Introduction to Model-checking CS 6335: Language-based Security

Kevin W. Hamlen

September 25, 2023

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Software Verification Approaches

- Unit Testing / Fuzzing
 - Throw many test inputs (often randomly generated) at software and see whether it fails.
 - Good for fault detection. Inadequate for security.
 - input space usually infinite
 - attackers seek out and exploit untested inputs
- Program-Proof Co-Development (Coq)
 - Implement software in a "nice" (e.g., functional) language.
 - Write formal correctness properties and proofs.
 - Proofs are machine-checked (not trusted).
 - Pros: highest assurance, covers infinite state space
 - Con: painful to write proofs
- Today: Model-checking
 - a middle-ground between random fuzzing and formal proofs
 - Express software as an abstract, finite-state model \mathcal{M} .
 - Express security property as a logical predicate ϕ .
 - Decide $\mathcal{M} \models \phi$ by exhaustive state-space search.

Some History

- First developed in 1980s by Clarke, Emerson, and Sifakis (Turing Award 2007)
 - primarily targeted hardware verification
 - disillusionment with proofs in 80s and 90s
 - found previously undetected errors in 1992 IEEE Future+ cache coherence protocol
 - 1994 Intel Pentium floating-point bug
 - passed unit testing
 - cost Intel \$400–500 million
 - could have been detected by model-checking
 - model-checking now routinely used by Intel, AMD, IBM, Lucent, etc.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Rise of Software Model-checking in late 90s
 - VeriSoft (Lucent), SPIN (Holtzmann, Bell Labs)
 - Big challenge: state-space explosion

Example (from JavaPathFinder documentation)

- 1 Random random = new Random();
- 2 int a = random.nextInt(2);
- 3 System.out.println("a=" + a);

// lots of code here

- 4 int b = random.nextInt(3);
- 5 System.out.println("b=" + b);
- 6 int c = a/(b+a-2);
- 7 System.out.println("c=" + c);

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

State Space

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

State Spaces

Not always (or even usually) trees

- conditionals = multiple in-edges
- program loops = cycles

Does not always match control-flow graph structure

- One program line could correspond to many different states, depending on the values of its variables.
- Abstracting coalesces states (more on this later...)
- Can be huge

How many states if we change the "2" argument in line 2?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Properties

- Typically expressed in a temporal logic
- Flagship example: Linear Temporal Logic (LTL)
- Assertions: $\pi \models \phi$ path π models property ϕ
 - atomic propositions (e.g., is_error, a = 2, etc.)
 - ▶ $\neg \phi$ negation
 - $\phi_1 \lor \phi_2$ disjunction
 - **X**(ϕ) next ϕ
 - $\blacktriangleright \mathbf{U}(\phi_1,\phi_2) \phi_1 \text{ until } \phi_2$
 - **F**(ϕ) finally ϕ
 - $G(\phi)$ globally ϕ

Exercise: Do all paths from "start" model the following?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- ► **X**(*a* = 0)
- ► U(¬is_error, b > 0)
- ► F(U(false, b ≤ 2))

Branching Temporal Logics

- LTL cannot express most existential properties
 - Example: "for every state there exists a non-error step"
- Solution: Branching Temporal Logics
- ► Flagship example: Modal µ-Calculus
- Assertions: s ⊨ ψ state s is a member of the set of all states denoted by ψ
 - $\psi_1 \wedge \psi_2$ conjunction (intersection)
 - $\psi_1 \lor \psi_2$ disjunction (union)
 - ▶ $[a]\psi$ all outgoing *a*-transitions model ψ
 - $\langle a \rangle \psi$ some outgoing *a*-transitions model ψ
 - $\mu X \cdot \psi$ least fixed point
 - $\nu X \cdot \psi$ greatest fixed point
- What are least and greatest "fixed points"?

Fixed Point Semantics

Definition: A fixed point of a function $f : A \rightarrow A$ is a value $x \in A$ such that f(x) = x.

Examples:

- What is a fixed point of f(x) = x + 1?
- What is a fixed point of $g(x) = x^2$?
- What is a fixed point of $h(S) = \{x^2 | x \in S\}$?
- When f is a function from sets to sets, we say S is...
 - …a least fixed point if S is a fixed point and all other fixed points are supersets of S.
 - …a greatest fixed point if S is a fixed point and all other fixed points are subsets of S.
- Can a function have multiple least fixed points or multiple greatest fixed points?

Fixed Point Operators

• Back to modal μ -calculus:

- $\mu X \cdot \psi$ is the *least* set S such that $S = \psi[X := S]$
- $\nu X \cdot \psi$ is the greatest set S such that $S = \psi[X := S]$
- Finding least/greatest fixed points:
 - Find $\mu X \cdot \psi$ inductively:
 - Start with $X = \emptyset$
 - keep adding things to X until no progress
 - Find $\nu X \cdot \psi$ co-inductively:
 - start with X = universe of all states
 - keep removing things from X until no progress

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Examples:

- What is $\mu X . (X \lor \langle \rangle is_error)$?
- What is νX . (is_error $\lor \langle \rangle X$) ?

State Space Explosion Problem

- Main challenge: What if the state space is huge?
- Example: How many states does the following program have?

- Solution: Abstract Interpretation
 - Instead of having one state for every mapping of variables to values, label states with abstract properties.
 - Example: What if we only care about whether i is zero (e.g., to avoid division-by-zero)?
 - Could instead just have one state for each possible sign of i
 - zero + positive =?
 - positive + positive =?

State Space Explosion Problem

- Main challenge: What if the state space is huge?
- Example: How many states does the following program have?

- Solution: Abstract Interpretation
 - Instead of having one state for every mapping of variables to values, label states with abstract properties.
 - Example: What if we only care about whether i is zero (e.g., to avoid division-by-zero)?
 - Could instead just have one state for each possible sign of i
 - zero + positive = positive
 - positive + positive =?

State Space Explosion Problem

- Main challenge: What if the state space is huge?
- Example: How many states does the following program have?

- Solution: Abstract Interpretation
 - Instead of having one state for every mapping of variables to values, label states with abstract properties.
 - Example: What if we only care about whether i is zero (e.g., to avoid division-by-zero)?
 - Could instead just have one state for each possible sign of i
 - zero + positive = positive
 - positive + positive = positive
 - We're finished with only 2 states to explore!

Counterexample Guided Abstraction Refinement (CEGAR)

Over-abstraction Problem

- If model-check succeeds on abstract model, then we're done. But...
- Abstracting often forgets information needed to prove correctness.
- Results in false rejection (model-checker signals fault where there is none)
- Solution: Iteratively Abstract and Refine
 - 1. Abstract until search space is feasible.
 - 2. Exhaustively search the space. If model-check rejects...
 - Test the counterexample on the original (non-abstract) search space. If it's a real counterexample, we found a real bug. Otherwise...

- 4. We must have abstracted too much. Refine (opposite of abstract) and repeat.
- Next time: Information flow analysis