
DR. KEVIN HAMLEN
LOUIS A. BEECHERL, JR. DISTINGUISHED PROFESSOR

COMPUTER SCIENCE DEPARTMENT

CYBER SECURITY RESEARCH AND EDUCATION INSTITUTE

THE UNIVERSITY OF TEXAS AT DALLAS

Any opinions, findings, conclusions, or recommendations expressed in this presentation are those of the author(s) and do not
necessarily reflect the views of ONR, UTD or other supporters.

Dr. Kevin Hamlen

ONR Award N00014-21-1-2654

SOFTWARE ATTACK SURFACE REDUCTION ON THE FLY

Foundations of Software Security
2/31

Control-Flow Integrity

• Control-Flow Integrity (CFI)
• Constrains execution order to a

graph of allowed flows
• Affords provably uncircumventable

basic blocks of program instructions

Complete Mediation

• Complete Mediation
• Surround all security-relevant

operations with uncircumventable
guard code (security checks)

Arbitrary Security Policies

• Safety + Liveness = Everything
• Safety: “bad events” prohibited
• Liveness: “good events” guaranteed

Memory Safety

• Memory Safety
• Secure security state storage

Foundations of Software Security
3/31

Control-Flow Integrity

Complete Mediation

Arbitrary Security Policies

Memory Safety

for (int i = 0; i < 32; ++i) {
 if (safe(&buf[i]))
 buf[i] = i;
 else
 abort(“memory corruption!”);
 if (++counter > max)
 abort(“deadlock alert”);
 if (check(&obj->method)) {
 && valid_args(buf, i)) {
 obj->method(buf, i);
 } else
 abort(“security alert!”);
}

Static Code Instrumentation
Dynamic Policy Enforcement

Binary Code Debloating Architecture
4

1) Learn debloating policy from execution traces
 consumer has no formal policy specification
 consumer is not aware of all “undesired” program functionalities

2) Machine learning derives suitable policy from a whitelist of traces
3) Enforce learned policy with source-free, context-sensitive CFI

 generalizes and subsumes non-contextual CFI and code byte erasure
4) Machine-validate binary hardening transforms for highest assurance

 Picinæ: Platform In Coq for INstruction-level Analysis of Executables

Binary, Context-sensitive CFIMachine Learning

policy

trace
whitelist

debloated
binary

Formal Validation

Binary Code Debloating Architecture
5

1) Learn debloating policy from execution traces
 consumer has no formal policy specification
 consumer is not aware of all “undesired” program functionalities

2) Machine learning derives suitable policy from a whitelist of traces
3) Enforce learned policy with source-free, context-sensitive CFI

 generalizes and subsumes non-contextual CFI and code byte erasure
4) Machine-validate binary hardening transforms for highest assurance

 Picinæ: Platform In Coq for INstruction-level Analysis of Executables

Binary, Context-sensitive CFIMachine Learning

policy

trace
whitelist

debloated
binary

Formal Validation

CFI Research Timeline
6/31

1993 … 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

SFI [Wahbe et al.]

Prog. Shepherding [Kiriansky]

ExecShield [van de Ven & Moinar]

CFI [Abadi et al.]

XFI [Erlingsson et al.]
PittSFIeld [McCamant & Morrisett]

NaCl [Yee et al.] Hypersafe [Wang & Jiang]

CFLocking [Bletsch et al.]

MIP [Niu & Tan]
kBouncer [Pappas et al.]
CFRestrictor [Pewny & Holz]
CCFIR [Zhang et al.]

MoCFI [Davi et al.]
Reins [Wartell et al.]
STIR [Wartell et al.]

ROPecker [Cheng et al.]
KCoFI [Criswell et al.]
SafeDispatch [Jang et al.]
T-VIP [Gawlik]
RockJIT [Niu & Tan]
VTV [Tice et al.]
MCFI [Niu & Tan]
IFCC [Tice et al.]

C-CFI [Mashtizadeh et al.]
vfGuard [Prakash et al.]
VTint [Zhang et al.]
PathArmor [van der Veen]
CFIGuard [Yuan et al.]
Microsoft CFG
πCFI [Niu & Tan]
LLVM CFI
Lockdown [Payer et al.]

VTI [Bounov et al.]
Kernel CFI [Ge et al.]
TypeArmor [van der Veen]
VTrust [Zhang et al.]
VTPin [Sarbinowski et al.]

vCFI [Li et al.]
RAGuard [Zhang et al.]
ECFI [Abbasi et al.]
PT-CFI [Gu et al.]
PittyPat [Ding et al.]
OFI [Wang et al.]

τCFI [Muntean et al.]
VM-CFI [Kwon et al.]
LPCFI [Barbar et al.]
CFIXX [Burow et al.]
LEA-CFI [Qiu et al.]
uCFI [Hu et al.]
…

CFI Research Timeline
7/31

1993 … 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

SFI [Wahbe et al.]

Prog. Shepherding [Kiriansky]

ExecShield [van de Ven & Moinar]

CFI [Abadi et al.]

XFI [Erlingsson et al.]
PittSFIeld [McCamant & Morrisett]

NaCl [Yee et al.] Hypersafe [Wang & Jiang]

CFLocking [Bletsch et al.]

MIP [Niu & Tan]
kBouncer [Pappas et al.]
CFRestrictor [Pewny & Holz]
CCFIR [Zhang et al.]

MoCFI [Davi et al.]
Reins [Wartell et al.]
STIR [Wartell et al.]

ROPecker [Cheng et al.]
KCoFI [Criswell et al.]
SafeDispatch [Jang et al.]
T-VIP [Gawlik]
RockJIT [Niu & Tan]
VTV [Tice et al.]
MCFI [Niu & Tan]
IFCC [Tice et al.]

C-CFI [Mashtizadeh et al.]
vfGuard [Prakash et al.]
VTint [Zhang et al.]
PathArmor [van der Veen]
CFIGuard [Yuan et al.]
Microsoft CFG
πCFI [Niu & Tan]
LLVM CFI
Lockdown [Payer et al.]

VTI [Bounov et al.]
Kernel CFI [Ge et al.]
TypeArmor [van der Veen]
VTrust [Zhang et al.]
VTPin [Sarbinowski et al.]

vCFI [Li et al.]
RAGuard [Zhang et al.]
ECFI [Abbasi et al.]
PT-CFI [Gu et al.]
PittyPat [Ding et al.]
OFI [Wang et al.]

τCFI [Muntean et al.]
VM-CFI [Kwon et al.]
LPCFI [Barbar et al.]
CFIXX [Burow et al.]
LEA-CFI [Qiu et al.]
uCFI [Hu et al.]
…

SECURITY
• RIPE test suite

PERFORMANCE
• CPU SPEC benchmarks

COMPATIBILITY
•

Scalability Gap
8/31

Windows
88%

MacOS
9%

Linux
2%

Other
1%

Desktop OS Market Share

Windows
4% Other

2%

Linux
94%

CFI Research Papers*
(2005-2017)

*Papers containing at least one experiment where at

least one COMPLETE non-benchmark application
for the indicated OS was rewritten & secured

Where the Wild Things Are
[RecordedFuture, CTA-2018-0327]

9/31

Microsoft Office

Microsoft IE / Edge

Microsoft Windows

Adobe Flash Player

Windows
88%

MacOS
9%

Linux
2%

Other
1%

Desktop OS Market Share

Soft(ware) Targets
10/31

 Windows/MacOS in mission-critical
environments
 “About 75% of control systems are on

Windows XP or other nonsupported OSes.”
–Daryl Haegley, Office of Assistant Secretary of Defense for Energy, Installations and
Environment

 More than 25% of all government computers
currently run an outdated Windows or
MacOS operating system. [BitSight, 6/1/17]

 DHS, Coast Guard, and Secret Service
currently store top secret information on
outdated Windows 2003 servers. [OIG-18-56,
3/1/18]

 Hundreds of satellites run Windows 95
and/or are controlled by Windows Mobile
devices.

Houston, we have a
problem. Now it

says, “Please insert
disk #2.”

20 Widespread Classes of CFI Compatibility Problems

11/31

Compatibility Metric Real-world Software Examples
Function Pointers 7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM, …
Callbacks 7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM, …
Dynamic Linking 7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM, …
Delay-Loading Adobe Reader, Calculator, Chrome, Firefox, JVM, MS Paint, MS Powerpoint, …
Exporting/Importing Data Symbols 7-Zip, Apache, Calculator, Chrome, Dropbox, Firefox, MS Paint, MS Powerpoint, …
Virtual Functions 7-Zip, Adobe Reader, Calculator, Chrome, Dropbox, Firefox, JVM, Notepad, …
Writable Vtables programs with UI’s based on GTK+ (Linux) or COM (Windows)
Tail Calls programs compiled with tail-call optimization (e.g., -O2 or /O2)
Switch-Case Statements 7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM, …
Returns almost every benign program
Unmatched Call/Return Pairs Adobe Reader, Apache, Chrome, Firefox, JVM, MS PowerPoint, Visual Studio, …
Exceptions 7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM, …
Calling Conventions almost every program has functions
Multithreading 7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM, …
TLS Callbacks Adobe Reader, Chrome, Firefox, MS Paint, TeXstudio, UPX
Position-Independent Code 7-Zip, Adobe Reader, Apache, Calculator, Chrome, Dropbox, Firefox, JVM, …
Memory Management 7-Zip, Adobe Reader, Apache, Chrome, Dropbox, Firefox, MS PowerPoint, …
JIT Code Adobe Flash, Chrome, Dropbox, Firefox, JVM, MS PowerPoint, PotPlayer, …
Self-Unpacking programs decompressed by self-extractors (e.g., UPX, NSIS)
Runtime API Hooking Microsoft Office, including MS Excel, MS PowerPoint, etc.

ConFIRM CFI Compatibility Benchmark Suite
12

https://github.com/SoftwareLanguagesSecurityLab/Confirm

ConFIRM: Control-Flow Integrity Relevance Metrics
https://github.com/SoftwareLanguagesSecurityLab/Confirm

13/31

Major Findings
14

 Multithreading + Unmatched call/return pairs = Trouble
 unmatched call/returns arise from: exceptions, tail-call optimization
 cross-thread stack smashing beats all CFI defenses we tested
 seems hard to fix without huge performance overheads

 Runtime Code Generation
 more prevalent than generally expected
 rise of JIT-compiled languages, runtime hooking, self-extracting components

 most RCG is beyond the reach of all CFI algorithms
 Questionable whether SPEC CPU adequately tests CFI performance

 SPEC CPU benchmarks chosen/designed to test CPU speeds
 Operation profiles prioritize opcodes that bottleneck non-CFI software
 Mostly simple control-flow graphs

CFI Performance Measurement Problems
15

CFI vs. Runtime Code Generation
16/31

 CFI Fundamental Assumptions (Abadi et al., 2005)
 Non-Writable Code (NWC)
 Non-Executable Data (NXD)

 Most Modern Software Violates Both
 Rise of Just-In-Time (JIT) Languages since 2005
 Lua, JavaScript, Python, Java, Ruby, PHP, Erlang, Wasm, Lisp, Etherium, …
 Everything on .NET, all Microsoft COM software, …

 All self-unpacking components (e.g., cloud), installers (e.g., UPX), …
 Many forms of dynamic loading & hooking (example: Microsoft Office)

Existing Solutions
17/31

 Manually customize the code generator (RockJIT [Niu & Tan, CCS’14])
 Extremely high maintenance burden
 Only works for certain very specific code generation patterns (old JITs)
 Incompatible with all modern software (~9 years of 100% incompatibility)

 Turn off all dynamic code generation
 Massive performance hit (e.g., 1600% overhead on JS Octane)
 Impossible for many products (.NET)
 Introduces new compatibility & security problems

Real-world Example: Edge Browser
18/31

 Browser devs begin to realize that JIT is a huge security risk:
 Over half of in-the-wild Chrome exploits from 2018-2021 abuse JIT

vulnerabilities. [Mozilla Research, 2021]
 More than 70% of the top programming languages are JIT-compiled, including

JavaScript in almost all browsers.
 Microsoft turns off the JIT completely to enforce CFI in “secure mode”

 “As of Microsoft Edge 98, Control-flow Enforcement Technology (CET) and Arbitrary
Code Guard (ACG) will be enabled in the renderer process when a site is in enhanced
security mode. These additional mitigations prevent dynamic code generation in the
renderer processes ...” [Microsoft Browser Vulnerability Research Lab, 2022]

 But JIT compilers are dynamic code generators (critical for performance)…

RENEW: Rewriting Newly Executable pages after Writes
19/31

Static Code

Data Page

F0 90 A8 FF
03 0D 11 F0
E0 90 FF FF
50 FF 12 89
C1 58 FF FE

CFI

Disassemble

push eax
call [edx]
mov ecx, eax
pop eax
...

CFI-Secure

push eax
cmp [edx], F0
jz abort
call [edx]
mov ecx, eax
pop eax
...

reassemble

E. Bauman, J. Duan, K.W. Hamlen, and Z. Lin, “Renewable Just-In-Time Control-Flow Integrity,” In
Proc. 26th Int. Sym. on Research in Attacks, Intrusions and Defenses (RAID), October 2023.

RENEW: Rewriting Newly Executable pages after Writes
20/31

Static Code

Code Page

F0 90 A8 FF
03 0D 11 F0
E0 90 FF FF
50 80 3a F0
0F 84 EB BE

CFI

CFI-Secure

push eax
cmp [edx], F0
jz abort
call [edx]
mov ecx, eax
pop eax
...

CFI

reassemble

Static+Dynamic Code Instrumentation
Dynamic Policy Enforcement

Challenges
21/31

 Disassembly + Reassembly must be fast and secure
 Disassembly alone is provably undecidable in general!

 Must support recursive (generational) dynamic code generation
 dynamic code may write new dynamic code
 static code may edit dynamic code pages mid-execution

 Must support calls from dynamic code to static code
 Static code pointer passed to dynamic code
 Pointer might not target a CFI-sanctioned entry point!

 Real-world apps sometimes read generated code as data (ugh!)

Disassembly Undecidability

 Disassemble this hex sequence
 CISC disassembly is undecidable! [Fred Cohen, ‘86]

FF E0 5B 5D C3 0F
88 52 0F 84 EC 8B

Valid Disassembly

FF E0 jmp eax

5B pop ebx

5D pop ebp

C3 retn

0F 88 52
0F 84 EC

jcc

8B … mov

Valid Disassembly

FF E0 jmp eax

5B pop ebx

5D pop ebp

C3 retn

0F db (1)

88 52 0F
84 EC

mov

8B … mov

Valid Disassembly

FF E0 jmp eax

5B pop ebx

5D pop ebp

C3 retn

0F 88 db (2)

52 push edx

0F 84 EC
8B …

jcc

22/31

Innovation: Superset Disassembly
Byte Sequence: FF E0 5B 5D C3 0F 88 B0 50 FF FF 8B

Disassembled Invalid

Hex Path 1 Path 2 Path 3 Path 4

FF jmp eax

E0 loopne

5B pop

5D L1: pop

C3 retn

0F jcc

88 mov

B0 mov

50

FF N/A

FF

8B L2: mov

Included
Disassembly

jmp eax

pop

L1: pop

retn

jcc

L2: mov

loopne

jmp L1

mov

jmp L2

23

23/31

Machine learning-based Disassembly Pruning
[Wartell, Zhou, Hamlen, Kantarcioglu, PAKDD’14]

24/31

 Insight: Distinguishing real code bytes from data bytes is a “noisy word
segmentation problem”.
 Word segmentation: Given a stream of symbols, partition them into words that

are contextually sensible. [Teahan, 2000]
 Noisy word segmentation: Some symbols are noise (data).

 Machine Learning based disassembler
 based on kth-order Markov model
 Estimate the probability of the sequence B:

Wartell, Zhou, Hamlen, Kantarcioglu. “Shingled Graph Disassembly: Finding the Undecidable
Path.” PAKDD 2014.
Wartell, Zhou, Hamlen, Kantarcioglu, and Thuraisingham. “Differentiating code from data in
x86 binaries.” ECML/PKDD 2011.

Multiverse “Superset” Disassembler
[Bauman, Lin & Hamlen, NDSS’18]

25/31

 Conservatively include every possible disassembly.
 Include and secure all of them.
 tested on 126 apps + 77 libs (all source-free)
 all application functionalities preserved
 4-5x size increase of code segments (much smaller

impact on overall file size)

New Executable,
Shared Library

ELF

.rodata

.got

.got.plt

.data

.textSuperset
Disassembler

Original Executable,
Shared Library

ELF

.rodata

.got

.got.plt

.data

.text

Mapping Phase

E. Bauman, Z. Lin, and K.W. Hamlen. “Superset Disassembly: Statically Rewriting
x86 Binaries Without Heuristics”. In Proc. Network & Distributed Systems Security
(NDSS), 2018.

Instruction
Rewriter

Rewriting Phase

.localmapping

.newtext

RENEW Overview
26/31

Optimization Strategy: Fast path + Slow path
27/31

Fast Path: Statically predictable flows Slow path: Fall back to signal handlers

Proof-of-Concept Implementation
28/31

 Compact design and implementation
 ~2000 lines of C code, plus in-lined assembly
 includes entire disassembler, rewriter, interposition layer, etc.
 included into target applications, so must be small

 Injected into target applications during compilation
 shared library (-Wl,-wrap=mmap -Wl,-wrap=mprotect)
 one-line change to application main function to call Renew initializer

 CFI static instrumentation of main app assumed
 static CFI policy must permit Renew’s static flows
 Renew handles the dynamic flows

 Dramatically easier process than manual JIT redesign!

Evaluation
29/31

 Three main case-studies:
 Lua (JIT compiler)
 Firefox JavaScript (Spidermonkey JIT compiler)
 UPX (installer / code unpacker)

 Completely different rewriting strategies
 No common code generation patterns
 Completely different control-flow patterns
 Highly optimized, highly complex, high churn (most popular JITs and unpacker

today, latest versions at time of implementation)
 No existing CFI solution works correctly on any of these target applications.

LuaJIT Evaluation Results
30/31

• 3.4x performance improvement over JIT-off

• 77% of unsecured JIT performance preserved

Firefox JS Evaluation
31/31

• 3.9x performance improvement over JIT-off

• 23% of unsecured JIT performance preserved

Overhead Breakdown
32/31

UPX Evaluation
33/31

 SPEC CPU benchmarks + GNU binutils apps packed using UPX
 Extremely difficult compatibility challenge

 UPX uses a custom binary header format and IAT to save space
 completely arbitrary code generation behavior (depends on packed code)
 two highly compressed layers of unpacking
 first layer defies conventional disassembly

 Results
 all tests worked out-of-the-box (no changes to Renew required)
 predictably high overhead (3.6x slowdown)
 not really a fair performance test; we mainly wanted to test compatibility

Related Work Comparison
34/31

DR. KEVIN HAMLEN
LOUIS A. BEECHERL, JR. DISTINGUISHED PROFESSOR

COMPUTER SCIENCE DEPARTMENT

CYBER SECURITY RESEARCH AND EDUCATION INSTITUTE

THE UNIVERSITY OF TEXAS AT DALLAS

THANK YOU!

SOFTWARE ATTACK SURFACE REDUCTION ON THE FLY
ONR Award N00014-21-1-2654

Any opinions, findings, conclusions, or recommendations expressed in this presentation are those of the author(s) and do not
necessarily reflect the views of ONR, UTD or other supporters.

	Software Attack Surface Reduction On The Fly
	Foundations of Software Security
	Foundations of Software Security
	Binary Code Debloating Architecture
	Binary Code Debloating Architecture
	CFI Research Timeline
	CFI Research Timeline
	Scalability Gap
	Where the Wild Things Are�[RecordedFuture, CTA-2018-0327]
	Soft(ware) Targets
	20 Widespread Classes of CFI Compatibility Problems
	ConFIRM CFI Compatibility Benchmark Suite
	ConFIRM: Control-Flow Integrity Relevance Metrics�https://github.com/SoftwareLanguagesSecurityLab/Confirm
	Major Findings
	CFI Performance Measurement Problems
	CFI vs. Runtime Code Generation
	Existing Solutions
	Real-world Example: Edge Browser
	Renew: Rewriting Newly Executable pages after Writes
	Renew: Rewriting Newly Executable pages after Writes
	Challenges
	Disassembly Undecidability
	Innovation: Superset Disassembly
	Machine learning-based Disassembly Pruning�[Wartell, Zhou, Hamlen, Kantarcioglu, PAKDD’14]
	Multiverse “Superset” Disassembler�[Bauman, Lin & Hamlen, NDSS’18]
	Renew Overview
	Optimization Strategy: Fast path + Slow path
	Proof-of-Concept Implementation
	Evaluation
	LuaJIT Evaluation Results
	Firefox JS Evaluation
	Overhead Breakdown
	UPX Evaluation
	Related Work Comparison
	Software Attack Surface Reduction On The Fly

