedural and inter-modular
– almost all loops verify easily using sync as loop invariant

• monitor-introduced loops in non-sync regions (rare) are the only hard ones
– supports most forms of reflection

• certifier just verifies adequacy of guards of reflective operations
– synchronization invariant must be expressible as linear constraints
– multithreading not supported

23

Model-checking Certifier Implementation for SPoX IRM System

Program Policy

File Sizes (KB) # Classes
Rewrite
Time (s)

Events

Total
Verif.

Time (s)

Model-
check

Time (s)old new libs old libs
EJE NoExecSaves 439 439 0 147 0 6.1 1 202.8 16.3
RText 1264 1266 835 448 680 52.1 7 2797.5 54.5
JSesh 1923 1924 20878 863 1849 57.8 1 5488.1 196.0
vrenamer NoExecRename 924 927 0 583 0 50.1 9 1956.8 41.0
jconsole NoUnsafeDel 35 36 0 33 0 0.6 2 115.7 15.1
jWeather NoSendsAfterReads 288 294 0 186 0 12.3 46 308.2 156.7
YTDownload 279 281 0 148 0 17.8 20 219.0 53.6
jfilecrypt NoGui 303 303 0 164 0 9.7 1 642.2 2.8
jknight OnlySSH 166 166 4753 146 2675 4.5 1 650.1 3.0
Multivalent EncryptPDF 1115 1116 0 559 0 129.9 7 3567.0 26.9
tn5250j PortRestrict 646 646 0 416 0 85.4 2 2598.2 23.6
jrdesktop SafePort 343 343 0 163 0 8.3 5 483.0 17.8
JVMail TenMails 24 25 0 21 0 1.6 2 35.1 8.0
JackMail 165 166 369 30 269 2.5 1 626.7 8.9
Jeti CapLoginAttmpts 484 484 0 422 0 15.3 1 524.3 8.8
ChangeDB CapMembers 82 83 404 63 286 4.3 2 995.3 12.0
projtimer CapFileCreates 34 34 0 25 0 15.3 1 56.2 6.1
xnap NoFreeRiding 1250 1251 0 878 0 24.8 4 1496.2 56.4
Phex 4586 4586 3799 1353 830 69.4 2 5947.0 172.7
Webgoat NoSqlXss 429 431 6338 159 3579 16.7 2 10876.0 120.0
OpenMRS NoSQLInject 1781 1783 24279 932 17185 78.7 6 2897.0 37.3
Averages 747 748 2522 369 1120 32.4 5 1846.6 45.2

24

IRM Implementation Challenges & Logic Programming Advantage

1. IRMs must be fairly light-weight because they run on the code-consumer side
2. binary code parsing, code generation: tedious and error-prone

– DCG's facilitate binary parser implementation
– Reversible predicates combine parser and code-generator into one piece of code!

3. IRM must elegantly implement many AST analyses and optimizations during
rewriting

– needed to preserve policy-compliant programs, generate efficient code
– ASTs very elegantly represented and manipulated as Prolog structures

4. Instrumented code should be amenable to formal verification
– Prolog implementation of binary rewriting isomorphic to a search for a correctness proof
– excellent for integration with a certifying IRM system or a PCC system

Brian W. DeVries, Gopal Gupta, Kevin W. Hamlen, Scott Moore, and Meera Sridhar. ActionScript Bytecode Verification With Co-
Logic Programming. In Proc. of the ACM SIGPLAN Workshop on Prog. Languages and Analysis for Security (PLAS), June 2009.

Meera Sridhar and Kevin W. Hamlen. ActionScript In-Lined Reference Monitoring in Prolog. In Proceedings of the Twelfth
Symposium on Practical Aspects of Declarative Languages (PADL), Jan 2010.

25

A Simple LTL Model
Checker written in Prolog
for ActionScript Bytecode

26

FlashJaX: IRM technology for Web Ads

27

Proof of Certifier Correctness

Proof based on Cousot’s abstract interpretation framework [Cousot & Cousot, POPL 77]

– bismulation of concrete and abstract machines
• concrete operational semantics of Java bytecode based on ClassicJava [Flatt, Krishnamurthi, & Felleisen, POPL 98]

• abstract operational semantics of our interpreter
• soundness relation between abstract and concrete states

– denotational semantics of SPoX [Hamlen & Jones, PLAS 08]

– preservation: The abstract machine soundly abstracts the concrete machine
step-wise (uses soundness relation).

– progress: If the abstract machine doesn’t reject, the concrete machine
doesn’t violate the policy. Abstract machine covers all real executions.

Kevin W. Hamlen, Micah M. Jones, and Meera Sridhar. Aspect-oriented Runtime Monitor Certification. In Proceedings
of the 18th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS),
March 2012.

Kevin W. Hamlen, Micah M. Jones, and Meera Sridhar. Chekov: Aspect-oriented Runtime Monitor Certification via
Model-checking (Extended Version). Technical Report UTDCS-16-11, Computer Science Department, The University of
Texas at Dallas, Richardson, Texas, May 2011.

28

certifier returns true for all executions of the program there is no policy violation

Concrete Machine
LANGUAGE SYNTAX
(SIMPLIFIED ACTIONSCRIPT)

PROGRAMS AND
LABELS

CONCRETE STATES

29

Meera Sridhar and Kevin W. Hamlen. Model Checking In-Lined Reference Monitors. In Proc. of the Eleventh
International Conference on Verification, Model Checking, and Abstract Interpretation (VMCAI), Jan 2010.

Concrete Small-step Operational Semantics

30

Abstract Machine
ABSTRACT STATES

31

Abstract Small-step Operational Semantics

32

Other Proofs of Correctness
• Proof of Convergence

– proof bounds height of abstraction lattice
– abstract machine reaches fixed point in O(n2), n = security automaton size

Meera Sridhar and Kevin W. Hamlen. Model Checking In-Lined Reference Monitors. In Proc. of the Eleventh
International Conference on Verification, Model Checking, and Abstract Interpretation (VMCAI), Jan 2010.

• Proof of Correctness of IRM Transparency Certifier
– SCP paper presents the first automated transparency-verifier for IRMs
– untrusted, external invariant-generator

• safely leverages rewriter-specific instrumentation information during verification

– correctness of IRM transparency certifier extends previous proof with trace
equivalence

Meera Sridhar, Richard Wartell and Kevin W. Hamlen. Hippocratic Binary Instrumentation: First Do No Harm.
Science of Computer Programming: Special Issue on Invariant Generation, 93(B):110-124, Nov. 2014.

33

References
Irem Aktug, Mads Dam, and Dilian Gurov. Provably Correct Runtime Monitoring. In Proc. of the

International Symposium on Formal Methods (FM): 262 – 277, 2008.
Irem Aktug and Katsiaryna Naliuka. ConSpec – A Formal Language for Policy Specification.

Science of Computer Programming. 74: 2 – 12, 2008.
Lujo Bauer, Jay Ligatti, and David Walker. Composing Security Policies with Polymer. In Proc. of

the ACM Conference on Programming Languages Design and Implementation (PLDI): 305 –
314, 2005.

Patrick Cousot and Radhia Cousot. Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In Proc. of the ACM
Symposium of Programming Languages (POPL): 234 – 25, 1977.

Patrick Cousot and Radhia Cousot. Abstract Interpretation Frameworks. Journal of Logic and
Computation:2(4): 511-547, 1992.

Brian W. DeVries, Gopal Gupta, Kevin W. Hamlen, Scott Moore, and Meera Sridhar. ActionScript
Bytecode Verification With Co-Logic Programming. In Proc. of the ACM SIGPLAN Workshop
on Programming Languages and Analysis for Security (PLAS), June 2009.

Ulfar Erlingsson and Fred B. Schneider. SASI Enforcement of Security Policies: A Retrospective. In
Proc. of the New Security Paradigms Workshop (NSPW): 87 – 95, 1999.

Matthew Flatt, Shriram Krishnamurthi, and Matthias Fellesein. Classes and Mixins. In Proc. of the
ACM Symposium on Principles of Programming Languages (POPL):171-183, 1998.

34

References
Kevin W. Hamlen and Micah Jones. Aspect-oriented In-lined Reference Monitors. In Proc. ACM

SIGPLAN Workshop on Programming Languages and Analysis for Security (PLAS): 11-20,
2008.

Kevin W. Hamlen, Micah M. Jones, and Meera Sridhar. Chekov: Aspect-oriented runtime
monitor certification via model-checking (extended version). Technical Report UTDCS-16-
11, University of Texas at Dallas, 2011.

Kevin W. Hamlen, Micah M. Jones, and Meera Sridhar. Aspect-oriented Runtime Monitor
Certification. In Proc. of the 18th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), 2012.

Kevin W. Hamlen, Greg Morrisett, and Fred B. Schneider. Certified In-lined Reference Monitoring
on .NET. In Proc. of the ACM SIGPLAN Workshop on Programming Languages and Analysis for
Security (PLAS): 7-16, 2006.

Kevin W. Hamlen, Greg Morrisett, and Fred B. Schneider. Computability Classes for Enforcement
Mechanisms. ACM Trans. Prog. Lang. and Systems (TOPLAS), 28(1):175-205, 2006.

Gregor Kiczales, John Lamping, Anurag Medhekar, Chris Maeda, Cristina Lopes, Jean-Marc
Loingtier, and John Irwin. Aspect-Oriented Programming. In Proceedings of the 11th
European Conference on Object-Oriented Programming (ECOOP), 1997.

Zhou Li, XiaoFeng Wang. FIRM: Capability-based Inline Mediation of Flash Behaviors. The 26th
Annual Computer Security Applications Conference (ACSAC), 2010.

Mike Ter Louw, Karthik Thotta Ganesh, and V. N. Venkatakrishnan. AdJail: Practical Enforcement
of Confidentiality and Integrity Policies on Web Advertisements. USENIX Security
Symposium, 2010.

35

References
George C. Necula. Proof Carrying Code. In Proc. of the ACM Symposium of Programming

Languages (POPL): 106 – 119, 1997.
Phu H. Phung, Maliheh Monshizadeh, Meera Sridhar, Kevin Hamlen and V.N. Venkatakrishnan.

Between Worlds: Securing Mixed JavaScript/ActionScript Multi-party Web Content.
Submitted to IEEE Transactions on Dependable and Secure Computing.

Fred B. Schneider. Enforceable Security Policies. ACM Transactions on Information and Systems
Security (TISSEC). 3(1):30 – 50, 2000.

Meera Sridhar and Kevin W. Hamlen. Model Checking In-Lined Reference Monitors. In Proc. of
the Eleventh International Conference on Verification, Model Checking, and Abstract
Interpretation (VMCAI), 2010.

Meera Sridhar and Kevin W. Hamlen. ActionScript In-Lined Reference Monitoring in Prolog. In
Proc. of the Twelfth Symposium on Practical Aspects of Declarative Languages (PADL), 2010.

Meera Sridhar and Kevin W. Hamlen. Flexible In-lined Reference Monitor Certification:
Challenges and Future Directions. In Proc. 5th ACM SIGPLAN Workshop on Programming
Languages meets Program Verification (PLPV): 55-60, 2011.

Meera Sridhar, Richard Wartell and Kevin W. Hamlen. Hippocratic Binary Instrumentation: First
Do No Harm. Submitted to Science of Computer Programming: Special Issue on Invariant
Generation, in second round review, minor revision.

36

	Model-Checking In-lined Reference Monitors
	In-lined Reference Monitors (IRMs)�[Schneider, TISSEC, ‘00]
	In-lined Reference Monitors
	Aspect-Oriented IRMs
	Aspect-Oriented IRMs
	In-lined Reference Monitors
	IRM Example: Web Ad Security �[Louw, Ganesh, Venkatakrishnan, USENIX Security, 2010]�
	Certifying In-lined Reference Monitors
	Certifying In-lined Reference Monitors �
	Certifying In-lined Reference Monitors �
	Certifying In-lined Reference Monitors
	Aspect-Oriented IRM In-lining and Certification
	SPoX Policy Example [Hamlen, Jones, PLAS, 2008]
	Aspect-Oriented IRM In-lining and Certification
	Approach: Model-checking
	In-lining Example
	Abstract Interpretation Example
	Abstract Interpretation Example
	Abstract Interpretation Example
	Synchronization States
	Model-checking Certifier Implementation for SPoX IRM System
	Model-checking Certifier Implementation for SPoX IRM System
	IRM Implementation Challenges & Logic Programming Advantage�
	A Simple LTL Model Checker written in Prolog for ActionScript Bytecode
	FlashJaX: IRM technology for Web Ads
	Proof of Certifier Correctness
	Concrete Machine
	Concrete Small-step Operational Semantics
	Abstract Machine
	Abstract Small-step Operational Semantics
	Other Proofs of Correctness
	References
	References
	References

