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Software Verification Approaches

▶ Unit Testing / Fuzzing
▶ Throw many test inputs (often randomly generated) at

software and see whether it fails.
▶ Good for fault detection. Inadequate for security.

▶ input space usually infinite
▶ attackers seek out and exploit untested inputs

▶ Program-Proof Co-Development (Coq)
▶ Implement software in a “nice” (e.g., functional) language.
▶ Write formal correctness properties and proofs.
▶ Proofs are machine-checked (not trusted).
▶ Pros: highest assurance, covers infinite state space
▶ Con: painful to write proofs

▶ Today: Model-checking
▶ a middle-ground between random fuzzing and formal proofs
▶ Express software as an abstract, finite-state model M.
▶ Express security property as a logical predicate ϕ.
▶ Decide M |= ϕ by exhaustive state-space search.



Some History

▶ First developed in 1980s by Clarke, Emerson, and Sifakis
(Turing Award 2007)
▶ primarily targeted hardware verification
▶ disillusionment with proofs in 80s and 90s
▶ found previously undetected errors in 1992 IEEE Future+

cache coherence protocol
▶ 1994 Intel Pentium floating-point bug

▶ passed unit testing
▶ cost Intel $400–500 million
▶ could have been detected by model-checking

▶ model-checking now routinely used by Intel, AMD, IBM,
Lucent, etc.

▶ Rise of Software Model-checking in late 90s
▶ VeriSoft (Lucent), SPIN (Holtzmann, Bell Labs)
▶ Big challenge: state-space explosion



Example (from JavaPathFinder documentation)

1 Random random = new Random();

2 int a = random.nextInt(2);

3 System.out.println("a=" + a);

// lots of code here

4 int b = random.nextInt(3);

5 System.out.println("b=" + b);

6 int c = a/(b+a-2);

7 System.out.println("c=" + c);

▶ Sample run:
▶ a = 1
▶ b = 0
▶ c = −1
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State Spaces

▶ Not always (or even usually) trees
▶ conditionals = multiple in-edges
▶ program loops = cycles

▶ Does not always match control-flow graph structure
▶ One program line could correspond to many different states,

depending on the values of its variables.
▶ Abstracting coalesces states (more on this later...)

▶ Can be huge
▶ How many states if we change the “2” argument in line 2?



Properties

▶ Typically expressed in a temporal logic

▶ Flagship example: Linear Temporal Logic (LTL)
▶ Assertions: π |= ϕ — path π models property ϕ

▶ atomic propositions (e.g., is error, a = 2, etc.)
▶ ¬ϕ — negation
▶ ϕ1 ∨ ϕ2 — disjunction
▶ X(ϕ) — next ϕ
▶ U(ϕ1, ϕ2) — ϕ1 until ϕ2
▶ F(ϕ) — finally ϕ
▶ G(ϕ) — globally ϕ

▶ Exercise: Do all paths from “start” model the following?
▶ X(a = 0)
▶ U(¬is error, b > 0)
▶ F(U(false, b ≤ 2))



Branching Temporal Logics

▶ LTL cannot express most existential properties
▶ Example: “for every state there exists a non-error step”

▶ Solution: Branching Temporal Logics

▶ Flagship example: Modal µ-Calculus
▶ Assertions: s |= ψ — state s is a member of the set of all

states denoted by ψ
▶ ψ1 ∧ ψ2 — conjunction (intersection)
▶ ψ1 ∨ ψ2 — disjunction (union)
▶ [a]ψ — all outgoing a-transitions model ψ
▶ ⟨a⟩ψ — some outgoing a-transitions model ψ
▶ µX . ψ — least fixed point
▶ νX . ψ — greatest fixed point

▶ What are least and greatest “fixed points”?



Fixed Point Semantics

Definition: A fixed point of a function f : A⇀ A is a value x ∈ A
such that f (x) = x .
▶ Examples:

▶ What is a fixed point of f (x) = x + 1 ?
▶ What is a fixed point of g(x) = x2 ?
▶ What is a fixed point of h(S) = {x2 | x ∈ S} ?

▶ When f is a function from sets to sets, we say S is...
▶ ...a least fixed point if S is a fixed point and all other fixed

points are supersets of S .
▶ ...a greatest fixed point if S is a fixed point and all other fixed

points are subsets of S .

▶ Can a function have multiple least fixed points or multiple
greatest fixed points?



Fixed Point Operators

▶ Back to modal µ-calculus:
▶ µX . ψ is the least set S such that S = ψ[X := S ]
▶ νX . ψ is the greatest set S such that S = ψ[X := S ]

▶ Finding least/greatest fixed points:
▶ Find µX . ψ inductively:

▶ start with X = ∅
▶ keep adding things to X until no progress

▶ Find νX . ψ co-inductively:
▶ start with X =universe of all states
▶ keep removing things from X until no progress

▶ Examples:
▶ What is µX . (X ∨ ⟨⟩is error) ?
▶ What is νX . (is error ∨ ⟨⟩X ) ?



State Space Explosion Problem

▶ Main challenge: What if the state space is huge?

▶ Example: How many states does the following program have?

int i = 0;

while true do

i := i + 1;

▶ Solution: Abstract Interpretation
▶ Instead of having one state for every mapping of variables to

values, label states with abstract properties.
▶ Example: What if we only care about whether i is zero (e.g.,

to avoid division-by-zero)?
▶ Could instead just have one state for each possible sign of i

▶ zero + positive =?
▶ positive + positive =?

▶ We’re finished with only 2 states to explore!
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Counterexample Guided Abstraction Refinement (CEGAR)

▶ Over-abstraction Problem
▶ If model-check succeeds on abstract model, then we’re done.

But...
▶ Abstracting often forgets information needed to prove

correctness.
▶ Results in false rejection (model-checker signals fault where

there is none)

▶ Solution: Iteratively Abstract and Refine

1. Abstract until search space is feasible.
2. Exhaustively search the space. If model-check rejects...
3. Test the counterexample on the original (non-abstract) search

space. If it’s a real counterexample, we found a real bug.
Otherwise...

4. We must have abstracted too much. Refine (opposite of
abstract) and repeat.

▶ Next time: Information flow analysis


