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Mission-critical
Software Environments

3

 Myth: In mission-critical environments, 
all software is custom, rigorously tested, 
and formally verified.

 Reality: Most mission-critical 
environments use commodity software 
and components extensively.
 Commercial Off-The-Shelf (COTS)
 widely available to attackers

 mostly closed-source
 independent security audit not feasible

 supports mainstream OSes (Windows) and 
architectures (Intel)

 some effort at secure development, but no 
formal guarantees



Critical Infrastructure: Critically Insecure
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 2010: Stuxnet infiltrates and destroys Iranian 
nuclear centrifuges
 Software exploited: Siemens Windows apps 

and PLCs
 Sets Iranian nuclear program back 3-5 years

 2021: Colonial Oil Pipeline Hack
 Software exploited: Unpatched Windows VPN
 Leaked password to unused account, no 

multifactor authentication, no data backups
 weeks of oil shortages in eastern US, tens of 

thousands of miles of pipeline checks

 2020: Hundreds of US infrastructure networks 
penetrated by SolarWinds hack
 Software exploited: Microsoft Exchange
 Supply-line hack infects network monitors at 

Pentagon, Treasury, Microsoft, Intel, Cisco, …

https://www.google.com/imgres?imgurl=https%3A%2F%2Ftechcrunch.com%2Fwp-content%2Fuploads%2F2020%2F12%2Fpasted-image-0-1.png&imgrefurl=https%3A%2F%2Ftechcrunch.com%2F2020%2F12%2F21%2Fafter-the-fireeye-and-solarwinds-breaches-whats-your-failsafe%2F&tbnid=q8xoCj6CvdpBnM&vet=12ahUKEwi037eNzp_zAhX9gU4HHfrmB3AQMygJegUIARC8AQ..i&docid=jDIsyZYvFBQjwM&w=500&h=303&q=solarwinds%20hack&client=firefox-b-1-d&ved=2ahUKEwi037eNzp_zAhX9gU4HHfrmB3AQMygJegUIARC8AQ
https://www.google.com/imgres?imgurl=https%3A%2F%2Fa57.foxnews.com%2Fstatic.foxbusiness.com%2Ffoxbusiness.com%2Fcontent%2Fuploads%2F2021%2F05%2F931%2F523%2FScreen-Shot-2021-05-11-at-5.08.16-PM.png%3Fve%3D1%26tl%3D1&imgrefurl=https%3A%2F%2Fwww.foxbusiness.com%2Fenergy%2Fcolonial-pipeline-shutdown&tbnid=6crbzoovGOOhyM&vet=12ahUKEwi825jh0J_zAhXLl60KHSkXA1gQMygEegUIARCBAQ..i&docid=IKwZcxavrNGCoM&w=931&h=523&q=colonial%20oil%20hack&hl=en-US&client=firefox-b-1-d&ved=2ahUKEwi825jh0J_zAhXLl60KHSkXA1gQMygEegUIARCBAQ


(In)famous Linux Vulnerabilities
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 Heartbleed
 OpenSSL vulnerability disclosed April 2014
 allowed anyone to anonymously grab 

arbitrary data (e.g., master keys) from 
internet-facing services

 affected ~66% of all web servers, email 
servers, chat servers, VPNs, clients, etc.

 all versions vulnerable since 2011!
 Shellshock

 Bash shell vulnerability disclosed September 
2014

 allowed complete compromise - remote 
code execution

 all versions vulnerable since 1989(!!)



Are In-house Projects “More Secure”?
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 Idea: Build all your own custom software in-house from scratch (or 
contract trusted third-party to build from scratch).
 expensive, time-consuming
 error-prone (not built by specialists)

 63% of in-house IT projects fail to meet their own specs [CHAOS Report]
 poor compatibility, hard to maintain
 very questionable security assurance

 vulnerable to insider threats, less tested, shaky design, etc.
 assurance usually based on myth of “security by obscurity”

 Many COTS advantages
 constantly updated for new threats
 tested on a mass scale
 crafted & maintained by specialists
 cheaper, mass-produced



Why is Software so Insecure?
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 Huge and constantly evolving
 Windows XP has 40 million lines of code
 Microsoft Office had 30 million lines in 2006
 Debian 5.0 has a staggering 500 million lines!
 contrast: Space shuttle has only 2.5 million moving parts!

 Often written in unsafe languages
 C, C++, VC++, Visual Basic, scripting languages, …

 Increasingly sophisticated attacks
 buffer-overrun
 direct code-injection
 return-to-libc
 return-oriented programming (RoP)
 implementation disclosure-assisted code-reuse attacks



Code-injection Example

void main(int argc, char *argv[])
{
        char buf[64];
        strcpy(buf,argv[1]);
        …
        return;
}

lea eax,[ebp-48h]
push eax
call <system>
.data “erase ”
.data “*.* ”
.data “aaaaa…”
.data “aaaa”
<addr of buf>

8D 45 B8 
50
FF 15 BC 82 2F 01
65 72 61 73 65 20
2A 2E 2A 20
61 (x24) 
61 61 61 61
30 FB 1F 00

bottom of stack (higher addresses)
argc (4 bytes)
argv (4 bytes)

buf (64 bytes)

saved EIP (4 bytes)
saved EBP (4 bytes)

top of stack (lower addresses)



Code-injection Example

void main(int argc, char *argv[])
{
        char buf[64];
        strcpy(buf,argv[1]);
        …
        return;
}

lea eax,[ebp-48h]
push eax
call <system>
.data “erase ”
.data “*.* ”
.data “aaaaa…”
.data “aaaa”
<addr of buf>

8D 45 B8 
50
FF 15 BC 82 2F 01
65 72 61 73 65 20
2A 2E 2A 20
61 (x24) 
61 61 61 61
30 FB 1F 00

bottom of stack (higher addresses)
argc (4 bytes)
argv (4 bytes)

top of stack (lower addresses)

lea eax,[ebp-48h]
push eax
call <system>

erase *.* aaaaaaaa
aaaaaaaaaaaaaaaa

           aaaa
    <addr of buf>



Code-injection Example

void main(int argc, char *argv[])
{
        char buf[64];
        strcpy(buf,argv[1]);
        …
        return;
}

lea eax,[ebp-48h]
push eax
call <system>
.data “erase ”
.data “*.* ”
.data “aaaaa…”
.data “aaaa”
<addr of buf>

8D 45 B8 
50
FF 15 BC 82 2F 01
65 72 61 73 65 20
2A 2E 2A 20
61 (x24) 
61 61 61 61
30 FB 1F 00

bottom of stack (higher addresses)
argc (4 bytes)
argv (4 bytes)

top of stack (lower addresses)

lea eax,[ebp-48h]
push eax
call <system>

erase *.* aaaaaaaa
aaaaaaaaaaaaaaaa

           aaaa
    <addr of buf>



Code-injection Example

void main(int argc, char *argv[])
{
        char buf[64];
        strcpy(buf,argv[1]);
        …
        return;
}

lea eax,[ebp-48h]
push eax
call <system>
.data “erase ”
.data “*.* ”
.data “aaaaa…”
.data “aaaa”
<addr of buf>

8D 45 B8 
50
FF 15 BC 82 2F 01
65 72 61 73 65 20
2A 2E 2A 20
61 (x24) 
61 61 61 61
30 FB 1F 00

bottom of stack (higher addresses)
argc (4 bytes)
argv (4 bytes)

top of stack (lower addresses)

lea eax,[ebp-48h]
push eax
call <system>

erase *.* aaaaaaaa
aaaaaaaaaaaaaaaa

           aaaa
    <addr of buf>



Code-injection Example

void main(int argc, char *argv[])
{
        char buf[64];
        strcpy(buf,argv[1]);
        …
        return;
}

lea eax,[ebp-48h]
push eax
call <system>
.data “erase ”
.data “*.* ”
.data “aaaaa…”
.data “aaaa”
<addr of buf>

8D 45 B8 
50
FF 15 BC 82 2F 01
65 72 61 73 65 20
2A 2E 2A 20
61 (x24) 
61 61 61 61
30 FB 1F 00

bottom of stack (higher addresses)
<addr of “erase *.* …”>

argv (4 bytes)

top of stack (lower addresses)

lea eax,[ebp-48h]
push eax
call <system>

erase *.* aaaaaaaa
aaaaaaaaaaaaaaaa

           aaaa
    <addr of buf>



Code-injection Example

void main(int argc, char *argv[])
{
        char buf[64];
        strcpy(buf,argv[1]);
        …
        return;
}

lea eax,[ebp-48h]
push eax
call <system>
.data “erase ”
.data “*.* ”
.data “aaaaa…”
.data “aaaa”
<addr of buf>

8D 45 B8 
50
FF 15 BC 82 2F 01
65 72 61 73 65 20
2A 2E 2A 20
61 (x24) 
61 61 61 61
30 FB 1F 00

bottom of stack (higher addresses)
<addr of “erase *.* …”>

argv (4 bytes)

top of stack (lower addresses)

lea eax,[ebp-48h]
push eax
call <system>

erase *.* aaaaaaaa
aaaaaaaaaaaaaaaa

           aaaa
    <addr of buf>



Pernicious Vulnerabilities
[SourceFire Vulnerability Research]
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Buffer Errors: 24%

SQL Injection: 21%

Code Injection: 10%

Access Control: 10%

Not enough info: 8%

Input Validation: 7%

Resource Management: 4%
Path Traversal: 3%

Everything Else: 13%

TOP HIGH SEVERITY VULNERABILITIES



Defense: DEP + ASLR

 Data Execution Prevention (DEP)
 set stack memory non-executable (hardware-enforced)

 Address Space Layout Randomization (ASLR)
 randomize locations of libraries on-load

 Counter-attack
 don’t insert any code onto the stack
 jump directly to existing code fragments
 called a “code-reuse” attack



ROP Example

void main(int argc, char *argv[])
{
        char buf[64];
        strcpy(buf,argv[1]);
        …
        return;
}

.data “erase ”

.data “*.* ”

.data “aaaa…”

.data <addr1>

.data “aaaa”

.data <addr2>

.data <addr2>

.data <addr3>

61 72 61 73 65 20
2A 2E 2A 20
61 (x58) 
BC 82 2F 04
61 61 61 61
82 8C 2E 04
82 8C 2E 04
7F 22 30 04

caller’s stack frame
argc (4 bytes)
argv (4 bytes)

buf (64 bytes)

saved EIP (4 bytes)
saved EBP (4 bytes)

top of stack (lower addresses)

bottom of stack (higher addresses)



ROP Example

void main(int argc, char *argv[])
{
        char buf[64];
        strcpy(buf,argv[1]);
        …
        return;
}

.data “erase ”

.data “*.* ”

.data “aaaa…”

.data <addr1>

.data “aaaa”

.data <addr2>

.data <addr2>

.data <addr3>

61 72 61 73 65 20
2A 2E 2A 20
61 (x58) 
BC 82 2F 04
61 61 61 61
82 8C 2E 04
82 8C 2E 04
7F 22 30 04

top of stack (lower addresses)

erase *.*
aaaaaaa…

aaaa
<addr1>
aaaa
<addr2>
<addr2>
<addr3>



ROP Example

…
addr2: add eax, 512
 ret
 …
addr1: mov eax, [init_display]
 call eax
 pop ebx
 ret
 …
addr3: call eax
 ret

top of stack (lower addresses)

erase *.*
aaaaaaa…

aaaa
<addr1>
aaaa
<addr2>
<addr2>
<addr3>

init_display: …

< … 1024 bytes … >

system: …



ROP Example

…
addr2: add eax, 512
 ret
 …
addr1: mov eax, [init_display]
 call eax
 pop ebx
 ret
 …
addr3: call eax
 ret

top of stack (lower addresses)

erase *.*
aaaaaaa…

aaaa
<addr1>
aaaa
<addr2>
<addr2>
<addr3>

init_display: …

< … 1024 bytes … >

system: …

eax = init_display



ROP Example

…
addr2: add eax, 512
 ret
 …
addr1: mov eax, [init_display]
 call eax
 pop ebx
 ret
 …
addr3: call eax
 ret

top of stack (lower addresses)

erase *.*
aaaaaaa…

aaaa
<addr1+5>
aaaa
<addr2>
<addr2>
<addr3>

init_display: …

< … 1024 bytes … >

system: …

eax = init_display



ROP Example

…
addr2: add eax, 512
 ret
 …
addr1: mov eax, [init_display]
 call eax
 pop ebx
 ret
 …
addr3: call eax
 ret

top of stack (lower addresses)

erase *.*
aaaaaaa…

aaaa
<addr1+5>
aaaa
<addr2>
<addr2>
<addr3>

init_display: …

< … 1024 bytes … >

system: …

eax = init_display



ROP Example

…
addr2: add eax, 512
 ret
 …
addr1: mov eax, [init_display]
 call eax
 pop ebx
 ret
 …
addr3: call eax
 ret

top of stack (lower addresses)

erase *.*
aaaaaaa…

aaaa
<addr1+5>
aaaa
<addr2>
<addr2>
<addr3>

init_display: …

< … 1024 bytes … >

system: …

eax = init_display



ROP Example

…
addr2: add eax, 512
 ret
 …
addr1: mov eax, [init_display]
 call eax
 pop ebx
 ret
 …
addr3: call eax
 ret

top of stack (lower addresses)

erase *.*
aaaaaaa…

aaaa
<addr1+5>
aaaa
<addr2>
<addr2>
<addr3>

init_display: …

< … 1024 bytes … >

system: …

eax = init_display



ROP Example

…
addr2: add eax, 512
 ret
 …
addr1: mov eax, [init_display]
 call eax
 pop ebx
 ret
 …
addr3: call eax
 ret

top of stack (lower addresses)

erase *.*
aaaaaaa…

aaaa
<addr1+5>
aaaa
<addr2>
<addr2>
<addr3>

init_display: …

< … 1024 bytes … >

system: …

eax = init_display+512



ROP Example

…
addr2: add eax, 512
 ret
 …
addr1: mov eax, [init_display]
 call eax
 pop ebx
 ret
 …
addr3: call eax
 ret

top of stack (lower addresses)

erase *.*
aaaaaaa…

aaaa
<addr1+5>
aaaa
<addr2>
<addr2>
<addr3>

init_display: …

< … 1024 bytes … >

system: …

eax = init_display+512



ROP Example

…
addr2: add eax, 512
 ret
 …
addr1: mov eax, [init_display]
 call eax
 pop ebx
 ret
 …
addr3: call eax
 ret

top of stack (lower addresses)

erase *.*
aaaaaaa…

aaaa
<addr1+5>
aaaa
<addr2>
<addr2>
<addr3>

init_display: …

< … 1024 bytes … >

system: …

eax = init_display+1024 = system !!!



ROP Example

…
addr2: add eax, 512
 ret
 …
addr1: mov eax, [init_display]
 call eax
 pop ebx
 ret
 …
addr3: call eax
 ret

top of stack (lower addresses)

erase *.*
aaaaaaa…

aaaa
<addr1+5>
aaaa
<addr2>
<addr2>
<addr3>

init_display: …

< … 1024 bytes … >

system: …

eax = init_display+1024 = system !!!



ROP Example

…
addr2: add eax, 512
 ret
 …
addr1: mov eax, [init_display]
 call eax
 pop ebx
 ret
 …
addr3: call eax
 ret

top of stack (lower addresses)

erase *.*
aaaaaaa…

aaaa
<addr1+5>
aaaa
<addr2>
<addr2>
<addr3>

init_display: …

< … 1024 bytes … >

system: …

eax = init_display+1024 = system !!!



Battling Code-reuse Attacks
30

 Microsoft’s 2012 BlueHat Competition
 Focused on RoP Mitigation
 $260,000 total for top three solutions
 Successful attack against 2nd place solution was published two weeks later

 Google Pwnium Competition
 Hacker Pinkie Pie paid $60K
    for Chrome RoP exploit
 Google fixes the exploit
 Five months later, Pinkie Pie finds a new RoP exploit in the fixed 

Chrome, gets paid another $60K
 Google fixes the 2nd exploit
 Five months later, Pinkie Pie finds a yet another (partial) exploit, gets 

paid another $40K



31

Code-reuse Conflict Timeline



TRUSTEDUNTRUSTED

Secure commodity software AFTER it is compiled 
and distributed, by automatically modifying it at 
the binary level.

My Research: Security Retrofitting36

untrusted
binary code

Binary
Rewriter

secure
binary Verifier deploy

reject



Advantages
37

 No need to get code-producer cooperation
 No need to customize the OS/VM
 No custom hardware needed (expensive & slow)
 Not limited to any particular source language or tool 

chain
 Can enforce consumer-specific policies
 Maintainable across version updates (just re-apply 

rewriter to newly released version)
 Rewriter remains untrusted, so can outsource that task to 

an untrusted third party!
 Local, trusted verifier checks results



Challenges
38

 Software is in purely binary form
 no source, no debug info, no disassembly

 Diverse origins
 various source languages, compilers, tools, …

 Code-producers are uncooperative
 unwilling to recompile with special compiler
 unwilling to add/remove features
 no compliance with any coding standard

 Highly complex binary structure
 target real-world APIs (e.g., hundreds of thousands of Windows system dll’s and 

drivers)
 multi-threaded, multi-process
 event-driven (callbacks), dynamically linked (runtime loading)
 heavily optimized (binary code & data arbitrarily interleaved)



Three Major Advances
39

1) Heuristic-free & Machine Learning-based Binary Disassembly
 automatically recovers high-level program structure from binary software 

product
 Superset Disassembly (NDSS’18): recover a superset of the control-flow graph
 Finding the Undecidable Path (PAKDD’14): Optimize CFG via machine learning

2) Native Code Instrumentation
 method of automatically in-lining extra security checks into untrusted programs
 Wartell, Mohan, Hamlen, and Lin.  Binary Stirring: Self-randomizing Instruction 

Addresses of Legacy x86 Binary Code.  CCS 2012.
3) Formal, Automated, Machine-validation

 automatically PROVES (mathematically) that retrofitted software is immune to 
certain classes of attacks

 Wartell, Mohan, Hamlen, and Lin.  Securing Untrusted Code via Compiler-
Agnostic Binary Rewriting. ACSAC 2012.



First Step: Disassembly

 Disassemble this hex sequence
 Turns out x86 disassembly is an 

undecidable problem!

FF E0 5B 5D C3 0F 
88 52 0F 84 EC 8B

Valid Disassembly

FF E0 jmp eax

5B pop ebx

5D pop ebp

C3 retn

0F 88 52 
0F 84 EC

jcc

8B … mov

Valid Disassembly

FF E0 jmp eax

5B pop ebx

5D pop ebp

C3 retn

0F db (1)

88 52 0F 
84 EC

mov

8B … mov

Valid Disassembly

FF E0 jmp eax

5B pop ebx

5D pop ebp

C3 retn

0F 88 db (2)

52 push edx

0F 84 EC
8B …

jcc

41



Disassembly Intractability
42

 Even the best reverse-engineering tools cannot 
reliably disassemble even standard COTS products

 Example: IDA Professional Disassembler (Hex-rays)

Program Name Disassembly Errors

Microsoft Foundation Class Lib (mfc42.dll) 1216

Media Player (mplayerc.exe) 474

Avant Web Browser (RevelationClient.exe) 36

VMWare (vmware.exe) 183



Innovation: Superset Disassembly

Hex Path 1 Path 2 Path 3 Path 4

FF jmp eax

E0 loopne

5B pop

5D L1: pop

C3 retn

0F jcc

88 mov

B0 mov

50

FF N/A

FF

8B L2: mov

Byte Sequence: FF E0 5B 5D C3 0F 88 B0 50 FF FF 8B

43

Disassembled             Invalid

Included
Disassembly

jmp eax

pop

L1: pop

retn

jcc

L2: mov

loopne

jmp L1

mov

jmp L2



Problem: Pointers
44

 We just rearranged everything.  Pointers will all 
point to the wrong places.
 can’t reliably identify pointer data in a sea of 

unlabeled bytes

 Two kinds of relevant pointers:
 pointers to static data bytes among the code bytes
 pointers to code (e.g., method dispatch tables)



Preserving Static Data Pointers
45

 Put the de-shingled code in a NEW code segment.
 Set it execute-only (non-writable)

 Leave the original .text section
 Set it read/write-only (non-execute)

Header
Import Address Table

.data
.text

Original Binary
Header

Import Address Table
.data

.told (NX bit set)

Rewritten Binary

.tnew
(de-shingled code)



Preserving Code Pointers

 Almost half of all jump instructions in real x86 
binaries compute their destinations at runtime.
 Exercise: Why? Examples?
…
…
…

 Must ensure these jumps target new code locations 
instead of old.
 impossible to statically predict their destinations

46



Preserving Code Pointers

 Almost half of all jump instructions in real x86 
binaries compute their destinations at runtime.
 all method calls (read method dispatch table)
 all function returns (read stack)
 almost all API calls (read linker tables)
 pointer encryption/decryption logic for security

 Must ensure these jumps target new code locations 
instead of old.
 impossible to statically predict their destinations

47



Solution: Control-flow Patching

 Create a lookup table that maps old code addresses to new ones at 
runtime.

 Add instructions that consult the lookup table before any computed 
jump.

48

Original

jump eax

Rewritten

jump table[eax]



Optimizing
50

 With these three tricks we can successfully transform (most) 
real-world COTS binaries even without knowing how they 
work or what they do!
 de-shingling disassembly
 static data preservation
 control-flow patching

 Limitations
 runtime code modification conservatively disallowed
 computing data pointers from code pointers breaks
 These are compatibility limitations not security limitations.

 But it’s prohibitively inefficient (increases code size ~700%)
 need to optimize the approach



Optimization Philosophy
51

1. If the optimization fails, we might get broken code but 
never unsafe code.

2. The optimizations only need to work for non-malicious, 
non-vulnerable code fragments.

 If the code fragment is malicious or vulnerable, we don’t 
want to preserve it!



Optimization #1: De-shingling

Hex Path 1 Path 2 Path 3 Path 4

FF jmp eax

E0 loopne

5B pop

5D L1: pop

C3 retn

0F jcc

88 mov

B0 mov

50

FF N/A

FF

8B L2: mov

52

 Lots of extra overlapping information
 Can we prune our disassembly tree?



Machine learning-based Disassembler
53

 Insight: Distinguishing real code bytes from data bytes is a 
“noisy word segmentation problem”.
 Word segmentation:  Given a stream of symbols, partition them 

into words that are contextually sensible. [Teahan, 2000]
 Noisy word segmentation:  Some symbols are noise (data).

 Machine Learning based disassembler
 based on kth-order Markov model
 Estimate the probability of the sequence B:

Wartell, Zhou, Hamlen, Kantarcioglu.  “Shingled Graph Disassembly: Finding the Undecidable 
Path.”  PAKDD 2014.
Wartell, Zhou, Hamlen, Kantarcioglu, and Thuraisingham. “Differentiating code from data in 
x86 binaries.” ECML/PKDD 2011.



Disassembler Stats
54
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PPM Disassembly Stats
55

PPM Disassembler

False
Negative

False
Positive

Accuracy

7zFM 0 0 100%

notepad 0 0 100%

DosBox 0 0 100%

WinRAR 0 39 99.982%

mulberry 0 0 100%

scummvm 0 0 100%

emule 0 117 99.988%

Mfc42 0 47 99.987%

mplayerc 0 307 99.963%

revClient 0 71 99.893%

vmware 0 45 99.988%



Optimization #2:
Lookup Table Compression
 Idea: Overwrite the old code bytes with the lookup 

table.
 PPM disassembler identifies most code bytes
 Also identifies subset that are possible computed jump 

destinations.
 Overwrite those destinations with our lookup table.

56

Original

call eax

Rewritten

cmp [eax], 0xF4

cmovz eax, [eax+1]

call eax



Applications of our Rewriter
57

 Three Applications
 Binary randomization for RoP Defense (STIR)
 Opaque Control-Flow Integrity (O-CFI)
 Machine-certified Software Fault Isolation (Reins)

bytes
Assembly 

Listing
De-shingling 
Disassembler

PPM
Pruner

Rewriter

Safe Binary



RoP Defense Strategy

 RoP is one example of a broad class of attacks 
that require attackers to know or predict the 
location of binary features

Defense Goal
Frustrate such attacks by randomizing the 

feature space
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59

 Randomly reorder the program’s internal 
layout every time the program loads
 Attacker cannot reliably locate code 

addresses for code-reuse attacks
 Astronomically low chance of attack success
 Exact attack probability is mathematically 

computable as an entropy calculation

STIR – Self-Transforming Instruction Relocation
O-CFI – Opaque Control-Flow Integrity
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STIR/O-CFI Implementation
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 Supports Windows PE and Linux ELF files
 Tested on SPEC2000 benchmarks and the entire coreutils chain for 

Linux
 1.5% program runtime efficiency overhead on average
 Wartell, Mohan, Hamlen, and Lin.  “Binary Stirring: Self-randomizing 

Instruction Addresses of Legacy x86 Binary Code.”  Proc. ACM 
Computer and Communications Security (CCS), 2012.
 Won 2nd place in the NYU-Poly AT&T Best Applied Security Paper of the 

Year competition
 Mohan, Larsen, Brunthaler, Hamlen, Franz.  “Opaque Control-Flow 

Integrity.”  Proc. Network and Distributed Systems Security Symposium 
(NDSS), 2015.
 Conceals code reachability info to defeat even advanced attackers who 

can inspect portions of the randomized program memory image!



Gadget Reduction
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Windows STIR Runtime Overhead
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Linux STIR Runtime Overhead
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Custom Safety Policy Enforcement with 
Machine-provable Assurance

64

Binary
Rewriter

untrusted
binary code
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An API Policy
65

function conn = ws2_32::connect(
  SOCKET, struct sockaddr_in *, int) -> int;
function cfile = kernel32::CreateFileW(
  LPCWSTR, DWORD, DWORD, LPSECURITY_ATTRIBUTES,
  DWORD, DWORD, HANDLE) -> HANDLE WINAPI;

event e1 = conn(_, {sin_port=25}, _) -> 0;
event e2 = cfile(“*.exe”, _, _, _, _, _, _) -> _;

policy = e1* + e2*;

Policy:  Applications may not both open email connections
and create files whose names end in “.exe”.



Reference Monitor In-lining

 In-line security checks as rewriting progresses
 checks uncircumventable due to control-flow and 

memory safety
 ensures complete mediation
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REINS - 
67

 Prototype targets full Windows XP/7/8 OS
 significantly harder than Linux

 2.4% average runtime overhead
 15% average process size increase
 Tested on SPEC2000, malware, and large GUI binaries

 Eureka email client and DOSBox, much larger than any previous 
implementation had accomplished

 Wartell, Mohan, Hamlen, and Lin.  Securing Untrusted Code 
via Compiler-Agnostic Binary Rewriting. Proc. 28th Annual 
Computer Security Applications Conference, 2012.
 won Best Student Paper at ACSAC

Rewriting and 
In-lining System



Control-Flow Safety

 Used PittSFIeld approach [McCamant & Morrisett, 2006]
  Break binaries into chunks
 chunk – fixed length (16 byte) basic blocks

 Only one extra guard instruction necessary
 Mask instruction only affects violating flows

68

Original

call eax

Rewritten

cmp [eax], 0xF4

cmovz eax, [eax+1]

and eax, 0x0FFFFFF0

call eax



Jump Table w/ Masking

.text:0040CC9B call eaxFF DO

.tnew:0052A1C0

.tnew:0052A1C3

.tnew:0052A1C7

.tnew:0052A1CE

cmp byte ptr [eax], F4h
cmovz eax, [eax+1]
and eax, 0x0FFFFFF0
call eax

80 38 F4 
0F 44 40 01

FF D0

Original Instruction:

Rewritten Instructions:

.told:00411A40 F4 dw 0x534AB0F4 B9 4A 53 00
Rewritten Jump Table:

.text:00411A40 pop ebp5B

Original Possible Target:

.tnew:00534AB0 pop ebp5B

Rewritten Target:

69

eax = 0x411A40

eax = 0x411A40eax = 0x534AB0



Next Two Lectures
98

 Wednesday:  Some of our most recent work for 
Navy and DARPA
 automated binary software attack surface reduction 

using technologies underlying STIR

 Monday: The sciences behind it all…
 Theory of In-lined Reference Monitors (IRMs)
 Computability theory and Enforceability theory
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