Model-Checking In-lined
Reference Monitors

event

In-lined Reference Monitors (IRMs)

[Schneider, TISSEC, ‘00]

grant/deny

enforce safety policies by injecting security
guards directly into untrusted binaries

maintain history of security-relevant events

Advantages:

(@)

deployment flexibility (OS/VM remains
unmodified)

enforce richer policies, sequence-sensitive
policies

code recipient can specify security policy

application-specific policies

In-lined Reference Monitors

untrusted
binary code

Rewriter: instruments the
untrusted code with IRMs

Reified security state variable:

instrumented .
keeps track of security state

binary code

Aspect-Oriented IRMs

Aspect-Oriented Programming [Kiczales et al, ECOOP, 1997] has become a standard approach
for implementing IRMs

- Pointcuf " Advice

code point at which to
add common desired
functionality

common desired
functionality

Aspect-Oriented IRMs

Aspect-Oriented Programming [Kiczales et al, ECOOP, 1997] has become a standard approach
for implementing IRMs

EXAMPLE:
Policy: at most 10 calls to Mail.mail(Mail.Send,...)

Aspect) implementation:

aspect Monitor {
private static int counter = 0; reified security state

pointcuts: identify security-
relevant operations (events)

advice: implement guards
and interventions

In-lined Reference Monitors

* Long history of IRM Implementations
— SASI/PoET [Erlingsson & Schneider, NSPW 99]
— MOBILE [Hamlen, Morrisett, & Schneider, PLAS 06]
— Polymer [Ligatti, Bauer, & Walker, TISSEC 09]
— Java-MOP [Chen & Rosu, TACAS 05]
— ConSpec [Aktug & Naliuka, SCP 08]
— FIRM [Li & Wang, ACSAC 10]
— many others

IRM Example: Web Ad Security

[Louw, Ganesh, Venkatakrishnan, USENIX Security, 2010]

@ E-Mail @ Address Book |i_| Settings @ Logout
. .
Turbotax &/ TurboTax guides you like GPS
.
Federal FREE Edition £O YOUF Maximum refund. Fitter: | Al] @
— r s B == @ T, , 9
Folders Subject Sender Ads by Google
! Inbox : .
u - + “olunteering opportunity Jorge Del Soto Today 21:15 Zimbra for Small
E Dea + Important message Meagan Molineux Today 21:11 Business
== Sale pending Leo Benziger Today 21:10 Flexible web-based
£ Junk email Discounts for
& Trash e payapy Tk
=] (We Are Marshall) bring us Chuck, a new Videos that dor't get reporied
ng ‘SF‘ESQ stay broken forever until we happ
X stumble upon them ourselves|
[towski, a nerdy cor
Subject Sale pending | oo S0 Ads by Adbrite 163
Sender Leo Benziger 1 .
it, for espionage wg b
Recipient adsandbox@mail.nhysii) - leading Chul G009|e PayS Me $129 an Hour
Date Fri 21:10 f
Dear recipient, Online
IMvangar Technologies annound
butchery twenties Due to cor
employment campaign over 150
Uear reclplent,
Avangar Technologies annound - |
butchery twenties Due to corf - . [’ﬁ. -
employment campaign over 15 B '-b‘L" M
employed by the company. And —-—/
Technologies. druggists blan Google has blessed me with a $4,800
can dedicate 2-4 hours of tH aMonth Income. = Read How
Folder: [5§ Select: M@][] Disk usage:

Third Party Ad content given full page access by default! — Confidentiality and Integrity issues
Banner ad

Skyscraper ad — needs to read page for contextual targeting — risk of exposing private content such as email ids

Inline text ad — contextual targeting — same risk

Floating ad — needs control of page real estate — may interfere with trusted components

=

HwnN

Phu H. Phung, Maliheh Monshizadeh, Meera Sridhar, Kevin Hamlen and V.N. Venkatakrishnan. Between Worlds:
Securing Mixed JavaScript/ActionScript Multi-party Web Content. |EEE Transactions on Dependable and Secure
Computing, November 2014.

Certifying In-lined Reference Monitors

untrusted
binary code

. rewriters contain disassemblers, binary

analysis tools, compilers, optimizers, code-
generators

2. rewriters may be outsourced to third parties
with different security interests
3. policy specifications can change rapidly as

new attacks appear and new vulnerabilities

rewritten are discovered
binary code

Without certification, TCB large & complex!

10

Certifying In-lined Reference Monitors

untrusted

code

-

rewritten
code

\ 4

execute

~

. reject

(rewriter
failure)

Trusted Computing Bay

certifying IRMs easier
than verifying safety of
arbitrary code!
lighter weight

SPIN vs. our early work

different from Proof-

Carrying Code (PCC)

PCC rewriters (certifying
compilers) leverage source
level info typically unavailable
to binary rewriters

Related work:

— ConSpec (certification via
contracts)

— MoBILe (certification via
type-checking)

11

Certifying In-lined Reference Monitors

Bottom Line: Runtime monitoring is very powerful,
but we want the high assurance of static analysis.

Solution: Static verification of IRMs yields best of
both worlds! Combine the power & flexibility of
runtime monitoring with strong formal guarantees
of static analysis.

Certifying In-lined Reference Monitors

What do we want from the certifier?

 automatic, machine-certification of IRMs on-
demand

 formal guarantees of
v' soundness
v transparency (behavior-preservation)

* light-weight certifier (embedded systems)

Aspect-Oriented IRM In-lining and Certification

/ @ TRUSTEB

Aspect weaver/in-liner

reject

execute /

14

(¥

SPoX Policy Example (Hamlen, sones, pLas, 2008]

Policy: at most 10 calls to Mail.mail(Mail.Send,...)

Security Automaton:

-sendevent -sendevent -sendevent
sendevent sendevent sendevent I~
) [] [] []

SPoX formalization:

(state name="“s") abstract security state

pointcuts: automaton edge

labels (events)
(forall “i” fromOto 9

(edge name=“increment”

(pc name="“sendevent”)

(edge name="“violation” edges: security state
(pc name="“sendevent”) transitions

15

Aspect-Oriented IRM In-lining and Certification

/ @ TRUSTEB

Aspect weaver/in-liner

reject

execute /

16

(¥

Approach: Model-checking

* policy model + new binary code are the two inputs to
model-checker

* model-checking process
— abstract-interpret new binary code
— interpreter bi-simulates code and automaton

— model-checker proves that there are no automaton-rejected
states in any reachable flows

* Main Challenge: How to curb state-space explosion?

Meera Sridhar and Kevin W. Hamlen. Model Checking In-Lined Reference Monitors. In Proc. of
the Eleventh International Conference on Verification, Model Checking, and Abstract
Interpretation (VMCAI), Jan 2010.

Kevin W. Hamlen, Micah M. Jones, and Meera Sridhar. Aspect-oriented Runtime Monitor
Certification. In Proceedings of the 18th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), March 2012.

17

In-lining Example

Policy: at most 10 calls to Mail.mail(Mail.Send,...)

if (x == Mail.Send) {
if (counter >= 0 && counter <=9)
temp_counter = counter + 1;
else
throw new Exception(“security violation”);
counter = temp_counter;

}

Mail.mail(x,...);

18

Abstract Interpretation Example

Policy: at most 10 calls to Mail.mail(Mail.Send,...)

(_/—[s<10 A s=c]

if (x == Mail.Send) {
if (counter >= 0 && counter <=9)
temp_counter = counter + 1;
else
throw new Exception(“security violation”);
counter = temp_counter;

}

Mail.mail(x,...);<

Legend:
s = abstract security state (from SPoX policy)
¢ = counter (reified state)
t = temp_counter (reified state)

[s<10 A s=c A x#Mail.Send]

19

Abstract Interpretation Example
Policy: at most 10 calls to Mail.mail(Mail.Send,...) (_/—[s<10 A s=c]

17 (PSS L RIS - | 5510 A s=c A x=Mail.Send |
if (counter >= 0 && counter <=9) \
temp_counter = counter + 1; < - Ac20 A cs9]
2l : i .. \t=c+1]
throw new Exception(“security violation”); \
counter = temp_counter;
} °- < { . N5=Co N\ <9 A t=cy+1 A c=t]

Mail.mail(x,...);

Legend:
s = abstract security state (from SPoX policy)
¢ = counter (reified state)
t = temp_counter (reified state)

20

Abstract Interpretation Example

Policy: at most 10 calls to Mail.mail(Mail.Send,...)

if (x == Mail.Send) { -———

(_/—[s<10 A s=c

if (counter >= 0 && counter <=9)

—

s<10 A s=c A x=Mail.Send]

temp_counter = counter + 1; =
else b

——

..\ c20 A\ cL9]

throw new Exception(“security violation”);
counter = temp_counter; -

.. \t=c+1]

}

Mail.mail(x,...); //s=s+1

f
\

o Ns=Cy N <9 At=cy+1 A c=t]

Legend:
s = abstract security state (from SPoX policy)
¢ = counter (reified state)
t = temp_counter (reified state)

{ So=Co N\ ... As=s,+1]

U

[s<10 A s=c

Synchronization States

e Definition
— Asstate is synchronized when the abstract and reified security states “match”
— different definition of “match” for each aspect implementation
— each binary rewriter declares its definition of “match”
— definition remains untrusted by verifier!

e Certification
— verifies that initial symbolic state is synchronized
— abstracts state to just “sync” whenever possible
— uses “sync” as a loop invariant whenever possible
— conservatively rejects if “sync” is insufficient to verify safety

* Controlling state-space explosion

— vast majority of state-exploration reduces to linear-time sync-preservation checks

— remaining exploration verifies that small blocks of in-lined code are sync-preserving, and that
sync-preservation implies safety

— “wrong” definition of sync just causes conservative rejection or slow convergence

Kevin W. Hamlen, Micah M. Jones, and Meera Sridhar. Aspect-oriented Runtime Monitor Certification. In
Proceedings of the 18th International Conference on Tools and Algorithms for the Construction and Analysis of
Systems (TACAS), March 2012.

22

Model-checking Certifier Implementation for SPoX IRM System

IRM system for Java bytecode

Prolog (about 5200 lines)
— implements abstract interpreter

— implements model-checker
* decides boolean sentences over symbolic states
* implemented with Constraint Logic Programming (CLP)

Java code (about 9100 lines)

— parses Java bytecode binaries using BCEL

— outputs Prolog structures for certification

— answers Prolog’s questions(e.g., class inheritence)
Capabilities and limitations

— certifier fully inter-procedural and inter-modular

— almost all loops verify easily using sync as loop invariant
* monitor-introduced loops in non-sync regions (rare) are the only hard ones

— supports most forms of reflection
» certifier just verifies adequacy of guards of reflective operations

— synchronization invariant must be expressible as linear constraints
— multithreading not supported

Model-checking Certifier Implementation for SPoX IRM System

EJE

RText
JSesh
vrenamer
jconsole
jWeather
YTDownload
jfilecrypt
jknight
Multivalent
tn5250j
jrdesktop
JVMail
JackMail
Jeti
ChangeDB
projtimer
Xxnap
Phex
Webgoat
OpenMRS

Averages

NoExecSaves

NoExecRename
NoUnsafeDel

NoSendsAfterReads

NoGui
OnlySSH
EncryptPDF
PortRestrict
SafePort
TenMails

CapLoginAttmpts
CapMembers
CapFileCreates
NoFreeRiding

NoSqlXss
NoSQLInject

439 439 0 147

1264
1923
924
35
288
279
303
166
1115
646
343
24
165
484
82
34
1250
4586
429
1781

747

1266
1924
927
36
294
281
303
166
1116
646
343
25
166
484
83
34
1251
4586
431
1783

748

835
20878

448
863
583
33
186
148
164
146
559
416
163
21
30
422
63
25
878
1353
159
932

369

0
680

Rewrite
Time (s)

6.1
52.1
57.8
50.1
0.6
12.3
17.8
9.7
4.5
129.9
85.4
8.3
1.6
2.5
15.3
4.3
15.3
24.8
69.4
16.7
78.7

32.4

Time (s)| Time (s)

202.8
2797.5
5488.1
1956.8

115.7

308.2

219.0

642.2

650.1
3567.0
2598.2

483.0

35.1

626.7

524.3

995.3

56.2
1496.2
5947.0

10876.0
2897.0

1846.6

16.3
54.5
196.0
41.0
15.1
156.7
53.6
2.8
3.0
26.9
23.6
17.8
8.0
8.9
8.8
12.0
6.1
56.4
172.7
120.0
37.3

45.2

24

IRM Implementation Challenges & Logic Programming Advantage

1. IRMs must be fairly light-weight because they run on the code-consumer side

binary code parsing, code generation: tedious and error-prone

DCG's facilitate binary parser implementation
Reversible predicates combine parser and code-generator into one piece of code!

3. IRM must elegantly implement many AST analyses and optimizations during
rewriting

needed to preserve policy-compliant programs, generate efficient code

ASTs very elegantly represented and manipulated as Prolog structures

4. Instrumented code should be amenable to formal verification

Prolog implementation of binary rewriting isomorphic to a search for a correctness proof
excellent for integration with a certifying IRM system or a PCC system

Brian W. DeVries, Gopal Gupta, Kevin W. Hamlen, Scott Moore, and Meera Sridhar. ActionScript Bytecode Verification With Co-
Logic Programming. In Proc. of the ACM SIGPLAN Workshop on Prog. Languages and Analysis for Security (PLAS), June 2009.

Meera Sridhar and Kevin W. Hamlen. ActionScript In-Lined Reference Monitoring in Prolog. In Proceedings of the Twelfth
Symposium on Practical Aspects of Declarative Languages (PADL), Jan 2010.

25

A Simple LTL Model
Checker written in Prolog
for ActionScript Bytecode

1 % verify/2 takes a state and an emistentially

2% quantified LTL formula and checks

3% whether the formula holds for that state.

4%

5% Atomic Propositions are labeled by ‘ap’.

6%

7% holds/2 4is true when the atomic proposition holds
8% in the current state

9x

10 % ftype/2 is a mapping from top-level temporal

11 % operators to their interpretation semantics
12 %

13 % The clause for ‘a and b’ should ensure that ‘a’ and
14% ‘b’ hold on the same ezecution path. For simplicity
I5% of presentation, we omit this check here.

16

17 verify(State, F) :- ftype(F, inductive),

18 verify_inductive (State, F).

19 verify(State, F) :- ftype(F, coinductive),

20 verify_coinductive (State, F).

21

22 :- tabled verify_inductive/2.

23 verify_inductive (S, ap(AP)) :- holds(S,AP). X p
24 ¥ Logical operators

25 verify_inductive (S, not(ap(AP))) :- X mot(p)
26 \+ holds (S, AP).

27 verify_inductive (S, or(A,B)) :- 4 a or b
28 verify (S, A) ; verify(S, B).

29 verify_inductive (S, and(A,B)) :- £ a and b
30 verify (S, A), verify(S, B).

31 ¥ Inductive temporal operators

32 verify_inductive (S, x(A)) :- L X(a)
33 trans (8, S1), verify(S1, A).

34 verify_inductive (S, f(A)) :- 4 F(al
35 verify (S, A); verify(S, x(£(A))).

36 verify_inductive (S, u(A,B)) :- 4 oa UDb
37 verify (S, B);

38 verify_inductive (S, and(A, x(u(A,B)))).
39

40 : = coinductive verify_coinductive/2.

41 % Coinductive temporal operators

42 verify_coinductive (S, g(A)) :- 4 G(a)

43 verify (S, and(A, x(g(A))).

44 verify_coinductive (S, r(A,B)) :- 4 a R D
45 verify (S, and(A,B)).

46 # {a and b both occur, releasing b}

47 verify_coinductive(S, r(A,B)) :-

48 verify (S, and(B, x(r(4,B)))).

49 % {a does not hold, so b is mot releasedl}

26

FlashJaX: IRM technology for Web Ads

= o = — T T = —_— T

€ = C (O secure-ads.net/acsacli/a
[0 Google Calendar @} JSTools@ECOOP @ USvisa (D) Secure Adstest site .. (D) Adjail Tests I Asvit {IF Asm2 (D) Mobiwis 2012 [fig Dom

hoo-google-fsm.htm

Web page body.

Google Ad area

[~ocroces - I

Resultatbaserad
SEOQ

Jajja hjslper dig att f3
en battre position i
sokmotorerna. Syns
du?

wovwve.iafia.com

Behéver du laga
tianderna?

Vi har senaste
metoderna och basta
materialen. Smartfri
behandling!
Dagnelidkliniken.se/laga

Sommarsemester i
Norge

V3l] Norge | Sommar,
varfor resa langre
bort? Bérja din resa
har!
VisitNorwav.com/Norgeresa

Dalig Andedrikt?
Zinkoral - Bra effekt
mot dilig andedrikt.
Prova Zinkoral gratis
nu

wavwer. EFL.se/Zinkoral

Kvarndammens
bilauktioner

Vi auktionerar ut
hundratals bilar varje
vecka. Se vart utbud
har!

voveer kevd . se

click here to test onclick eventl

Raslay
Enjoy Preferential Rate*of 10 Paise on m ICICI Bank
8 Money2india
transfers of $2500 and above. Offer Period: *Offer Terms & conditions

May §, 2012 1o May 25, 2012 Arply
Yahoo Ad area

Proof of Certifier Correctness

certifier returns true % for all executions of the program there is no policy violation

Proof based on Cousot’s abstract interpretation framework [Cousot & Cousot, POPL 77]

— bismulation of concrete and abstract machines
* concrete operational semantics of Java bytecode based on ClassicJava (riatt, krishnamurthi, & Felleisen, POPL 98]
* abstract operational semantics of our interpreter
* soundness relation between abstract and concrete states

— denotational semantics of SPoX [Hamlen & Jones, PLAS 08]

— preservation: The abstract machine soundly abstracts the concrete machine
step-wise (uses soundness relation).

— progress: If the abstract machine doesn’t reject, the concrete machine
doesn’t violate the policy. Abstract machine covers all real executions.

Kevin W. Hamlen, Micah M. Jones, and Meera Sridhar. Aspect-oriented Runtime Monitor Certification. In Proceedings
of the 18th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (TACAS),
March 2012.

Kevin W. Hamlen, Micah M. Jones, and Meera Sridhar. Chekov: Aspect-oriented Runtime Monitor Certification via
Model-checking (Extended Version). Technical Report UTDCS-16-11, Computer Science Department, The University of

Texas at Dallas, Richardson, Texas, May 2011.
28

Concrete Machine

LANGUAGE SYNTAX 1= ifle L | getlocal n | setlocal n | jmp L |
(SIMPLIFIED ACTIONSCRIPT) event ¢ | setstate n | ifstate n L
P = (L.p.s) (programs)
PROGRAMS AND p:L—1 (instruction labels)
LABELS s: L — L (label successors)
= {(L:i,o,v,m,T) (configurations)
gu=-|v:ao (concrete stacks)
veEZL (concrete values)
v:L—v (concrete stores)
m € Z (concrete reified state)
CONCRETE STATES ec ¥ (events)
= (concrete traces)
xo = (Lo : p(Lo), -, 10,0, €) (initial configurations)
vo = Z x {0} (initial stores)

Meera Sridhar and Kevin W. Hamlen. Model Checking In-Lined Reference Monitors. In Proc. of the Eleventh
International Conference on Verification, Model Checking, and Abstract Interpretation (VMCAI), Jan 2010.

29

Concrete Small-step Operational Semantics

n < no

(ClrLEPos)

(L :ifle Lo, nyuneso,v,m,7) — (Lo : p(La), o, 1/, m, T)
1 > Ma
(Ly : ifle Lo, nyimano,v,m,7) — (s(Ly) : p(s(Ly)),o,v,m, T)

(CIFLENEG)

(L : getloeal n,o,v,m,7) — (s(L): p(s(L)),v(n):o,v,m, 1) (CGETLOCAL)

(L : setlocal n,nyo,v,m,7) — (s(L) : p(s(L)), o, v[n = ny],m, T) (CSETLOCAL)

(CJmp)

(L1 :jmp Lo,o,v,m,7) — (La : p(La),0,v,m,T)
el (CEVENT)

(L :event e,o,v,m,7) +— (s(L) : p(s(L)),o,v,m,Te)

(L : setstate n,o,v,m,7) — (s(L) : p(s(L)),o,v,n,7) (CSETSTATE)

(Ly :ifstate n Lo, o, v,n, 1) — (Lo : p(Le),o,v,n,T) (ClrsTaTEPOS)

m#n
(L, :ifstate n Lo, a,v,m, 1) — (s(Ly) : p(s(L1)). o, v, m, T)

(ClrsTATENEG)

30

Abstract Machine

ABSTRACT STATES
xi=1 | (L:io,v,m,(Res(gm),T)) | (L:i,0,v, Tvys,T) (abstract configs)
ou=-|vueo (evaluation stacks)
ve VS (abstract values)
vl — v (abstract stores)
mEZUTvyg (abstract reified state)
T € Up<p X" (bounded traces)
T €85 (abstract traces)

31

Abstract Small-step Operational Semantics

ny < no

— : ———— (AIFLEPOS
(L1 :ifle Lo, niungio,v,m,7) ~ (L2 : p(La2), 0,0, 1,7‘}{)

niy > na2
: AIFLENEG
(Ly :ifle Lo, ny:noo,v,m, 7) ~+ (s(L1) : p(s(L1)),0,0,m,T) ()

Tvs € {vay, vag} L' € {Ls,s(L
(L1 :ifle Lo, vaivaz:o,v,m,7) ~= (L' : p(L

— (AIFLET OP)
1,T)

AG J
(L - getlocal n, 6,7, ,7) = (s(L) - p(s(D), 2}z, 5,7, 7)o

- (ASETLOCAL)

(L : setlocal n,vay::6,0,m,7) ~+ (s(L) : p(s(L)),,0[n = va1],m,T)
{L1 Zjlllp Lg,ah':i}?ﬁlzf-) oy LQ (Lg) ﬁ }(AJMP}
,j_*_e ; » ; .-P .
(L:event e,o,0,m,7) ~ (s(L) : p(s(L)),s,0,m,7') (AEVENT)
7 C Res(qn) o |
{_L setstate n, 5’ f}_‘ ﬁl._‘ "f') s {_S(L} IJ(S(L)), 5’_, Ij": n, (RE‘S(Q’“)! €)) (AE?ETSTATE)
e (AIFSTATEPOS)

(L1 : ifstate n Lo, o, 0, m, (S, 7)) ~ -{Lg :p(L2),0,0,n, (Res(gn),T))
m#n (S — Res(gn,))T C T
(Ly : ifstate n Lo, 0,0, m, (S, 7)) ~ (s(L1) : p(s(L1)),0,0,m,7)

32

Other Proofs of Correctness

* Proof of Convergence

— proof bounds height of abstraction lattice
— abstract machine reaches fixed point in O(n?), n = security automaton size

Meera Sridhar and Kevin W. Hamlen. Model Checking In-Lined Reference Monitors. In Proc. of the Eleventh

International Conference on Verification, Model Checking, and Abstract Interpretation (VMCAI), Jan 2010.

* Proof of Correctness of IRM Transparency Certifier

— SCP paper presents the first automated transparency-verifier for IRMs
— untrusted, external invariant-generator
» safely leverages rewriter-specific instrumentation information during verification

— correctness of IRM transparency certifier extends previous proof with trace
equivalence

Meera Sridhar, Richard Wartell and Kevin W. Hamlen. Hippocratic Binary Instrumentation: First Do No Harm.

Science of Computer Programming: Special Issue on Invariant Generation, 93(B):110-124, Nov. 2014.

33

References

Irem Aktug, Mads Dam, and Dilian Gurov. Provably Correct Runtime Monitoring. /n Proc. of the
International Symposium on Formal Methods (FM): 262 — 277, 2008.

Irem Aktug and Katsiaryna Naliuka. ConSpec — A Formal Language for Policy Specification.
Science of Computer Programming. 74: 2 — 12, 2008.

Lujo Bauer, Jay Ligatti, and David Walker. Composing Security Policies with Polymer. /In Proc. of
the ACM Conference on Programming Languages Design and Implementation (PLDI): 305 —
314, 2005.

Patrick Cousot and Radhia Cousot. Abstract Interpretation: A Unified Lattice Model for Static
Analysis of Programs by Construction or Approximation of Fixpoints. In Proc. of the ACM
Symposium of Programming Languages (POPL): 234 — 25, 1977.

Patrick Cousot and Radhia Cousot. Abstract Interpretation Frameworks. Journal of Logic and
Computation:2(4): 511-547, 1992.

Brian W. DeVries, Gopal Gupta, Kevin W. Hamlen, Scott Moore, and Meera Sridhar. ActionScript
Bytecode Verification With Co-Logic Programming. In Proc. of the ACM SIGPLAN Workshop
on Programming Languages and Analysis for Security (PLAS), June 2009.

Ulfar Erlingsson and Fred B. Schneider. SASI Enforcement of Security Policies: A Retrospective. In
Proc. of the New Security Paradigms Workshop (NSPW): 87 — 95, 1999.

Matthew Flatt, Shriram Krishnamurthi, and Matthias Fellesein. Classes and Mixins. In Proc. of the
ACM Symposium on Principles of Programming Languages (POPL):171-183, 1998.

References

Kevin W. Hamlen and Micah Jones. Aspect-oriented In-lined Reference Monitors. In Proc. ACM
SIGPLAN Workshop on Programming Languages and Analysis for Security (PLAS): 11-20,
2008.

Kevin W. Hamlen, Micah M. Jones, and Meera Sridhar. Chekov: Aspect-oriented runtime
monitor certification via model-checking (extended version). Technical Report UTDCS-16-
11, University of Texas at Dallas, 2011.

Kevin W. Hamlen, Micah M. Jones, and Meera Sridhar. Aspect-oriented Runtime Monitor
Certification. In Proc. of the 18th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS), 2012.

Kevin W. Hamlen, Greg Morrisett, and Fred B. Schneider. Certified In-lined Reference Monitoring
on .NET. /In Proc. of the ACM SIGPLAN Workshop on Programming Languages and Analysis for
Security (PLAS): 7-16, 2006.

Kevin W. Hamlen, Greg Morrisett, and Fred B. Schneider. Computability Classes for Enforcement
Mechanisms. ACM Trans. Prog. Lang. and Systems (TOPLAS), 28(1):175-205, 2006.

Gregor Kiczales, John Lamping, Anurag Medhekar, Chris Maeda, Cristina Lopes, Jean-Marc
Loingtier, and John Irwin. Aspect-Oriented Programming. In Proceedings of the 11th
European Conference on Object-Oriented Programming (ECOOP), 1997.

Zhou Li, XiaoFeng Wang. FIRM: Capability-based Inline Mediation of Flash Behaviors. The 26th
Annual Computer Security Applications Conference (ACSAC), 2010.

Mike Ter Louw, Karthik Thotta Ganesh, and V. N. Venkatakrishnan. AdJail: Practical Enforcement
of Confidentiality and Integrity Policies on Web Advertisements. USENIX Security
Symposium, 2010.

References

George C. Necula. Proof Carrying Code. /In Proc. of the ACM Symposium of Programming
Languages (POPL): 106 — 119, 1997.

Phu H. Phung, Maliheh Monshizadeh, Meera Sridhar, Kevin Hamlen and V.N. Venkatakrishnan.
Between Worlds: Securing Mixed JavaScript/ActionScript Multi-party Web Content.
Submitted to IEEE Transactions on Dependable and Secure Computing.

Fred B. Schneider. Enforceable Security Policies. ACM Transactions on Information and Systems
Security (TISSEC). 3(1):30 — 50, 2000.

Meera Sridhar and Kevin W. Hamlen. Model Checking In-Lined Reference Monitors. In Proc. of
the Eleventh International Conference on Verification, Model Checking, and Abstract
Interpretation (VMCAI), 2010.

Meera Sridhar and Kevin W. Hamlen. ActionScript In-Lined Reference Monitoring in Prolog. In
Proc. of the Twelfth Symposium on Practical Aspects of Declarative Languages (PADL), 2010.

Meera Sridhar and Kevin W. Hamlen. Flexible In-lined Reference Monitor Certification:
Challenges and Future Directions. In Proc. 51" ACM SIGPLAN Workshop on Programming
Languages meets Program Verification (PLPV): 55-60, 2011.

Meera Sridhar, Richard Wartell and Kevin W. Hamlen. Hippocratic Binary Instrumentation: First
Do No Harm. Submitted to Science of Computer Programming: Special Issue on Invariant
Generation, in second round review, minor revision.

	Model-Checking In-lined Reference Monitors
	In-lined Reference Monitors (IRMs)�[Schneider, TISSEC, ‘00]
	In-lined Reference Monitors
	Aspect-Oriented IRMs
	Aspect-Oriented IRMs
	In-lined Reference Monitors
	IRM Example: Web Ad Security �[Louw, Ganesh, Venkatakrishnan, USENIX Security, 2010]�
	Certifying In-lined Reference Monitors
	Certifying In-lined Reference Monitors �
	Certifying In-lined Reference Monitors �
	Certifying In-lined Reference Monitors
	Aspect-Oriented IRM In-lining and Certification
	SPoX Policy Example [Hamlen, Jones, PLAS, 2008]
	Aspect-Oriented IRM In-lining and Certification
	Approach: Model-checking
	In-lining Example
	Abstract Interpretation Example
	Abstract Interpretation Example
	Abstract Interpretation Example
	Synchronization States
	Model-checking Certifier Implementation for SPoX IRM System
	Model-checking Certifier Implementation for SPoX IRM System
	IRM Implementation Challenges & Logic Programming Advantage�
	A Simple LTL Model Checker written in Prolog for ActionScript Bytecode
	FlashJaX: IRM technology for Web Ads
	Proof of Certifier Correctness
	Concrete Machine
	Concrete Small-step Operational Semantics
	Abstract Machine
	Abstract Small-step Operational Semantics
	Other Proofs of Correctness
	References
	References
	References

