
Enforceability Theory

Language-based Security
Dr. Kevin W. Hamlen

Motivating Questions
• Can we prove that mechanism M enforces policy P?

– What is the mathematical definition of a policy?
– What does it mean to “enforce” a policy?

• Are there limits to what is enforceable?
– Which enforcement approaches are best suited to which

policies?
– Are there some policies that are completely beyond any

known enforcement strategy?
– Are some enforcement approaches strictly more powerful

than others?
• What is the mathematical landscape of policies, policy

classes, and enforcement mechanisms?

Enforceable Security Policies
[Schneider, TISSEC 2000]

• Proposed a theory of Execution (a.k.a. Reference) Monitors (EMs)
– EMs watch untrusted programs at runtime
– impending events mediated by the EM
– impending violations solicit EM interventions (termination)

• Example: File system access control
– EM is inside the OS
– decides policy violations using access control lists (ACLs)

untrusted
program EM

security
resources
(e.g., OS)

halt
process

event

Programs and Policies
• An execution χ is a sequence of security-relevant program events e

or actions
– sequence may be finite or (countably) infinite
– simplifying formalism: Model program termination as an infinite

repetition of ehalt
– now all executions are infinite length sequences

• A program Π is a SET of possible executions
– one execution for each possible input

• input can be an infinite sequence read over time
• model non-determinism/randomness as an implicit input

• A policy P is a PROPERTY of programs
– partitions the space of all programs into two groups: permissible

programs and impermissible ones
– impermissible programs are censored somehow (e.g., terminated on

violating runs)

EM-enforceable Policies
1) P(Π) ≡ ∀χ� . �𝑷𝑷(χ)

– EM policies are expressible as universally quantified predicates over
executions

– P̂ sometimes called the policy’s “detector”
2) Detector �𝑷𝑷 must be prefix-closed

– �𝑷𝑷(χe) ⇒ �𝑷𝑷(χ)
– �𝑷𝑷(ε)

3) If �𝑷𝑷 rejects something, it must do so in finite time
– ¬�𝑷𝑷(χ) ⇒ ∃ i . ¬�𝑷𝑷(χ[..i])

• Main discovery #1:
– A policy satisfies (1), (2), and (3) if and only if it is a safety policy
– Lamport 1977: Safety policies say that some “bad thing” never

happens
– EMs enforce safety policies!

Security Automata
[Erlingsson & Schneider, NSPW ’99]

• Formalization of safety policies
– finite state automaton
– accepts language of permissible executions
– alphabet = set of events
– edge labels = event predicates
– all states accepting (language is prefix-closed)

• Example: no sends after reads

In-lined Reference Monitors

• Disadvantages of traditional EMs
– inefficient: context-switch on every event
– large TCB: EM extends the OS
– weak: EM can’t easily see internal program actions
– non-modular: changing policy requires changing OS

untrusted
program

security
resources
(e.g., OS)

EM

In-lined Reference Monitors

• Main idea:
– Implement a reference monitor by in-lining its logic into the

untrusted code
– In-lining procedure should be automated

• Challenges:
– How to automatically generate EM code?
– How to preserve (non-violating) program logic?
– How to prevent (malicious) programs from corrupting the EM?

untrusted
program

security
resources
(e.g., OS)

EM

In-lining a Security Autoamton

Example: Let’s in-line this security automaton

 (Policy: push exactly once before returning)

into this binary code
mul r1,r0,r0
push r1
ret

In-lining Algorithm

1) Conceptually in-line the automaton just
before EVERY event

2) Partially evaluate (i.e., specialize) the
automaton edges to the event it guards
– some edges disappear entirely

3) Generate guard code for the remaining
automaton logic

In-lining Example

Computability Classes For
Enforcement Mechanisms

Hamlen, Morrisett, and Schneider
TOPLAS 2006

IRMs vs. EMs

• Implicit assumption of the Schneider paper:
– in-lining is just an implementation strategy
– doesn’t affect set of enforceable policies

• Are we sure?
• Two interesting issues:

– A policy constrains a program, right? But now the EM
is part of the program. Can it constrain itself?

– EM was previously a black box. But now it’s subject to
the laws of the computational model.

• Big idea: Is there a link between computability
and enforceability?

Review: Computation Theory
• Turing Machine

– Alan Turing (1936)
– simple mathematical model of a computer
– consists of:

0 1 1 1 0 0 1 # # # … (infinite)

a “tape”

a “tape head”
0→0,R

#→#,L

1→1,R

0→1,R

1→0,R
a “finite control”

TM Power
• Can do simple arithmetic
• TMs don’t necessarily terminate
• Can do anything programmable with logic gates (AND, OR,

XOR, …)
• Can evaluate a C program encoded in binary
• Can simulate arbitrary TMs (given as input) on arbitrary

inputs (given as input)
– called a “universal TM”

• Intuition: Can do anything a real computer can do (but
very, very slowly)

• But TMs can’t solve undecidable problems (e.g., halting
problem)

Enforcement Strategy #1:
Static Analysis

• Approach:
– analyze untrusted code

BEFORE it runs
– return “accept” or

“reject” in finite time
• Pros:

– immediate answer
– code runs at full speed

• Cons:
– high load overhead
– weak in power…?

untrusted
program

Static
Analysis

accept

reject

Enforcement Strategy #1:
Static Analysis

• Approach:
– analyze untrusted code

BEFORE it runs
– return “accept” or

“reject” in finite time
• Pros:

– immediate answer
– code runs at full speed

• Cons:
– high load overhead
– weak in power…?

untrusted
program

Static
Analysis

accept

reject

Recursively Decidable Policies

Enforcement Strategy #2:
Execution Monitoring

• Approach:
– EM monitors events
– intervenes to prevent violations
– implemented outside program

• Cons:
– no answer until execution
– runtime slow-down (context-

switches)
• Pros:

– lower load-time overhead than
static analysis

– more powerful…?

input

Program

event

EM intervene
accept reject

Enforcement Strategy #2:
Execution Monitoring

• Approach:
– EM monitors events
– intervenes to prevent violations
– implemented outside program

• Cons:
– no answer until execution
– runtime slow-down (context-

switches)
• Pros:

– lower load-time overhead than
static analysis

– more powerful…?

input

Program

event

EM intervene
accept reject

co-Recursively Enumerable Policies

Arithmetic Hierarchy

Arithmetic Hierarchy

decidable
D(x)

Arithmetic Hierarchy

decidable
D(x)

Recursively
Enumerable
∃y.D(x,y)

Example: TM x
eventually halts

Arithmetic Hierarchy

decidable
D(x)

Recursively
Enumerable
∃y.D(x,y)

Example: TM x
eventually halts

co-RE
∀y.D(x,y)

Example: TM x
never halts

Arithmetic Hierarchy

decidable
D(x)

Recursively
Enumerable
∃y.D(x,y)

Example: TM x
eventually halts

co-RE
∀y.D(x,y)

Example: TM x
never halts

Σ2
∃z.∀y.D(x,y,z)

Example: TM x
sometimes loops

Arithmetic Hierarchy

decidable
D(x)

Recursively
Enumerable
∃y.D(x,y)

Example: TM x
eventually halts

co-RE
∀y.D(x,y)

Example: TM x
never halts

Σ2
∃z.∀y.D(x,y,z)

Example: TM x
sometimes loops

Π2
∀z.∃y.D(x,y,z)

Example: TM x
always halts

Arithmetic Hierarchy

decidable
D(x)

Recursively
Enumerable
∃y.D(x,y)

Example: TM x
eventually halts

co-RE
∀y.D(x,y)

Example: TM x
never halts

Σ2
∃z.∀y.D(x,y,z)

Example: TM x
sometimes loops

Π2
∀z.∃y.D(x,y,z)

Example: TM x
always halts

Πn
∀ …

Σn
∃ ….

.

.

Computability & Enforceability

• static analysis = recursively decidable
• EM-enforceable = co-RE
• Conclusions so far:

– EMs are strictly more powerful than static
– but they cannot enforce RE, higher classes etc.

• What about IRMs? Same as EMs?
– Surprising answer: No!

IRM Strategy:
Rewrite-enforcement

• Approach:
– transform untrusted code
– must return new program

in finite time
– transformed code must

satisfy policy
– behavior of safe code must

be preserved
• Pros:

– lowest runtime overhead
– load-time overhead is

once-only
– sometimes no answer until

execution

untrusted
program

Rewriter

safe
program

Rewrite-enforceability
• A policy P is rewrite-enforceable if and only if there exists a

computable function R : M→M such that…
– image(R) ⊆ P (all outputs are policy-adherent)
– P(M) ⇒ (R(M) ≈ M) (behavior of policy-adherent programs is

preserved)
• Need a definition of program-equivalence ≈

– turns out any “reasonable” definition will do
– Example: equal inputs produce equal outputs

• Major difference from EM model: IRM must obey policy, whereas
EM has no such obligation
– IRM’s intervention must not be a policy violation
– IRM must possess an intervention that precludes the impending

violation
• On the other hand, IRM has luxury of CHANGING the untrusted

code! This is a power that EMs lack.

Main Discoveries
• There are EM-enforceable policies that are not RW-enforceable.

– Example: Untrusted code must not print the secret stored at address
a, and must not read address a.

• There are RW-enforceable policies that are not EM-enforceable.
– Example: Untrusted code must behave identically to program M1 on

all inputs
• The class of all RW-enforceable policies is not equal to ANY class of

the arithmetic hierarchy
– Open question: What is it, exactly?
– Some progress: Run-time Enforcement of Nonsafety Policies [Ligatti,

Bauer, Walker, TISSEC 2009]
– See also research on Edit Automata

• Next time:
– More practical examples of RW-enforceable, non-EM-enforceable

policies, and how to enforce them
– How the theory affects certifying IRM technologies

	Enforceability Theory
	Motivating Questions
	Enforceable Security Policies�[Schneider, TISSEC 2000]
	Programs and Policies
	EM-enforceable Policies
	Security Automata�[Erlingsson & Schneider, NSPW ’99]
	In-lined Reference Monitors
	In-lined Reference Monitors
	In-lining a Security Autoamton
	In-lining Algorithm
	In-lining Example
	Computability Classes For Enforcement Mechanisms
	IRMs vs. EMs
	Review: Computation Theory
	TM Power
	Enforcement Strategy #1:�Static Analysis
	Enforcement Strategy #1:�Static Analysis
	Enforcement Strategy #2:�Execution Monitoring
	Enforcement Strategy #2:�Execution Monitoring
	Arithmetic Hierarchy
	Arithmetic Hierarchy
	Arithmetic Hierarchy
	Arithmetic Hierarchy
	Arithmetic Hierarchy
	Arithmetic Hierarchy
	Arithmetic Hierarchy
	Computability & Enforceability
	IRM Strategy:�Rewrite-enforcement
	Rewrite-enforceability
	Main Discoveries

