
CS 6335:
Language-based Security

Dr. Kevin Hamlen
Fall 2023

Prerequisites: none*

*But if you’ve ever programmed in a functional language (ML, Haskell, Lisp, OCaml, etc.) then
that will be a helpful skill. Also, if you know assembly language, that will be quite useful too.

Outline

 Course logistics

 course objectives

 homework grading, etc.

 about me

 What is “Language-based Security”?

 Tentative course schedule (list of topics)

 Demo: Program-proof co-development

Course Information

 Course webpage:

 http://www.utdallas.edu/~hamlen/cs6335fa23.html

 google “kevin hamlen”, click “Teaching” link

 Instructor:

 Dr. Kevin Hamlen

 ECSS 3.704

 Office hours: After class (MW 2:15-3:15)

Course Objectives

 Cutting-edge research

 Learn how to extract (the important) info from security-related research articles

 Learn about modern efforts toward a science of computer security

 Learn basics of programming language theory, functional programming, automated
theorem-proving, etc.

 Get your hands dirty: Implement and formally verify something

 Warning: This is a research-level class!

 Many problems/questions are open-ended. We will be exploring the known issues
together.

 Not only is the software extremely beta, the whole concept behind the software is
extremely beta!

Grading
 Homework (30%)

 programming exercises – learn to program in Coq

 first one (“Basics”) due next Wednesday 8/30

 see online schedule for the other six due dates

 Recommendation: Complete them far in advance! Then you’ll be done!

 If you have trouble, do some exercises in the online text (Pierce et al.)

 Quizzes (30%)

 start of most class sessions (see schedule) (~15 min.)

 covers assigned reading for the day

 first one next Monday (8/29)

 Class participation (10%)

 discuss article, ask questions

 Projects (30%)

 formally verify and/or security-harden some software

 project proposals due around mid-semester (tentatively 11/1)

 implement during last 6 weeks of course

 No exams

Quizzes
 Approximately 8 questions each

 multiple-choice / short answer

 Difficulty level
 multiple-choice != obvious-choice

 main concepts (e.g., “What is this paper (really) about?”)

 feasibility critique: main limitations, pros/cons

 a few harder in-depth questions to test whether you caught subtle but
essential details

 Warning: These articles are hard to understand!
 contain many tiny technical details

 I don’t test on minutiae. Don’t memorize everything. (But know major
results/parameters within an order of magnitude.)

 “Hard” questions might focus on a seemingly minor item that you didn’t
realize is very significant.

Comprehending Papers
 Ability to read and digest research articles (at a reasonable pace) is a

learned and very valuable skill.

 articles are extremely dense!

 most assume background knowledge that you lack

 I expect you to look up terms you don’t understand on your own initiative.

 I don’t expect you to understand everything, even after doing your best to look
things up.

 After reading, be sure you can answer the following:

 What’s the MAIN discovery?

 Why is this better/worse than alternatives?

 What are the system’s weaknesses? How can I break it?

 Do you understand the main definitions / notations?

About Me
 originally from the northeastern US (Buffalo, NY)
 Undergrad

 Carnegie Mellon (computer science and math)

 Senior thesis: Proof-Carrying Code

 Masters (’02) & Ph.D. (’06)
 Cornell (computer science)

 Dissertation: certifying in-lined reference monitors

 Government experience
 Principal Investigator for over 20 US Federal cyber-security contracts with Navy, Air

Force, Army, NSF, NSA, and DARPA

 Industry experience
 Microsoft Research (Redmond & Cambridge)

 language-based security for .NET and F#

 Personal
 married with 10-year-old + twin 8-year-old sons

 Christian

COVID Policy

 In-person attendance is the assumed (default) participation mode

 Please DON’T come to class if…

 you have symptoms or test positive for COVID (or any communicable disease)

 Otherwise please DO come to class

 Accommodations will be made for students who cannot attend

 quizzes can be made up or dropped

 lectures can be recorded for you

 Socially distance within classroom (e.g., non-adjacent seating when possible)

 Masks not required (Texas governor’s executive order) but use your best
judgment and be respectful of others’ health concerns

What is LBS?

 Leveraging theory of programming language design and compiler construction
to enforce software security

 Two domains of research:

 new languages/tools for creating secure software from scratch

 securing legacy code (e.g., written in C)

 Three stages of enforcement

 static (find & fix vulnerabilities before runtime)

 dynamic (detect and block attacks at runtime)

 audit (recover and assign blame after an attack)

Grand Challenge:
Secure Program Development

 Is it possible to develop secure software that is guaranteed to be
vulnerability-free?

 Scenario: You are hired to write the control software for a nuclear
reactor.

 it must NEVER fail (millions of lives at stake)

 it must cope with adversarial conditions (prime target)

 it must be efficient (too slow = meltdown)

 Traditional approaches

 test a lot (“It didn’t crash today…”)

 write a proof (consisting of about 10K pages of math)

 How do we know there isn’t a bug in the proof??

Grand Challenge:
Securing Legacy Code

 Scenario: NSA wants secure software on their office workstations.

 need web browsers, document readers, etc.

 need internet connectivity

 stores and/or reads top secret documents

 not feasible to rebuild the entire universe of software from the ground up

 software is proprietary (and usually closed-source)

 How to stop secrets from leaking?

Grand Challenge:
A Science of Security

 Can we develop a science of security like we have for math or physics?

 Are there iron-clad “proofs” of security?

 What does it even mean for a system to be “secure”?

 Are there metrics for security? Can we determine that one software system is
“more secure” than other? Can we prove that it’s “80% secure”?

 Are there some security policies that are provably unenforceable? Can we prove
that certain enforcement mechanisms can enforce certain classes of policies and
not others?

Tentative List of Topics
 First 4 weeks:

 Developing machine-verified software with Coq

 basis for homework and projects

 Next 2 weeks: LBS foundations

 After that, move into cutting-edge research:

 Software Model-checking

 Software Fault Isolation

 Code-injection and code-reuse attacks & defenses

 Artificial Software Diversity and Obfuscation

 Cyber offense (“active defense”)

 Information flow controls (confidentiality enforcement)

 Web scripting security

 In-lined Reference Monitoring

 Cyber-deceptive Software Engineering

Four vulnerability stories
A Tale of Security Woes:

Tale #1: Linux GHOST
 Bug in the Linux glibc library
 Discovered by Qualys researchers during a routine code audit in 2015
 Affects all code that uses glibc for host-lookups (i.e., nearly all Linux

networking software) between 2000-2013
 Can you spot the bug?

1 int __nss_hostname_digits_dots(…) {
 …

3 size_needed = sizeof(*host_addr) + sizeof(*h_addr_ptrs) + strlen(name) + 1;
4 *buffer = (char*) malloc(size_needed);

 … 35 lines of code …

5 host_addr = (host_addr_t*) *buffer;
6 h_addr_ptrs = (host_addr_list_t*) ((char*) host_addr + sizeof(*host_addr));
7 h_alias_ptr = (char**) ((char*) h_addr_ptrs + sizeof(*h_addr_ptrs));
8 hostname = (char*) h_alias_ptr + sizeof(*h_alias_ptr);

 …

Tale #1: Linux GHOST
 Bug in the Linux glibc library
 Discovered by Qualys researchers during a routine code audit in 2015
 Affects all code that uses glibc for host-lookups (i.e., nearly all Linux

networking software) between 2000-2013
 Can you spot the bug?

1 int __nss_hostname_digits_dots(…) {
 …

3 size_needed = sizeof(*host_addr) + sizeof(*h_addr_ptrs) + strlen(name) + 1;
4 *buffer = (char*) malloc(size_needed);

 … 35 lines of code …

5 host_addr = (host_addr_t*) *buffer;
6 h_addr_ptrs = (host_addr_list_t*) ((char*) host_addr + sizeof(*host_addr));
7 h_alias_ptr = (char**) ((char*) h_addr_ptrs + sizeof(*h_addr_ptrs));
8 hostname = (char*) h_alias_ptr + sizeof(*h_alias_ptr);

 …

Is it really that big a deal?

 Qualys was able to take complete remote control of affected Linux
machines merely by sending them a maliciously crafted email (unread!).

 Can you figure out how they did it?

…
 1 if (isdigit(name[0])) {
 2 for (cp=name;; ++cp) {
 3 if (*cp == ‘\0’) {
 4 if (*--cp == ‘.’) break;
 5 if ((af == AF_INET) ? inet_aton(name, host_addr) : inet_pton(af, name, host_addr))
 6 result_buf->h_name = strcpy(hostname, name);
 7 goto done;
 8 }
 9 if (!isdigit(*cp) && *cp != ‘.’) break;
10 }
11 }
…

Is it really that big a deal?

 Qualys was able to take complete remote control of affected Linux
machines merely by sending them a maliciously crafted email (unread!).

 Can you figure out how they did it?

…
 1 if (isdigit(name[0])) {
 2 for (cp=name;; ++cp) {
 3 if (*cp == ‘\0’) {
 4 if (*--cp == ‘.’) break;
 5 if ((af == AF_INET) ? inet_aton(name, host_addr) : inet_pton(af, name, host_addr))
 6 result_buf->h_name = strcpy(hostname, name);
 7 goto done;
 8 }
 9 if (!isdigit(*cp) && *cp != ‘.’) break;
10 }
11 }
…

Tale #2: Heartbleed
 Bug in OpenSSL (secure web communications!) found by Codenomicon in 2014

 Buffer over-read error in implementation of Heartbeat TLS protocol

 Exposed ~66% of the internet to theft of encryption keys between 2011-2014

 Still highly exploitable because OpenSSL is so pervasive, cannot always be
patched in the wild.

 Heartbeat packets deemed so innocuous, they were not even logged during
the zero-day window.

int dtls1_process_heartbeat(SSL *s) {
 unsigned char *p = &s->s3->rrec.data[0];
 unsigned int len;
 n2s(p, len);
 …
 buffer = OPENSSL_malloc(1 + 2 + len + padding);
 bp = buffer;
 *bp++ = TLS1_HB_RESPONSE;
 s2n(len, bp);
 memcpy(bp, p, len);
 bp += len;
 …

Tale #2: Heartbleed
 Bug in OpenSSL (secure web communications!) found by Codenomicon in 2014

 Buffer over-read error in implementation of Heartbeat TLS protocol

 Exposed ~66% of the internet to theft of encryption keys between 2011-2014

 Still highly exploitable because OpenSSL is so pervasive, cannot always be
patched in the wild.

 Heartbeat packets deemed so innocuous, they were not even logged during
the zero-day window.

int dtls1_process_heartbeat(SSL *s) {
 unsigned char *p = &s->s3->rrec.data[0];
 unsigned int len;
 n2s(p, len);
 …
 buffer = OPENSSL_malloc(1 + 2 + len + padding);
 bp = buffer;
 *bp++ = TLS1_HB_RESPONSE;
 s2n(len, bp);
 memcpy(bp, p, len);
 bp += len;
 …

Tale #3: Shellshock
 Undocumented feature (not a bug!) discovered in Linux bash shell (by IT

manager Stephane Chazelas in his spare time!) in 2014

 Bash command-parser interprets certain text in environment variables as
code and executes it during parsing(?!)

 Impact: All Linux software storing user-provided data in environment
variables susceptible to complete remote compromise.

 Zero-day window: 25 years(!!) (198?-2014)

void initialize_shell_variables(char **env, int privmode) {
 …
 for (string_index = 0; string = env[string_index++];) {
 …
 if (privmode==0 && read_but_dont_execute == 0 && STREQN(“() {”, string, 4)) {
 …
 parse_and_execute(temp_string, name, SEVAL_NONINT|SEVAL_NOHIST);
 …

Tale #4: StageFright
 Series of 8 critical vulnerabilities discovered in Android OS 2014-2015

 Allows complete remote hijacking of 95% of Android devices

 No user interaction required! (merely receiving a malformed MMS message
triggers bug)

status_t SampleTable::setTimeToSampleParams(…) {
 uint32_t mTimeToSampleCount = U32_AT(&header[4]);
 uint64_t allocSize = mTimeToSampleCount * 2 * sizeof(uint32_t);
 if (allocSize > SIZE_MAX) return ERROR_OUT_OF_RANGE;
 mTimeToSample = new uint32_t[mTimeToSampleCount * 2];
 …

Tale #4: StageFright
 Series of 8 critical vulnerabilities discovered in Android OS 2014-2015

 Allows complete remote hijacking of 95% of Android devices

 No user interaction required! (merely receiving a malformed MMS message
triggers bug)

status_t SampleTable::setTimeToSampleParams(…) {
 uint32_t mTimeToSampleCount = U32_AT(&header[4]);
 uint64_t allocSize = mTimeToSampleCount * 2 * sizeof(uint32_t);
 if (allocSize > SIZE_MAX) return ERROR_OUT_OF_RANGE;
 mTimeToSample = new uint32_t[mTimeToSampleCount * 2];
 …

Is secure code development even
possible?

 Open-source failed in all these instances.

 questionable whether open-source model actually provides greater security

 Unit testing didn’t work in these cases either.

 input space is just too large to cover with tests

 What about better programming languages?

 But Shellshock was a misguided design choice.

 Many zero-days discovered in Java every year (often in its runtime libs, which
aren’t written in Java!)

 What’s the answer?

Coq: Programming with Proofs
 Coq

 stands for “Calculus of Constructions” (the underlying type theory of the system)

 named after mathematician Thierry Coquand

 developed by INRIA, France over last decade

 most powerful secure software development system to date (in my opinion)

 Specification language based on ML/OCaml

 all loops are recursive (no while/for loops)

 immutable variables (variables are assign-once!)

 first-class functions

 parametrically polymorphic

 higher-order, dependent type system (!)

 Demo

Homework

 Download and install Coq

 see links to Coq page from course web page

 use version 8.16 or above

 Read for next time:

 “Preface” of the Software Foundations online text (see course web page).

 Read the “Basics” chapter up to first exercise

 Solve first two exercises (nandb, andb3)

	CS 6335:�Language-based Security
	Outline
	Course Information
	Course Objectives
	Grading
	Quizzes
	Comprehending Papers
	About Me
	COVID Policy
	What is LBS?
	Grand Challenge:�Secure Program Development
	Grand Challenge:�Securing Legacy Code
	Grand Challenge:�A Science of Security
	Tentative List of Topics
	Four vulnerability stories
	Tale #1: Linux GHOST
	Tale #1: Linux GHOST
	Is it really that big a deal?
	Is it really that big a deal?
	Tale #2: Heartbleed
	Tale #2: Heartbleed
	Tale #3: Shellshock
	Tale #4: StageFright
	Tale #4: StageFright
	Is secure code development even possible?
	Coq: Programming with Proofs
	Homework

