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Motivating Questions
• Can we prove that mechanism M enforces policy P?

– What is the mathematical definition of a policy?
– What does it mean to “enforce” a policy?

• Are there limits to what is enforceable?
– Which enforcement approaches are best suited to which 

policies?
– Are there some policies that are completely beyond any 

known enforcement strategy?
– Are some enforcement approaches strictly more powerful 

than others?
• What is the mathematical landscape of policies, policy 

classes, and enforcement mechanisms?



Enforceable Security Policies
[Schneider, TISSEC 2000]

• Proposed a theory of Execution (a.k.a. Reference) Monitors (EMs)
– EMs watch untrusted programs at runtime
– impending events mediated by the EM
– impending violations solicit EM interventions (termination)

• Example:  File system access control
– EM is inside the OS
– decides policy violations using access control lists (ACLs)
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Programs and Policies
• An execution χ is a sequence of security-relevant program events e 

or actions
– sequence may be finite or (countably) infinite
– simplifying formalism:  Model program termination as an infinite 

repetition of ehalt
– now all executions are infinite length sequences

• A program Π is a SET of possible executions
– one execution for each possible input

• input can be an infinite sequence read over time
• model non-determinism/randomness as an implicit input

• A policy P is a PROPERTY of programs
– partitions the space of all programs into two groups:  permissible 

programs and impermissible ones
– impermissible programs are censored somehow (e.g., terminated on 

violating runs)



EM-enforceable Policies
1) P(Π) ≡ ∀χ�  . �𝑷𝑷(χ)

– EM policies are expressible as universally quantified predicates over 
executions

– P̂ sometimes called the policy’s “detector”
2) Detector �𝑷𝑷 must be prefix-closed

– �𝑷𝑷(χe) ⇒ �𝑷𝑷(χ)
– �𝑷𝑷(ε)

3) If �𝑷𝑷 rejects something, it must do so in finite time
– ¬�𝑷𝑷(χ) ⇒ ∃ i . ¬�𝑷𝑷(χ[..i])

• Main discovery #1:
– A policy satisfies (1), (2), and (3) if and only if it is a safety policy
– Lamport 1977:  Safety policies say that some “bad thing” never 

happens
– EMs enforce safety policies!



Security Automata
[Erlingsson & Schneider, NSPW ’99]

• Formalization of safety policies
– finite state automaton
– accepts language of permissible executions
– alphabet = set of events
– edge labels = event predicates
– all states accepting (language is prefix-closed)

• Example:  no sends after reads



In-lined Reference Monitors

• Disadvantages of traditional EMs
– inefficient:  context-switch on every event
– large TCB:  EM extends the OS
– weak:  EM can’t easily see internal program actions
– non-modular:  changing policy requires changing OS
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In-lined Reference Monitors

• Main idea:
– Implement a reference monitor by in-lining its logic into the 

untrusted code
– In-lining procedure should be automated

• Challenges:
– How to automatically generate EM code?
– How to preserve (non-violating) program logic?
– How to prevent (malicious) programs from corrupting the EM?
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In-lining a Security Autoamton

Example:  Let’s in-line this security automaton

    (Policy: push exactly once before returning)

into this binary code
mul r1,r0,r0
push r1
ret



In-lining Algorithm

1) Conceptually in-line the automaton just 
before EVERY event

2) Partially evaluate (i.e., specialize) the 
automaton edges to the event it guards
– some edges disappear entirely

3) Generate guard code for the remaining 
automaton logic



In-lining Example



Computability Classes For 
Enforcement Mechanisms

Hamlen, Morrisett, and Schneider
TOPLAS 2006



IRMs vs. EMs

• Implicit assumption of the Schneider paper:
– in-lining is just an implementation strategy
– doesn’t affect set of enforceable policies

• Are we sure?
• Two interesting issues:

– A policy constrains a program, right?  But now the EM 
is part of the program.  Can it constrain itself?

– EM was previously a black box.  But now it’s subject to 
the laws of the computational model.

• Big idea:  Is there a link between computability 
and enforceability?



Review: Computation Theory
• Turing Machine

– Alan Turing (1936)
– simple mathematical model of a computer
– consists of:

0 1 1 1 0 0 1 # # # … (infinite)

a “tape”

a “tape head”
0→0,R

#→#,L

1→1,R

0→1,R

1→0,R
a “finite control”



TM Power
• Can do simple arithmetic
• TMs don’t necessarily terminate
• Can do anything programmable with logic gates (AND, OR, 

XOR, …)
• Can evaluate a C program encoded in binary
• Can simulate arbitrary TMs (given as input) on arbitrary 

inputs (given as input)
– called a “universal TM”

• Intuition:  Can do anything a real computer can do (but 
very, very slowly)

• But TMs can’t solve undecidable problems (e.g., halting 
problem)



Enforcement Strategy #1:
Static Analysis

• Approach:
– analyze untrusted code 

BEFORE it runs
– return “accept” or 

“reject” in finite time
• Pros:

– immediate answer
– code runs at full speed

• Cons:
– high load overhead
– weak in power…?
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Recursively Decidable Policies



Enforcement Strategy #2:
Execution Monitoring

• Approach:
– EM monitors events
– intervenes to prevent violations
– implemented outside program

• Cons:
– no answer until execution
– runtime slow-down (context-

switches)
• Pros:

– lower load-time overhead than 
static analysis

– more powerful…?
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Arithmetic Hierarchy
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Computability & Enforceability

• static analysis = recursively decidable
• EM-enforceable = co-RE
• Conclusions so far:

– EMs are strictly more powerful than static
– but they cannot enforce RE, higher classes etc.

• What about IRMs?  Same as EMs?
– Surprising answer: No!



IRM Strategy:
Rewrite-enforcement

• Approach:
– transform untrusted code
– must return new program 

in finite time
– transformed code must 

satisfy policy
– behavior of safe code must 

be preserved
• Pros:

– lowest runtime overhead
– load-time overhead is 

once-only
– sometimes no answer until 

execution

untrusted
program

Rewriter

safe
program



Rewrite-enforceability
• A policy P is rewrite-enforceable if and only if there exists a 

computable function R : M→M such that…
– image(R) ⊆ P   (all outputs are policy-adherent)
– P(M) ⇒ (R(M) ≈ M)   (behavior of policy-adherent programs is 

preserved)
• Need a definition of program-equivalence ≈

– turns out any “reasonable” definition will do
– Example: equal inputs produce equal outputs

• Major difference from EM model:  IRM must obey policy, whereas 
EM has no such obligation
– IRM’s intervention must not be a policy violation
– IRM must possess an intervention that precludes the impending 

violation
• On the other hand, IRM has luxury of CHANGING the untrusted 

code!  This is a power that EMs lack.



Main Discoveries
• There are EM-enforceable policies that are not RW-enforceable.

– Example:  Untrusted code must not print the secret stored at address 
a, and must not read address a.

• There are RW-enforceable policies that are not EM-enforceable.
– Example:  Untrusted code must behave identically to program M1 on 

all inputs
• The class of all RW-enforceable policies is not equal to ANY class of 

the arithmetic hierarchy
– Open question:  What is it, exactly?
– Some progress:  Run-time Enforcement of Nonsafety Policies [Ligatti, 

Bauer, Walker, TISSEC 2009]
– See also research on Edit Automata

• Next time:
– More practical examples of RW-enforceable, non-EM-enforceable 

policies, and how to enforce them
– How the theory affects certifying IRM technologies


	Enforceability Theory
	Motivating Questions
	Enforceable Security Policies�[Schneider, TISSEC 2000]
	Programs and Policies
	EM-enforceable Policies
	Security Automata�[Erlingsson & Schneider, NSPW ’99]
	In-lined Reference Monitors
	In-lined Reference Monitors
	In-lining a Security Autoamton
	In-lining Algorithm
	In-lining Example
	Computability Classes For Enforcement Mechanisms
	IRMs vs. EMs
	Review: Computation Theory
	TM Power
	Enforcement Strategy #1:�Static Analysis
	Enforcement Strategy #1:�Static Analysis
	Enforcement Strategy #2:�Execution Monitoring
	Enforcement Strategy #2:�Execution Monitoring
	Arithmetic Hierarchy
	Arithmetic Hierarchy
	Arithmetic Hierarchy
	Arithmetic Hierarchy
	Arithmetic Hierarchy
	Arithmetic Hierarchy
	Arithmetic Hierarchy
	Computability & Enforceability
	IRM Strategy:�Rewrite-enforcement
	Rewrite-enforceability
	Main Discoveries

