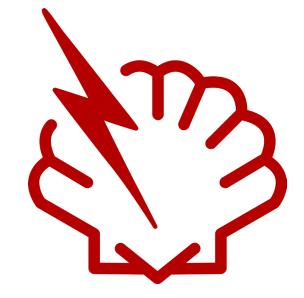
Semi-automated Feature-Debloating of Binary Software*

Dr. Kevin W. Hamlen

Louis A. Beecherl, Jr. Distinguished Professor Computer Science Department The University of Texas at Dallas


Publication: Masoud Ghaffarinia & Kevin W. Hamlen, "Binary Control-flow Trimming." In Proc. ACM CCS 2019.


*supported in part by ONR Award N00014-17-1-2995, NSF Award #1513704, and an endowment from the Eugene McDermott family.

Binary Control-flow Trimming

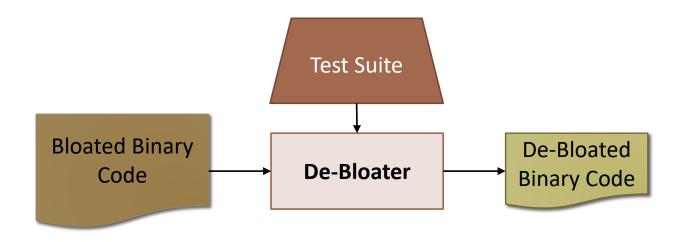
Objective: Erase ("debloat") unwanted/unneeded features in binary software without the aid of source code

Motivating Example: Linux Bash + Shellshock

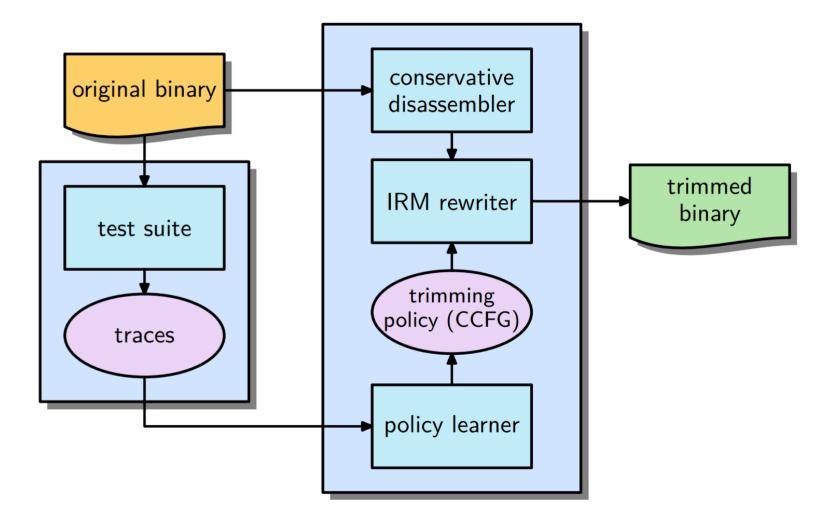
- Discovered September 2014
- Bash shells execute certain environment variable texts as code(!!)
- Allows attackers to remote-compromise most Linux systems
- Window of vulnerability: 25 years(!!)
- Probably NOT originally a bug!
 - introduced in 1989 to facilitate function-import into child shells
 - never clearly documented, eventually forgotten

Research Challenges

➤Can we automatically erase unneeded (risky) functionalities from binary software?


- Admins might not even know that the undesired functionality exists, and therefore *cannot necessarily demonstrate bugs/vulnerabilities*.
- Demonstration of desired functionalities will usually be incomplete.
 - large input spaces (e.g., unbounded streams of network packets)
- No assumptions about code design/provenance
 - arbitrary source languages
 - arbitrary compilation toolchains
 - simplifying assumption: not obfuscated (we can at least disassemble it)

➤Can we do so without introducing significant inefficiencies?


- no virtualization layers introduced
- "debloated" code should be runnable on bare hardware

Basic Workflow

- (1) Demonstrate representative desired functionalities by running the target software on various inputs in an emulator/VM.
- (2) Submit resulting logs along with original binary code to de-bloater.
- (3) If resulting de-bloated binary is unsatisfactory (e.g., needed functionalities missing), then repeat with more/better tests.

Binary Control-flow Trimming Architecture

Stepwise Usage

1. CCFI-protect binary with a permit-all policy	 rewriter-makeout.pylearn -target \$BCFT_TARGET_BINARY
2. run new binary in emulator (PIN) on training inputs	• pin -io \$PROGRAM \$ARGS
3. learn a CCFI policy from the traces logged by the emulator	 learner.py \$PROGRAM_TRACES_DIR
4. replace the permit-all policy with the learned policy	 rewriter-makeout.pypolicy \$POLICY_FILEtarget \$BCFT_BINARY

Experiments and Evaluations

> Performance:

- SPEC CPU Benchmark.
- Lighttpd, Nginx web-servers.
- Proftpd, pureftpd, vsftpd ftp-servers.

> Test-suite for accuracy and security:

Program	Test Suite	Debloated Functionalities
GCC	Its own source code.	-m32 (accuracy)
Ftp-servers	Random files mixed with commands (e.g. rm).	SITE, DELETE (security, accuracy)
Browsers	Quantcast top 475K URLs.	Incognito, cookies add/delete(accuracy)
ImageMagic convert	Converting random jpgs to png.	resizing(accuracy)
Exim	Random emails to a specific address.	-ps (security), -oMs(accuracy)
Node.js	Java scrip code not using serialize().	<pre>serialize()(security)</pre>

Vulnerabilities Removed

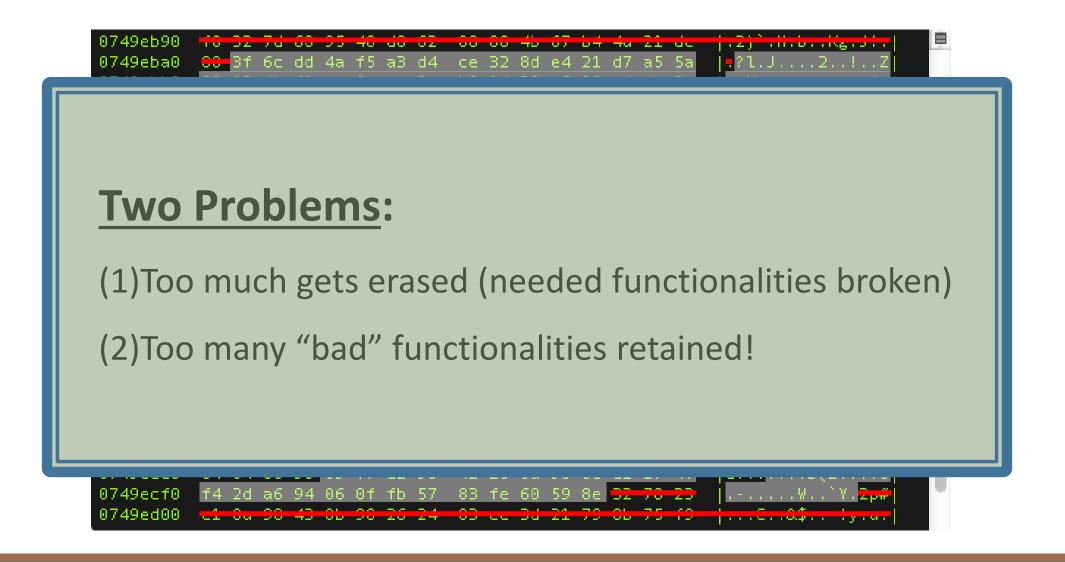
Successfully removed Shellshock vulnerability using only the pre-Shellshock test-suite shipped with bash.

Program	CVE numbers
Bash	CVE-2014-6271, -6277, -6278, -7169
ImageMagic	CVE-2016-3714, -3715, -3716, -3717, -3718
Proftpd	CVE-2015-3306
Node.js	CVE-2017-5941
Exim	CVE-2016-1531

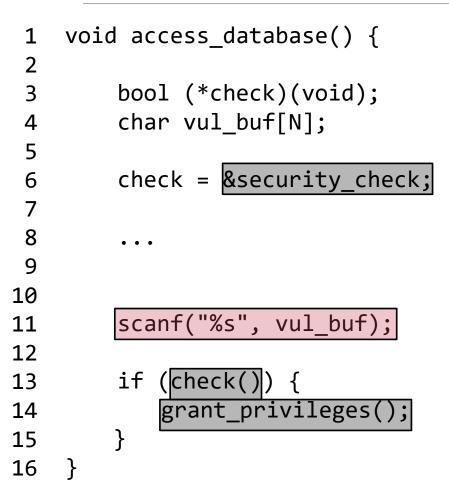
Limitations and Scope

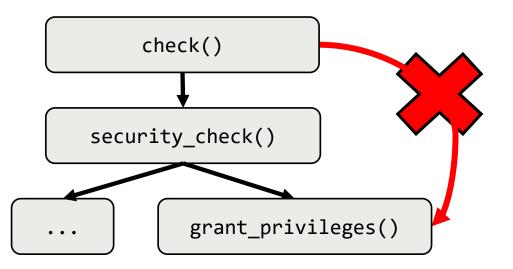
►DON'T use this if...

- ... you have full source code and can recompile all system components.
- ... you want to shrink the software's memory image.
- ... it is difficult/impossible to demonstrate all critical functionalities.
 - (In future research we want to relax this restriction.)

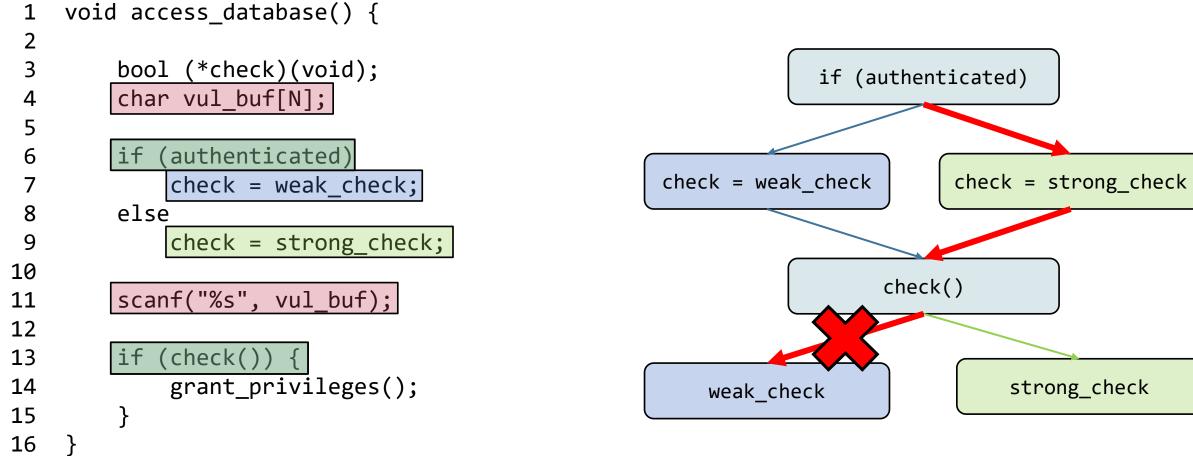

►DO use this if...

- ... you don't have or don't trust some/all of the source code for the software.
- ... the software has no formal specification of correctness/security.
- ... you have no developer cooperation for finding/fixing bugs/features.
- ... you want to run the code natively (no VM).


0749eb90	f0 32 7d 6	60 95 48 d0 62	08 80 4b 67 b4 4a 21 dc	[.2}`.H.bKg.J!. ■
0749eba0		dd 4a f5 a3 d4	ce 32 8d e4 21 d7 a5 5a	[.?1.J2!Z]
0749ebb0		fl ca Oa ce Bc	b9 14 20 a5 00 a4 4a 3e	[K <j>]</j>
0749ebc0		b4 d1 90 2b 25	a9 c8 f4 c8 10 85 fb d6	.K+%
0749ebd0		c6 8a 7f 25 e7	47 f4 95 01 e2 d7 82 fe	[.*%.G
0749ebe0	22 95 fa 8		d3 84 95 a7 97 1d 97 92	["I.P
0749ebf0	25 32 91 9		c2 2b 49 06 4c 1a 26 69	[%2s.+I.L.&i]
0749ec00	b2 75 3e 2		68 cf 29 1b 8a 65 8d 54	[.u> .e."h.)e.T]
0749ec10		f3 05 59 07 39	cd 43 96 6f 5d 88 bb 7a	[3Y.9.C.o]z]
0749ec20		04 b1 c6 33 25	8c 68 f7 c7 79 23 ef 66	3%.hy#.f
0749ec30	7a aa 41 e	e7 99 55 1d 46	79 64 2a 6c 1f a9 64 63	[z.AU.Fyd*ldc]
0749ec40	ef f9 87 7	72 3f d9 5a 9f	48 0d 92 96 72 0d 1b a4	r?.Z.Hr
0749ec50	a6 2e 08 t	b0 96 cc e6 37	88 f0 57 32 3b 21 6d d9	
0749ec60	e4 6b f1 e	ef 14 25 65 e3	3c b3 ee 60 bc a4 ea 44	[.k%e.<`D]
0749ec70	64 49 0d 9	59 0b 45 3f f0	75 a4 24 be 41 f5 52 ad	[dI.Y.E?.u.\$.A.R.]
0749ec80	32 65 33 4	4d 9c 83 8e 97	69 57 f2 5d 72 93 dd b1	[2e3MiW.]r]
0749ec90	d0 c6 dc d	c8 43 89 6e 1e	8b d9 2e 67 52 3e 26 3f	[C.ngR>&?]
0749eca0	46 cc 92 a	a7 e1 f3 af 9c	c8 b3 17 fe ff 8a bb 7a	[Fz]
0749ecb0	f6 e9 99 6	6d 8b 24 dc 84	97 67 b6 d5 5b 73 a6 fc	[m.\$g[s]
0749ecc0	50 a6 cf 1	fe 92 7d c3 2f	2e 7e e8 b7 8f 9b 71 5f	[P]./.~q_]
0749ecd0	b0 43 79 9	5c f1 63 9d b7	2f 7e b1 f3 f6 87 5f b0	.Cy\.c/~
0749ece0	64 84 86 9	98 59 f7 d2 96	42 28 5a 96 8e d1 17 4f	[dYB(Z0]
0749ecf0	f4 2d a6 9	94 06 0f fb 57	83 fe 60 59 8e 32 70 23	[\V`Y.2p#]
0749ed00	_c1 8a 98 4	43 0b 90 26 24	03 ce 3d 21 79 0b 75 f9	[C&\$=!y.u.]


0749eb90	f0 32 7d 60	95 48 d0 62	08 80 4b 67 b4 4a 21 dc	[.2}`.H.bKg.J!. 📃 🗎
0749eba0	80 3f 6c dd	4a f5 a3 d4	ce 32 8d e4 21 d7 a5 5a	.?1.J2!Z
0749ebb0	92 93 4b f1	ca 0a ce 3c	b9 14 20 a5 00 a4 4a 3e	K×J>
0749ebc0	bd 4b 8c b4	d1 90 25 25	a9 c8 f4 c8 10 85 fb d6	.K+%
0749ebd0	fc 2a 1f c6	8a 7f 25 e7	47 f4 95 01 e2 d7 82 fe	.*%.G
0749ebe0	22 95 fa 8e	49 e4 50 98	d3 84 95 a7 97 1d 97 92	<u>"I.P</u>
0749ebf0	25 32 9f 90	0c a9 07 <mark>73</mark>	c2 2b 49 06 4c 1a 26 69	%2s.+I.L.&i
0749ec00	b2 75 Be 20	db 65 bf 22	<u>68 cf 29 1b</u> 8a 65 8d 54	[.u> <u>.e."h.).</u> .e.T[
0749ec10	91 ba 33 f3	05 59 07 39	cd 43 96 6f 5d 88 bb 7a	[3 <mark>Y.9.C.o</mark>]z
0749ec20	aa ae d2 04	b1 c6 33 25	8c 68 f7 c7 79 23 ef 66	3%.hy#.f
0749ec30	7a aa 41 e7	99 55 1d 46	79 64 2a 6c 1f a9 64 63	<pre>[z.AU.Fyd*ldc]</pre>
0749ec40	ef f9 87 72	3f d9 5a 9f	48 0d 92 96 72 0d 1b a4	r?.Z.Hr
0749ec50	a6 2e 08 b0	96 cc e6 37	88 f0 57 32 3b 21 6d d9	7W2;!m.
0749ec60	e4 6b f1 ef	14 25 65 <u>e3</u>	<u>3c b3 ee 60 bc a4 ea 44</u>	.k%e <u>.≺`D</u>
0749ec70	64 49 0d 59	0b 45 3f f0	75 a4 24 be 41 f5 52 ad	[dI.Y.E?.u.\$.A.R.]
0749ec80	32 65 33 4d	9c 83 8e 97	69 57 f2 5d 72 93 dd b1	2e3MiW.]r
0749ec90	d0 c6 dc c8	43 89 6e 1e	8b d9 2e 67 52 3e 26 3f	C.ngR>&?
0749eca0	46 cc 92 a7	e1 f3 af 9c	c8 b3 17 fe ff 8a bb 7a	Fz
0749ecb0	f6 e9 99 6d	8b 24 dc 84	97 67 b6 d5 5b 73 a6 fc	m.\$g[s
0749ecc0	50 a6 cf fe	92 7d c3 2f	2e 7e e8 b7 8f 9b 71 5f	$ P,\ldots,\rangle,$ / .~q_
0749ecd0	b0 43 79 5c	f1 63 9d b7	2f 7e b1 f3 f6 87 5f b0	[.Cy\ <u>.c/~</u>]
0749ece0	64 84 86 98	59 f7 d2 96	42 28 5a 96 8e <u>d1 17 4f</u>	[dYB(Z <u>0]</u>
0749ecf0	f4 2d a6 94	06 0f fb 57	83 fe 60 59 8e 32 70 23	\V`Y. <mark>2p# </mark>
0749ed00	c1 8a 98 43	0b 90 26 24	03 ce 3d 21 79 0b 75 f9	C&\$=!y.u.

0749eb90	10-32	76 6	10 05	40	40	62	-00	00	÷	67	64	-iu	21	de l	- <u> </u>
0749eba0	00-3f	6c c	id 4a	f5	a3	d4	ce	32	8d	e4	21	d7	a5	5a	•?1.J2!Z
0749ebb0	92 93	4b 1	f1 ca	0a	ce	Зc	b9	14	20	a5	00	a4	4a	Зe	KJ>
0749ebc0	bd 4b	8c t	04 d1	90	2Б	25	a9	c8	f4	c8	10	85	fb	d6	.K+%
0749ebd0	fc 2a	lf c	:6 8a	7f	25	e7	47	f4	95	01	e2	d7	82	fe	.*%.G
0749ebe0	22 95	fa 8	3e 49	e4	50	98	d3	84	95	a7	97	1d	97	92	"I.P
0749ebf0	25 32	91 9	90 Oc	a9	07	73-	- 22	25	40	00	40	10	26	60	%2 <mark></mark>
0749ec00	- 62-75	- D - 2	10 db	-65	67	22	-60	- 1	22	26	Cu	-65	04	54	
0749ec10	9 1 ba	- CC 1	f3 05	59	07	39	cd	43	96	6f	54	00	55	75	
0749ec20		-32-0	14 61	- 26	-33	25	-0c	60	17	- 27	70	20	- 1	66	
0749ec30	70-00	42	7 99	-55	10	46	-72	64	24	Ge.	2.2	-60	64	60	z.A. U.Fyd*l. de
0749ec40	ef 19	07 7	2 31	-49	Sa	97	40	Gd	92	96	72	Gd	10	a	
0749ec50	- <mark>46-2</mark> 6	-00 L	,0 00	-00	-00	37	-00	10	57	32	35	-21	64	42	
0749ec60	- C4-66	11 0	1 14	-25	-65	-02	-Ce	60	<u>ee</u>	60	be.		сu	44	- Kriel We <u>n Kriel Robert D</u>
0749ec70	04 42	ou .	19 OU	40	51	f0	75	a4	24	be	41	f5	52	ad	dining,u.\$.A.R.
0749ec80	32 65	33 4	4d 9c	83	8e	97	69	57	f2	5d	72	93	dd	Ь1	2e3MiW.]r
0749ec90	d0 c6	de e	:8 43	89	6e	le	8b	d9	2e	67	52	Зe	26	Зf	C.ngR>&?
0749eca0	- 46- ee	-92 -	7 cî	-10	uí	<u>Sc</u>	-00	50	17	fe.	11	Ga	66	74	- [
0749ecb0	- 10 - 69	- 99- 0	14 - 66	24	de	04	-97	-67	60	45	56	70	aŭ	fe.	່
0749ecc0	- <mark>50 - 46</mark>	- cf - f	ic 2 2	73		27	-20	70	- 20	57	01	25	71	54	- Proceeding
0749ecd0	- 50 - 43	72 5	ie 11	-63	24	57	-21	70	52	10	10	87	51	50	
0749ece0	<mark>- 64 - 84</mark>	00 0	59	-f7	d2	96	42	28	5a	96	8e	d1	17	4f	🔰 📥 Y B (Z 0) 👘 🌔
0749ecf0	f4 2d	a6 9	94 06	0f	fb	57	83	fe	60	59	8e	92	70	20	······₩···`¥.⊋p#
0749ed00	-1 0 4		10 - 0 5	- 20	20	24	-00-		24	21	72	05	75	12	C&\$ y.u.



Code Erasure vs. Edge Erasure

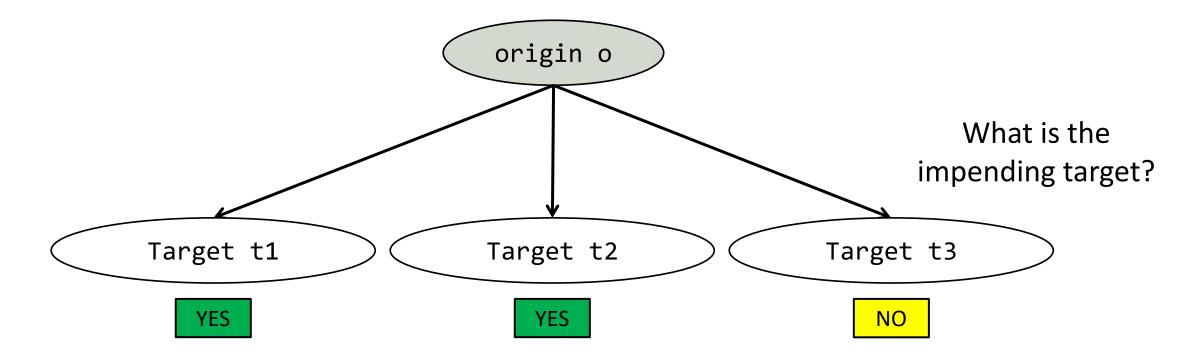
Edge Erasure vs. Flow Erasure

Contextual Control-flow Integrity (CCFI)

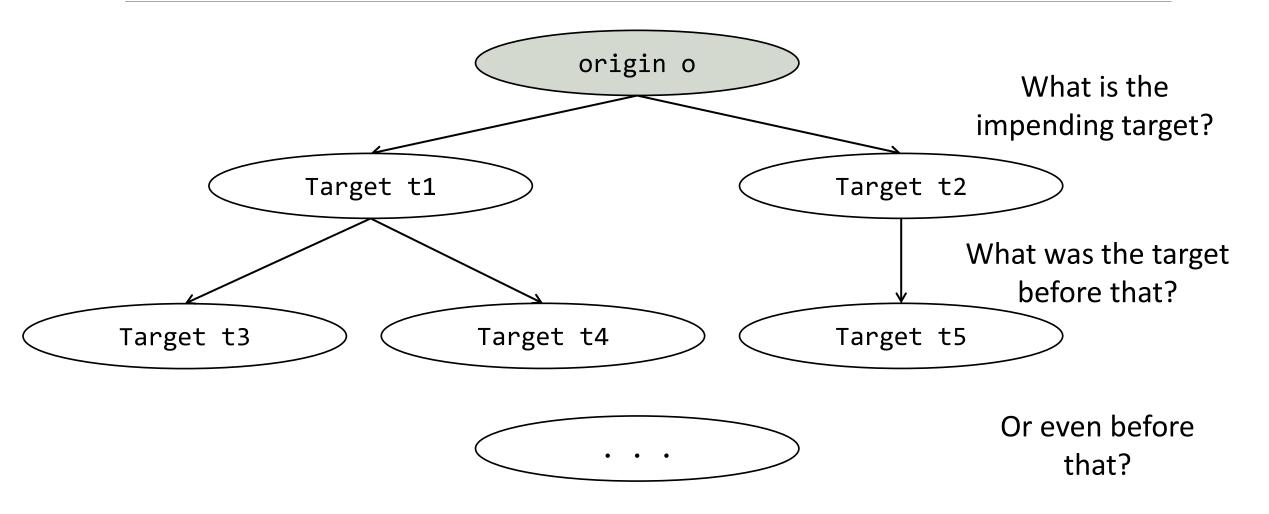
➢ Basic implementation strategy

- Replace each jump/branch/call instruction in the original code with a *check-then-jump* sequence
- The "check" code updates and consults a saved context history of previous jumps.

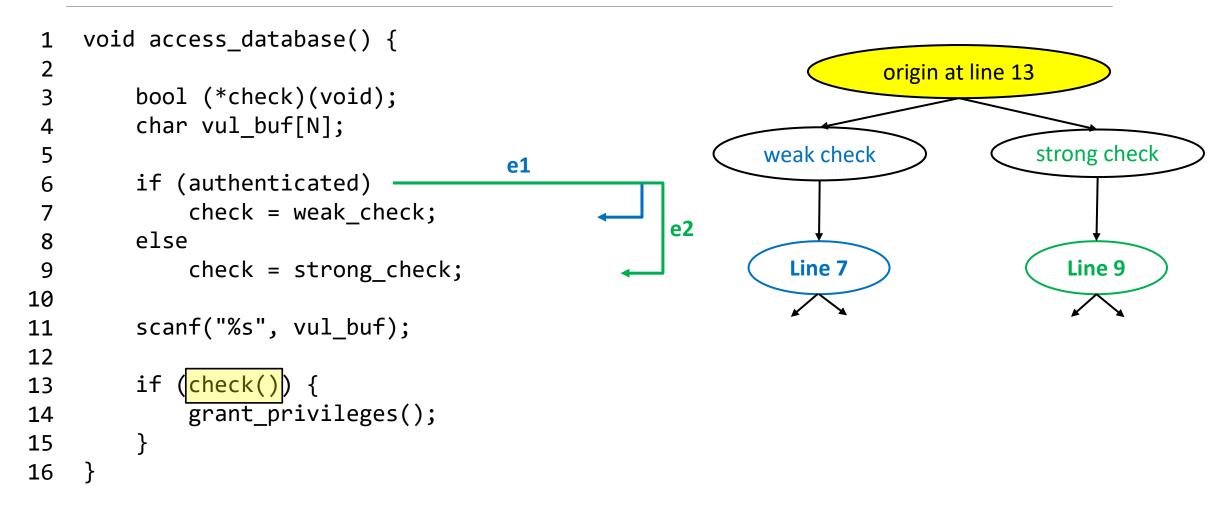
➢ Requirements


- ALL jump/branch/calls must be replaced
- saved context history must be protected from attacker modification

➢Prior work


- non-contextual CFI enforcement is well-established
- contextual CFI is very hard to implement efficiently
 - PathArmor [Van Der Veen et al.; USENIX Sec '15]: only checks system API calls, has high overhead
- ➢ Main challenge #1: How to learn a CCFI policy without a spec?
- ➢ Main challenge #2: How to enforce such fine-grained CCFI efficiently?

Learning CFG Policy

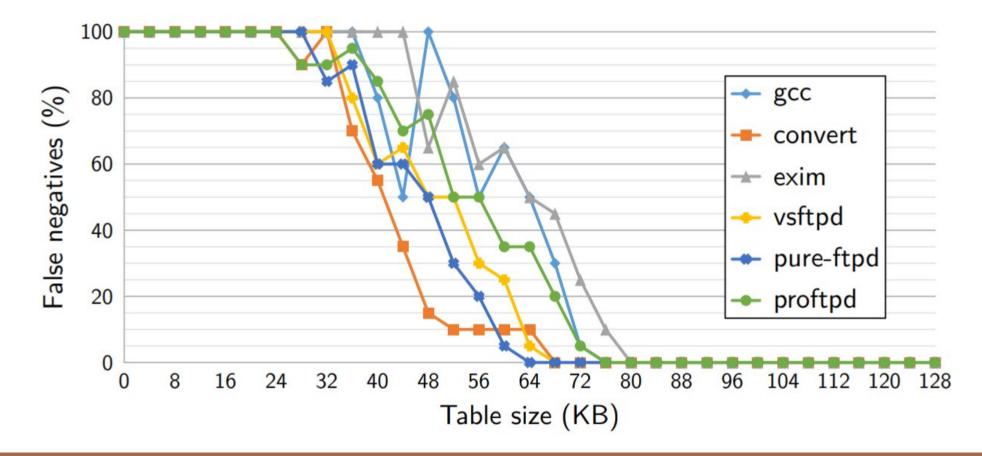

> Decision Trees at every branch site.

Learning Contextual CFG Policy



Contextual CFG Trees

Policy Representation


> Lookup table.

$$hash(\chi) = \bigoplus_{i=1}^{|\chi|} ((\pi_2\chi_i) \ll (|\chi| - i)s) \qquad hash(\chi e) = (hash(\chi) \ll s) \oplus (\pi_2 e)$$

Hash Table Sizes

A table of size n B can whitelist 8n contexts.

Guard Checks

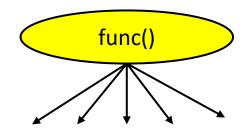
Description	Original code	Rewritten Code
Conditional Jumps	jcc l	call <i>jcc</i> _fall .quad <i>l</i>
Indirect calls	call r/[m]	<pre>mov r/[m], %rax call indirect_call</pre>
Indirect Jumps	jmp <i>r/</i> [<i>m</i>]	<pre>mov %rax, -16(%rsp) mov r/[m], %rax call indirect_jump</pre>
Variable Returns	ret n	pop %rdx lea n(%rsp), %rsp push %rdx jmp return
Returns	ret	mov (%rsp), %rdx jmp return

Label	Assembly Code
<pre>indirect_jump:</pre>	push %rax common-guard mov -8(%rsp), %rax ret
<pre>indirect_call:</pre>	push %rax common-guard ret
return:	common-guard ret
<pre>jcc_fall:</pre>	<i>jcc</i> jump_1 jmp fall_1
<i>jcc</i> _back:	<i>jcc</i> jump_1 jmp back_1
jump_1:	xchg (%rsp), %rax mov (%rax), %rax jmp condition_jump
fall_1:	xchg (%rsp), %rax lea 8(%rax), %rax jmp condition_jump
back_1:	xchg (%rsp), %rax lea 8(%rax), %rax xchg (%rsp), %rax ret
condition_jump:	push %rax common-guard pop %rax xchg (%rsp), %rax ret

Context Protection with Wide Registers

		Guard Code									
Guard Name	Legacy	v-mode	SHA-ext	ension							
before-check	1:movd 2:psubd	<i>r</i> , %xmm11 %xmm12, %xmm11	1:movd 2:psubd	<i>r</i> , %xmm11 %xmm12, %xmm11							
	2.03000	70×111112, 70×111111	3:sha1msg1	%xmm14, %xmm13							
			4:sha1msg2	%xmm13, %xmm13							
			5:pslrdq	\$4, %xmm13							
	3:pxor	%xmm11, %xmm13	6:pxor	%xmm11, %xmm13							
check	4:movd	%xmm13, <i>r</i>	7:movd	%xmm13, <i>r</i>							
	5:and	$(max_hash - 1), r$	8:and	$(max_hash - 1), r$							
	6:bt	r , (HASH_TABLE)	9:bt	r , (HASH_TABLE)							
	7:jnb	TRAP	10:jnb	TRAP							
after-check	8:pextrd	\$3, %xmm14, <i>r</i>	11:pslldq	\$4, %xmm14							
	9:pslldq	\$4, %xmm14	12:psllw	\$1, %xmm14							
	10:pxor	%xmm11, %xmm14	13:pxor	%xmm11, %xmm14							
	11:movd	r, %xmm11									
	12:pxor	%xmm11, %xmm13									
	13:pslld	\$1, %xmm13									
	14:pslld	\$1, %xmm14									

Tuning Policy Strictness

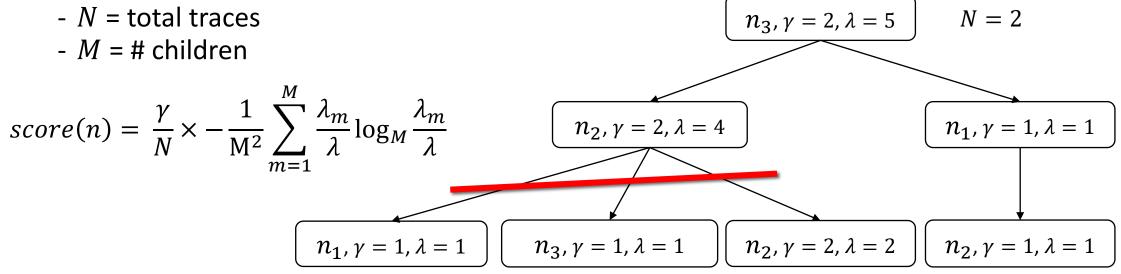


UT DALLAS DR. KEVIN W. HAMLEN

Decision Trees and Entropy

High entropy node = high uncertainty = incomplete testing

```
1 void dispatch(void (*func)()) {
2     func();
3     LOG();
4 }
```

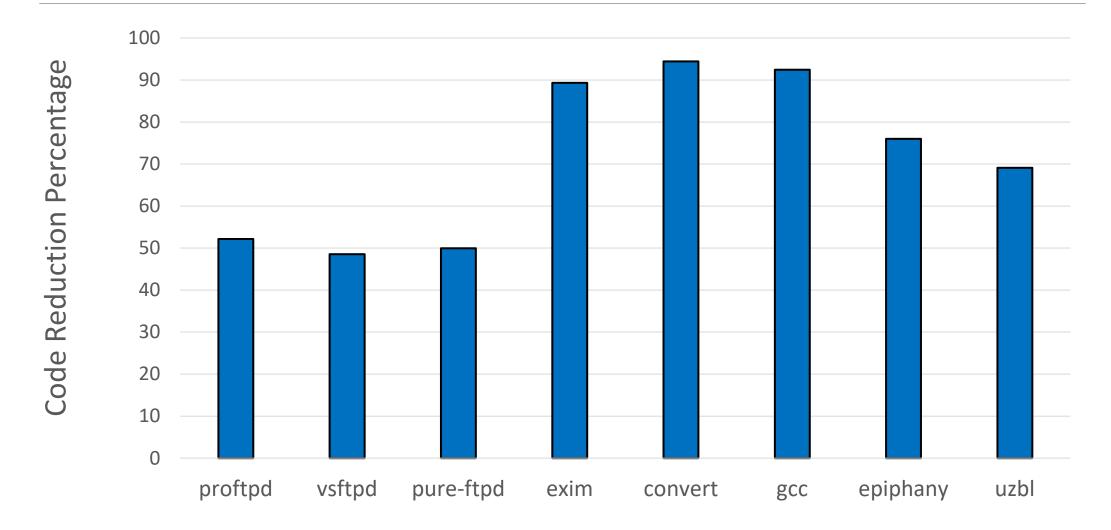



Relaxing the policy

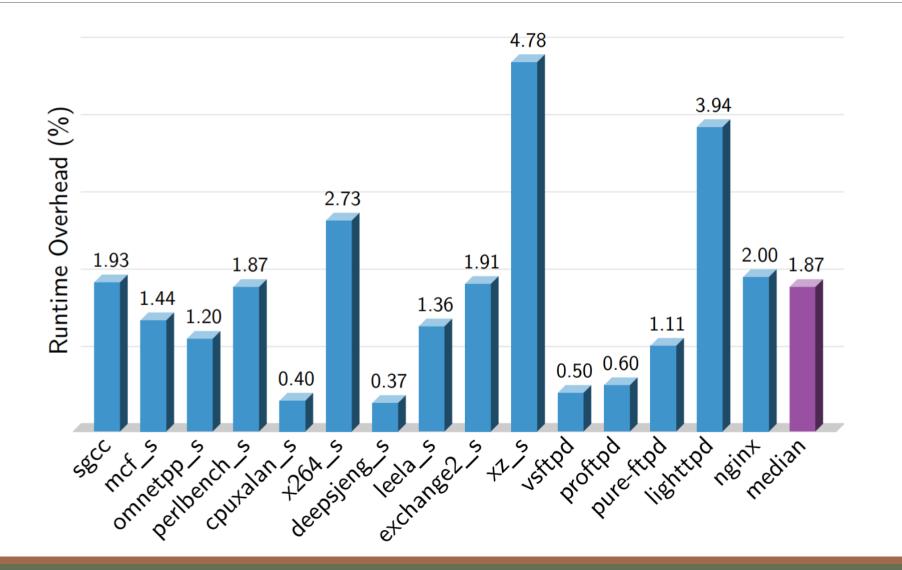
- Relaxation philosophy:
 - Relaxed policy is always as strict as non-contextual CFI.
 - Relaxations merely identify some context as irrelevant to the enforcement decision.

➢ Parameters

- λ = # times the node observed in all traces
- γ = # traces in which node is observed



Accuracy


	Program												
proftpd vsftpd pure-ftpd exim													
	Sample Size	10	100	500	10	100	500	10	100	500	10	100	200
	t*	0.48	0.37	0.00	0.38	0.23	0.00	0.41	0.28	0.00	0.25	0.53	0.00
FP	t=0.00 t=0.25 t=t*	45.00 30.00 25.00	3.00 1.50 1.00	$0.00 \\ 0.00 \\ 0.00$	35.00 25.00 25.00	2.00 1.50 1.50	$\begin{array}{c} 0.00 \\ 0.00 \\ 0.00 \end{array}$	25.00 25.00 10.00	2.50 1.50 1.50	$\begin{array}{c} 0.00 \\ 0.00 \\ 0.00 \end{array}$	35.00 15.00 20.00	7.50 1.00 0.00	$0.00 \\ 0.00 \\ 0.00$
FN		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

	Program												
			epipł	nany			uz	bl		C	gcc		
	Sample Size	10	100	500	1000	10	100	500	1000	10	100	200	10
	t*	0.93	0.81	0.33	0.00	0.92	0.83	0.65	0.45	0.64	0.54	0.00	0.00
FP	t=0.00 t=0.25 t=t*	85.00 40.00 0.00	40.00 10.00 6.50	8.70 0.40 0.30	$0.00 \\ 0.00 \\ 0.00$	90.00 40.00 30.00	50.50 3.50 2.50	$10.70 \\ 0.90 \\ 0.60$	4.30 0.85 0.35	20.00 15.00 10.00	$2.50 \\ 1.00 \\ 0.00$	$\begin{array}{c} 0.00 \\ 0.00 \\ 0.00 \end{array}$	$\begin{array}{c} 0.00 \\ 0.00 \\ 0.00 \end{array}$
FN		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Reachable Code Reduction

Run-time Overhead

UT DALLAS DR. KEVIN W. HAMLEN

CFI ≠ Debloating

- Policies enforced by prior CFI works:
 - Source-aware CFI solutions: CFG derived from source code semantics
 - Binary-only CFI solutions: Approximate the source CFG from binary semantics
 - Both approaches preserve <u>developer-intended</u>, consumer-unwanted edges.
- Prior contextual CFI solution:
 - PathArmor [Van Der Veen et al.; USENIX Security 2015]
 - Contextual checks only performed at system call sites
 - Insufficient granularity to debloat fine-grained code blocks from software
 - Performance overhead too high if applied to every branch instruction

Comparison with RAZOR [Qian et al. (USENIX'19)]

	RAZOR	Control-flow Trimming				
Strategy	Heuristics applied to code structure and traces	Machine learning (decision trees)				
Policy Expressiveness	Static CFI	Contextual CFI				
Debloating rate	~71%	~71%				
Performance Overhead	1.7%	1.9%				

Conclusion

Main achievements

> Binary software debloating using <u>incomplete</u> test-suite and no source code

First fine-grained contextual CFI enforcement at every branch site with high performance (1.8% overhead)

Challenges for Future Research / Transition

- Highly interactive software (diverse traces) can create high training burden. Could couple with directed fuzzers to improve training effectiveness.
- Training process automatically detects uncertainties and ambiguities. Feed this information back to (non-expert) users to help them refine the training?

THANK YOU

QUESTIONS?

UT DALLAS DR. KEVIN W. HAMLEN