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Abstract
Prior work has shown that return oriented programming
(ROP) can be used to bypass W⊕X, a software defense
that stops shellcode, by reusing instructions from large
libraries such as libc. Modern operating systems have
since enabled address randomization (ASLR), which ran-
domizes the location of libc, making these techniques
unusable in practice. However, modern ASLR implemen-
tations leave smaller amounts of executable code unran-
domized and it has been unclear whether an attacker can
use these small code fragments to construct payloads in
the general case.

In this paper, we show defenses as currently deployed
can be bypassed with new techniques for automatically
creating ROP payloads from small amounts of unran-
domized code. We propose using semantic program ver-
ification techniques for identifying the functionality of
gadgets, and design a ROP compiler that is resistant to
missing gadget types. To demonstrate our techniques, we
build Q, an end-to-end system that automatically gener-
ates ROP payloads for a given binary. Q can produce
payloads for 80% of Linux /usr/bin programs larger
than 20KB. We also show that Q can automatically per-
form exploit hardening: given an exploit that crashes
with defenses on, Q outputs an exploit that bypasses both
W⊕X and ASLR. We show that Q can harden nine real-
world Linux and Windows exploits, enabling an attacker
to automatically bypass defenses as deployed by industry
for those programs.

1 Introduction

Control flow hijack vulnerabilities are extremely danger-
ous. In essence, they allow the attacker to hijack the
intended control flow of a program and instead execute
whatever actions the attacker chooses. These actions

could be to spawn a remote shell to control the program,
to install malware, or to exfiltrate sensitive information
stored by the program.

Luckily, modern OSes now employ W⊕X and ASLR
together — two defenses intended to thwart control flow
hijacks. Write xor eXecute (W⊕X, also known as DEP)
prevents an attacker’s payload itself from being directly
executed. Address space layout randomization (ASLR)
prevents an attacker from utilizing structures within the
application itself as a payload by randomizing the ad-
dresses of program segments. These two defenses, when
used together, make control flow hijack vulnerabilities
difficult to exploit.

However, ASLR and W⊕X are not enforced com-
pletely on modern OSes such as OS X, Linux, and Win-
dows. By completely, we mean enforced such that no
portion of code is unrandomized for ASLR, and that in-
jected code can never be executed by W⊕X. For example,
Linux does not randomize the program image, OS X does
not randomize the stack or heap, and Windows requires
third party applications to explicitly opt-in to ASLR and
W⊕X. Enforcing ASLR and W⊕X completely does not
come without cost; it may break some applications, and
introduce a performance penalty.

Previous work [42] has shown that systems that do
not randomize large libraries like libc are vulnerable to
return oriented programming (ROP) attacks. At a high
level, ROP reuses instruction sequences already present
in memory that end with ret instructions, called gad-
gets. Shacham showed that it was possible to build a
Turing-complete set of gadgets using the program code
of libc. Finding ROP gadgets has since been, to a large
extent, automated when large amounts of code are left un-
randomized [16, 21, 39]. However, it has been left as an
open question whether current defenses, which randomize
large libraries like libc but leave small amounts of code
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unrandomized, are sufficient for all practical purposes, or
permit such attacks.

In this paper, we show that current implementations are
vulnerable by developing automated ROP techniques that
bypass current defenses and work even when there is only
a small amount of unrandomized code. While it has long
been known that ASLR and W⊕X offer important protec-
tion in theory, our main message is that current practical
implementations make compatibility and performance
tradeoffs, and as a result it is possible to automatically
harden existing exploits to bypass these defenses.

Bypassing defenses on modern operating systems re-
quires ROP techniques that work with whatever unran-
domized code is available, and not just pre-determined
code or large libraries. To this end, we introduce several
new ideas to scale ROP to small code bases.

One key idea is to use semantic definitions to deter-
mine the function, if any, of an instruction sequence. For
instance, rather than defining movl *, *; ret as a
move gadget [21, 39], we use the semantic definition
OutReg ← InReg. This allows us to find unexpected
gadgets such as realizing imul $1, %eax, %ebx;
ret1 is actually a move gadget.

Another key point is that our system needs to grace-
fully handle missing gadget types. This is comparable
to writing a compiler for an instruction set architecture,
except with some key instructions removed; the com-
piler must still be able to add two numbers even when
the add instruction is missing. We use an algorithm
that searches over many combinations of gadget types in
such a way that will synthesize a working payload even
when the most natural gadget type is unavailable. Prior
work [16, 21, 39] focuses on finding gadgets for all gad-
get types, such that a compiler can then create a program
using these gadget types. This direct approach will not
work without additional logic if some gadget types are
missing. However, we are not aware of prior work that
considers this. This is essential in our application domain,
since most programs will be missing some gadget types.

Our results build on existing ROP research. Previous
ROP research was either performed by hand [6, 9, 42], or
focused on large code bases such as libc [39] (1,300KB),
a kernel [21] (5,910KB) or mobile libraries [16, 25] (size
varies; on order of 1,000KB). In contrast, our techniques
work on small amounts of code (20KB). In our evaluation
(Section 7), we show that Q can build ROP payloads for
80% of Linux programs larger than 20KB. Q can also
transplant the ROP payloads into an existing exploit that
does not bypass defenses, effectively hardening the origi-

1We use AT&T assembly syntax in this paper, i.e., the source operand
comes first.

nal exploit to bypass W⊕X and ASLR. Recent work in
automatic exploit generation [3, 5] can be used to gen-
erate such exploits. We show that Q can automatically
harden nine exploits for real binary programs on Linux
and Windows to bypass implemented defenses. Since
these defenses can automatically be bypassed, we con-
clude that they provide insufficient security.

Contributions. Our main contribution is demonstrating
that existing ASLR and W⊕X implementations do not
provide adequate protection by developing automated
techniques to bypass them. First, we perform a survey
of modern implementations and show that they often do
not protect all code even when they are “turned on”. This
motivates our problem setting. Second, we develop ROP
techniques for small, unrandomized code bases as found
in most practical exploit settings. Our ROP techniques
can automatically compile programs written in a high-
level language down to ROP payloads. Third, we evaluate
our techniques in an end-to-end system, and show that
we can automatically bypass existing defenses for nine
real-life vulnerabilities on both Windows and Linux.

2 Background and Defense Survey

There is a notion that code reuse attacks like return ori-
ented programming are not possible when ASLR is en-
abled at the system level. This is only half true. If ASLR
is applied to all program segments, then code reuse is in-
tuitively difficult, since the attacker does not know where
any particular instruction sequence will be in memory.
However, ASLR is not currently applied to all program
segments, and we will show that attackers can use this
to their advantage. In this section, we explain the W⊕X
and ASLR defenses in more detail, focusing on when a
program segment may be left unprotected.

Table 1 summarizes some of these limitations. The key
insight that we make use of in this paper is that program
images are always unrandomized unless the program ex-
plicitly opts in to randomization. On Linux, for instance,
this mean that developers must set non-default compiler
flags to enable randomization. Another surprise is that
W⊕X is often disabled when older hardware is used;
some virtualization platforms by default will omit the
virtual hardware needed to enable W⊕X.

2.1 W⊕X
W⊕X prevents attackers from injecting their own payload
and executing it by ensuring that protected program seg-
ments are not writable and executable at the same time
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Operating System W⊕X
ASLR

stack,
heap libraries

program
image

Ubuntu 10.04 Yes Yes Yes Opt-In

Debian Sarge HW Yes Yes Opt-In

Windows Vista, 7 HW Yes Opt-In Opt-In

Mac OS X 10.6 HW No Yes No

Table 1: Comparison of defenses on modern operating
systems for the x86 architecture with default settings. Opt-
In means that programs and libraries must be explicitly
marked by the developer at compile time for the protection
to be enabled, and that some compilers do not enable
the marking by default. HW denotes that the level of
protection depends on hardware.

(Writable ⊕ eXecutable2). Attackers have traditionally
included shellcode (executable machine code) in their
exploits as payloads. Since shellcode must be written to
memory at runtime, it cannot be executed because of the
W⊕X property.

W⊕X Implementation W⊕X is implemented [30, 31,
36] using a NX (no execute) bit that the hardware platform
enforces: if execution moves to a page with the NX bit
enabled, the hardware raises a fault. On x86, this bit can
be set using the PAE addressing mode [22].

PAE support is disabled by default in Ubuntu Linux,
since some older hardware does not support it. The Ex-
ecShield [32] patch, which is included in Ubuntu, can
emulate W⊕X by using x86 segments, even when hard-
ware NX support is not available. Other distributions (such
as Debian) do not include the ExecShield patch, and do
not provide any W⊕X protection in default kernels.

Windows 7 enables W⊕X3 by default for processors
supporting the NX bit. However, it only enforces W⊕X
for binaries and libraries marked as W⊕X compatible.
Many notable third-party software programs such as Ora-
cle’s Java JRE, Apple Quicktime, VLC Media Player and
others do not opt-in to W⊕X [37].

Limitations The main limitation of W⊕X is that it only
prevents an attacker from utilizing new payload code. The
attacker can still reuse existing code in memory. For
instance, an attacker can call system by launching a

2W⊕X is actually a misnomer, because memory is allowed to be
unwritable and non-executable, but 0⊕ 0 = 0.

3W⊕X is called DEP by the Windows community. Windows also
contains software DEP, but this is unrelated to W⊕X [31].

return-to-libc attack, in which the attacker creates an ex-
ploit that will call a function in libc without injecting any
shellcode. W⊕X does not prevent return-to-libc attacks
because the executed code is in libc and is intended to
be executable at compile time. Return Oriented Program-
ming is another, more advanced attack on W⊕X, which
we discuss in Section 2.3.

2.2 ASLR
ASLR prevents an attacker from directly referring to ob-
jects in memory by randomizing their locations. This
stops an attacker from being able to transfer control to his
shellcode by hardcoding its address in his exploit. Like-
wise, it makes return-to-libc and ROP using libc difficult,
because the attacker will not know where libc is located
in memory.

Implementation ASLR implementations randomize
some subset of the stack, heap, shared libraries (e.g., libc),
and program image (e.g., the .text section).

Linux [32, 35] randomizes the stack, heap, and shared
libraries, but not the program image. Programs can be
manually compiled into position independent executables
(PIEs) which can then be loaded to multiple positions
in memory. Modern distributions [14, 45] only compile
a select group of programs as PIEs, because doing so
introduces a performance overhead at runtime.

Windows Vista and 7 [30, 44] can randomize the loca-
tions of the program image, stack, heap, and libraries, but
only when the program and all of its libraries opt-in to
ASLR. If they do not, some code is left unrandomized.
Many third-party applications including Oracle’s Java
JRE, Adobe Reader, Mozilla Firefox, and Apple Quick-
time (or one of their libraries) are not marked as ASLR
compatible [37]. Ultimately, this means most Windows
binaries have unrandomized code.

Limitations Some attacks on ASLR implementations
take advantage of the low entropy available for random-
ization. For instance, Shacham, et al. [43] show that
brute forcing ASLR on a 32-bit platform takes about 200
seconds on average. (We do not consider attacks that
take more than one attempt in this paper; we create ex-
ploits that succeed on the first try.) Other attacks, such as
ret2reg attacks, allow the attacker to transfer control
to their payload by utilizing pointers leaked in registers
or memory [33]. For instance, the strcpy function re-
turns such a pointer to the destination string in the %eax
register. The applicability of these attacks are heavily
dependent on the vulnerable program.
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Figure 1: Example payload for storing memValue to
memAddr for the scenario described in the text. This
payload will transfer control to address nextAddr after
writing to memory.

2.3 Return Oriented Programming

Return Oriented Programming is a generalization of the
return-to-libc attack. In a return-to-libc attack the attacker
reuses entire functions from libc. With ROP, the attacker
uses instruction sequences found in memory, called gad-
gets, and chains them together. ROP attacks are desir-
able because they allow the attacker to perform compu-
tations beyond the functions of libc (or whatever code
is unrandomized). This is especially important in the
context of modern systems, because the unrandomized
code may not contain useful funcions for the attacker.
Researchers [16, 21, 42] have shown that it is possible to
find gadgets for performing Turing-complete operations
in libc, the windows kernel, and mobile phone libraries.

Example 2.1 (Return Oriented Programming). Assume
that the following instruction sequences are in memory
at addr1: pop %eax; ret; at addr2: pop %ebp;
ret; and at addr3: movl %eax, (%ebp); ret.
The first two sequences pop a 32-bit value from the stack,
store it into a register, and then jump to the address stored
on the stack. If the attacker controls the stack and can
cause one of these instruction sequences to execute, then
the attacker can put values in %eax and %ebp and transfer
control to another address. By chaining together all three
instruction sequences, the attacker can write to memory
(and still transfer control to the next gadget). The at-
tacker’s payload for writing memValue to memAddr is
shown in Figure 1. It is possible to execute arbitrary
programs by stringing together gadgets of different types.

3 System Overview

In the next two sections, we describe Q4, our system for
automatic exploit hardening. Figure 2 shows the end-to-
end workflow of Q, which is divided into two phases. The
first phase automatically generates ROP payloads (Sec-
tion 4). The second phase is exploit hardening (Section 5).
In exploit hardening, Q takes the ROP payloads gener-
ated in the first stage and transplants them into existing
exploits which do not bypass defenses. The resulting
exploit can then bypass W⊕X and ASLR.

4 Automatically Generating Return-
Oriented Payloads

Q’s end-to-end return oriented programming system con-
sists of a number of different stages. Previous research
on automated ROP has typically focused on one specific
stage; for instance, gadget discovery [16, 25, 39] or com-
pilation [6]. Since Q is an end-to-end ROP system, it has
multiple stages. We describe each stage in the context of
a user’s potential interaction with the system below.

4.1 Example Usage Scenario
Assume that Alice wants to create a ROP payload that
calls system (her target program) using instructions
from rsync’s unrandomized code (her source program).
Here, source program means the program from which Q
takes instruction sequences to construct gadgets (e.g., the
program with a vulnerability), and target program means
the program Alice wants to run (using ROP). Alice would
use the following stages of Q, which are depicted in the
top half of Figure 2:

Gadget Discovery The first stage of Q is to find gad-
gets in the source program that Alice provides — in this
case, rsync. The gadgets will be the building blocks for
the ROP payloads that are ultimately created, and thus it is
important to find as many as possible. Q finds gadgets of
various types (specified in Table 2) by using semantic pro-
gram verification techniques on the instruction sequences
found in rsync.

Q’s semantic engine allows it to find gadgets that hu-
mans might miss. For instance, Q can automatically
determine that lea (%ebx,%ecx,1),%eax; ret
adds %ebx with %ecx and stores the result in %eax.
Likewise it discovers that sbb %eax, %eax; neg
%eax; ret moves the carry flag (CF) to %eax.

4We name our system after Q from the James Bond movies, who cre-
ates, modifies, and combines gadgets to help Bond meet his objectives.
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Figure 2: An overview of Q’s design.

Input Alice writes the target program that she wants to
execute in Q’s high level language, QooL (shown in Table
3). The target program calls system with the desired
arguments (e.g., /bin/sh).

Gadget Arrangement Q builds a list of gadget ar-
rangements. Each gadget arrangement is a way of im-
plementing the target program using different types of
gadgets. For example, we show a gadget arrangement
for writing to memory in Figure 3; this arrangement is
the most natural way of storing to memory, but will not
work if Q can not find a STOREMEMG gadget. Gadget
arrangement is somewhat analogous to instruction selec-
tion in a compiler. A major difference is that a regular
compiler can use whichever instructions it chooses, but
Q is limited to the gadget types that were found during
gadget discovery.

Gadget arrangement allows Q to cope with missing
gadgets. If the most natural choice of gadget is not avail-
able, Q effectively tries to synthesize a combination of
other gadgets that will have the same semantics. We are
not aware of other ROP compilers that consider this.

Gadget Assignment Gadget assignment takes gadgets
found during discovery, and assigns them in the arrange-
ments that Q generated. The difficulty is that assignments
must be compatible. This means that the output register of
one gadget must match the input register on the receiving
gadget. Likewise, gadgets cannot clobber a register if that
value is waiting to be used by a future gadget. This phase
is roughly analogous to register allocation in a traditional
compiler. Unlike a traditional compiler, Q cannot spill
registers to memory, since this usually increases register
pressure instead of decreasing it. As an example, Q as-
signs the following gadgets from rsync to implement
the gadget arrangement in Figure 3:
; Load value into %eax

pop %ebp; ret; xchg %eax, %ebp; ret

; Load address-0x14 into %ebx

pop %ebx; pop %ebp; ret

; Store memory

mov %eax, 0x14(%ebx); ret

Output Finally, as long as at least one of the gadget
arrangements has been assigned compatible gadgets, Q
prints out payload bytes that Alice can use in her exploit.
If Alice already has an exploit that no longer works be-
cause of W⊕X and ASLR, she can feed in the generated
ROP payload along with her old exploit to the second
phase of Q (see Section 5) to harden her exploit against
these defenses.

We now explain each stage of Q in more detail.

4.2 Gadget Discovery
Not every instruction sequence can be used as a gadget.
Q requires each gadget to satisfy four properties:
Functional Each gadget has a type (from Table 2) that

defines its function. In our system, a gadget’s type
is specified semantically by a boolean predicate that
must always be true after executing the gadget.

Control Preserving Each gadget must be capable of
transferring control to another gadget. In our system,
this means that the gadget must end with ret or
some semantically equivalent instruction sequence
(e.g., pop %eax; jmp *%eax).

Known Side-effects The gadget must not have unknown
side-effects. For instance, the gadget must not write
to any undesired memory locations.

Constant Stack Offset Most gadget types require the
stack pointer to increase by a constant offset after
each execution.

Although we found these requirements to work well,
we discuss alternatives to the control preservation and
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known side-effects requirements in Section 8.

4.2.1 Gadget Types

The set of gadget types in Q defines a new instruction
set architecture (ISA) in which each gadget type func-
tions as an instruction. At a high-level, we specify the
meaning of each gadget type with a postcondition B that
must be true after executing it. Prior work has used dif-
ferent mechanisms for specifying gadget types, including
pattern matching on assembly instructions [21, 39] and
expression tree matching [16]. We found postconditions
to be more natural than these mechanisms. An instruction
sequence I satisfies a postcondition B if and only if the
post condition is true after running I from any starting
state. The starting state consists of assignments to reg-
isters and memory. The full list of gadget types that Q
can recognize is in Table 2, along with the corresponding
semantic definition postconditions.

4.2.2 Semantic Analysis

Given an instruction sequence I and a semantic definition
B, Q must decide if I will satisfy B. For this, we use a
well-known technique from program verification for com-
puting the weakest precondition of a program [15, 17, 24].
At a high level, the weakest precondition WP(I,B) for
instructions I and postcondition B is a boolean precon-
dition that describes when I will terminate in a state
satisfying B.

We use weakest preconditions in Q to verify whether
the semantic definition of a gadget always holds after
executing the instruction sequence I. To do this, we
check if

WP(I,B) ≡ true. (1)

If this formula is valid, then B always holds after execut-
ing I, and we can conclude that I is a gadget with the
semantic type B.

Our first prototype used only this semantic analysis.
We found that it was too slow to be practical. We sped
up the entire process by performing a number of random
concrete executions, and evaluating each B concretely to
see if it was true. If B was false for any concrete input,
then the instruction sequence could not be a gadget for
that gadget type. Thus, we only need to invoke the more
expensive weakest precondition process when B is true
for every random concrete execution.

Random concrete execution can also be used to infer
possible parameter values (shown in Table 2) using dy-
namic analysis. For instance, by looking at the values
of all registers, and the addresses that memory was read

from, Q can compute a set of possible offsets for the
LOADMEMG gadget type.

As an example of how a gadget type is tested, con-
sider the LOADMEMG gadget type in Table 2. LOAD-
MEMG gadgets operate on two registers: the output reg-
ister and the address register. Each LOADMEMG gadget
has two parameters that are specific to a particular in-
struction sequence I . These will be found using dynamic
analysis as described above. For instance, the instruc-
tion sequence movl 0xc(%eax), %ebx; ret is a
LOADMEMG gadget with parameters {# Bytes← 4} and
{Offset ← 12} and registers {OutReg ← %ebx} and
{AddrReg← %eax}. The semantics for this instruction
sequence would be %ebx←M[%eax + 12]. Q converts
this to final(%ebx) = initial(M [%eax + 12]),
which is the postcondition B that is checked for validity.

4.2.3 Gadget Discovery Algorithm

Our techniques for gadget discovery consist of two algo-
rithms. The first, shown in Algorithm 1, tests whether
or not the semantics of an instruction sequence I match
those of any gadget type using randomized concrete test-
ing and validity checking of the weakest precondition. Al-
gorithm 1 also outputs some metadata (not shown) about
each gadget for use in other Q algorithms, including the
gadget’s address, stack offset, and any registers that the
gadget clobbers. The second algorithm iterates over the
executable bytes of the source program, disassembles
them, and calls the first algorithm as a subroutine. This
is similar to the Galileo [42] algorithm, and so we do not
replicate it here.
Algorithm 1 Automatically test an instruction sequence
I for gadgets

Input: I, numRuns, gadgetTypes[]
for i = 1 to numRuns do

outState[i]← I(Random input)
end for

5: for gtype ∈ gadgetTypes do
B ← postconditions[gtype]
consistent← true
for j = 1 to numRuns do

if B(outState[j]) ≡ false then
10: consistent← false

end if
end for
if consistent = true then {Possibly a gadget of type gtype}

F ← wp(I,B)
15: if decisionProc(F ≡ true) = Valid then

output {Output gadget I as type gtype}
end if

end if
end for

6



Name Input Parameters Semantic Definition

NOOPG — — Does not change memory or registers

JUMPG AddrReg Offset EIP← AddrReg + Offset

MOVEREGG InReg, OutReg — OutReg← InReg

LOADCONSTG OutReg, Value — OutReg← Value

ARITHMETICG InReg1, InReg2, OutReg ♦b OutReg← InReg1 ♦b InReg2

LOADMEMG AddrReg, OutReg # Bytes, Offset OutReg←M[AddrReg + Offset]

STOREMEMG AddrReg, InReg # Bytes, Offset M[AddrReg + Offset]← InReg

ARITHMETICLOADG OutReg, AddrReg # Bytes, Offset, ♦b OutReg ♦b←M[AddrReg + Offset]

ARITHMETICSTOREG InReg, AddrReg # Bytes, Offset, ♦b M[AddrReg + Offset] ♦b← InReg

Table 2: Types of gadgets that Q can find. M[addr] means accessing memory at address addr. ♦b means an arbitrary
binary operation. a← b denotes that final value of a equals the initial value of b. X ♦b← Y is short for X← X ♦b Y.

4.3 Gadget Arrangement
Q acts similar to a compiler — it reads in programs written
in QooL (discussed below) and tries to implement them in
terms of the gadgets shown in Table 2. The gadgets define
an instruction set architecture. Thus, we can use some
techniques from compiler theory. However, Q must deal
with several hard problems not faced by most compilers:

• Only a few registers can be used for moving, access-
ing memory, and performing arithmetic operations.
• Most instructions will clobber (modify) the majority

of available registers.
• Some instruction types may not be available at all.

Although we use existing compiler techniques when
possible, many of the standard compiler techniques break
down.

4.3.1 Q’s Language: QooL

Users write the target program in Q’s high level language,
QooL, which is displayed in Table 3. QooL enables
the user to easily interact with the exploited program’s
environment. For instance, the attacker can do this by
calling a function (e.g., system), overwriting values in
memory, or copying and running a binary payload (when
W⊕X is not present or has been disabled by first calling
mprotect or a similar function). QooL is not Turing-
complete; we discuss this further in Section 8.

4.3.2 Arrangements

One of the essential tasks of a compiler is to perform
instruction selection, since there are many combinations
of instructions that can implement a given computation.
The gadget architecture is no exception, as there are many
ways of combining gadget types to produce a particular

<exp> ::=

LoadMem <exp> <type>

| BinOp <binop type> <exp> <exp>

| Const <int> <type>
<stmt> ::=

StoreMem <exp> <exp> <type>

| Assign <var> <exp>

| CallExternal <func> <exp list>

| Syscall

Table 3: Grammar for our high level language, QooL.

computation. We specify each combination of gadgets
using a gadget arrangement.

A gadget arrangement is a tree in which the vertices
represent gadget types5, and an edge labeled type from a
to b means that the output of gadget a is used for the type
input in gadget b. An example arrangement is shown in
Figure 3.

One simple algorithm for performing instruction selec-
tion (or selecting a gadget arrangement, in our case) is
the maximal munch algorithm [2]. Maximal munch as-
sumes that any instruction selected as the best will always
be available for use. This assumption makes sense in a
traditional compiler, since on a normal architecture there
are few restrictions on when instructions can be used.

A gadget arrangement algorithm cannot make such
assumptions. Any particular gadget type chosen by max-
imal munch might not be available at that point in the
program because Q did not find any or the registers in the
gadgets are not compatible with other gadgets needed.

Instead of using maximal munch, Q employs every
munch. Rather than selecting only one arrangement of

5Vertices also include parameters that are relevant to the computation,
such as binary operator type and number of bytes for memory operations.
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Figure 3: A gadget arrangement for storing a constant
value to a constant address. A possible schedule for the
arrangement is denoted by the time slots Ti’s.

gadget types as maximal munch would, every munch
lazily builds a tree representing all possible ways that
gadget types can be arranged to perform a computation.
This is done by recursively applying munch rules to the
program being compiled.

4.3.3 Munch Rules

Each QooL language construct has at least one munch
rule that can implement the construct in terms of the
implementations of its subexpressions. For instance, the
obvious munch rule for the StoreMem statement is to
use a STOREMEMG gadget, which we show below in
ML-style pseudo code.

1 munch = f u n c t i o n
2 | StoreMem ( e1 , e2 , t ) −>
3 l e t e 1 l = munch e1 i n
4 l e t e 2 l = munch e2 i n
5 (∗ For each e1g , e2g i n C a r t e s i a n
6 p r o d u c t o f e 1 l and e 2 l do : ∗ )
7 a d d o u t p u t ( StoreMemG ( addr =e1g ,

v a l u e =e2g , t y p = t ) ) ;

Our initial implementation only contained these obvious
rules. We quickly found that it could not find payloads
for most binaries.

We found that, in practice, many binaries do not contain
gadgets for directly storing to memory (STOREMEMG
in Table 2). We provide evidence of this in Section 7.1.
However, if Q can learn or set the value in memory to 0
or -1, it can use an ARITHMETICSTOREG gadget with
mathematical identities to write an arbitrary value. As
one example, Q can write zero to memory by bitwise
and’ing the memory location with zero, and then adding
the desired number. The example below shows the com-
plicated return oriented program Q discovered for writing
a single byte to memory with bitwise or, using gadgets

from apt-get. More straightforward options were not
available.

; Load eax: -1
pop %ebp; ret; xchg %eax, %ebp; ret
; Load ebx: address-0x5e5b3cc4
pop %ebx; pop %ebp; ret
; Write -1
or %al, 0x5e5b3cc4(%ebx); pop %edi;

pop %ebp; ret
; Load eax: value + 1
pop %ebp; ret; xchg %eax, %ebp; ret
; Load ebp: address-0xf3774ff
pop %ebp; ret
; Add value + 1
add %al,0xf3774ff(%ebp);

movl $0x85, %dh; ret

4.4 Gadget Assignment
Q must determine if a gadget arrangement can be satisfied
using the gadgets it discovered in the source program.
This process is called gadget assignment. The goal is
to assign gadgets found during discovery to the vertices
of arrangements, and see if the assignment is compati-
ble. After a successful gadget assignment, the output is
a mapping from gadget arrangement vertices to concrete
gadgets. It is straightforward to print a ROP payload with
this mapping.

Gadget assignments need a schedule, since the gadgets
must execute in some order. Selecting a valid schedule
is not always easy because there are data dependencies
between different gadgets. For instance, if the gadget at
T2 clobbers (overwrites) the Value register in Figure 3, the
gadget at T3 will not receive the correct input. To resolve
such dependencies between gadgets, a gadget assignment
and corresponding schedule must satisfy these properties:
Matching Registers Whenever the result of gadget a is

used as input type to gadget b, then the two registers
should match, i.e., OutReg(a) = InReg(b, type).

No Register Clobbering If the output of gadget a is
used by gadget b, then a’s output register should not
be clobbered by any gadget scheduled between a and
b. For example, for the schedule shown in Figure 3,
the LOADCONSTG operation during T2 should not
clobber the result of the previous LOADCONSTG
that happened during T1.

We say that a gadget assignment and schedule are com-
patible when the above properties hold, and that a gadget
arrangement that has a compatible assignment and sched-
ule is satisfiable.

Although deciding whether a given gadget schedule
and assignment are compatible is straightforward (i.e.,
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just ensure the above properties are satisfied), creating a
practical algorithm to search for satisfiable arrangements
is more complicated. The most straightforward approach
is to iterate over all possible arrangements, schedules, and
assignments, but this is simply too inefficient.

Instead, our key observation is that if a gadget arrange-
ment GA is unsatisfiable, then any GA’ that contains GA
as a subtree is unsatisfiable as well. Our algorithm at-
tempts to satisfy iteratively larger subtrees until it fails, or
has satisfied the entire arrangement. If the algorithm fails
on a subtree, it aborts the entire arrangement. Since most
arrangements are unsatisfiable, this saves considerable
time. (If most arrangements are satisfiable, the search will
not take very long anyway.)

Our assignment algorithms are found in Algorithms
2 and 3. Algorithm 2 is a naive search over a schedule
for all possible gadget assignments. Algorithm 3 is a
caching wrapper that caches results and calls Algorithm 2
on iteratively larger subtrees. It stops as soon as it finds a
subtree which cannot be satisfied. Q calls Algorithm 3 on
each possible gadget arrangement until one is satisfiable
or there are none left.

The algorithms make use of several data structures:

• C: V → {0, 1, ?} is a cache that maps a gadget
arrangement vertex to one of true, false, or unknown.
• S: V → N represents the current schedule as a one-

to-one mapping between each vertex and its position
in the schedule.
• G: V → G is the current assignment of each vertex

to its assigned gadget.

Q can also search for assignments that meet other con-
straints. For instance, Q can search for assignments that
would result in a payload smaller than a user-specified
size. This is useful because ROP payloads are typically
larger than conventional payloads, and vulnerabilities usu-
ally limit the number of payload bytes that can be written.

5 Creating Exploits that Bypass ASLR and
W⊕X

In the previous section, we described how to generate
return oriented payloads. If an attacker can redirect exe-
cution to the payload in the memory space of the vulnera-
ble program by creating an exploit, then the computation
specified by the payload will occur. In this section, we
explain how Q can automatically create such an exploit
when given an input exploit that does not bypass ASLR
and W⊕X.

We call this the exploit hardening problem. Specifi-
cally, in the exploit hardening problem we are given a

Algorithm 2 Find a satisfying schedule and gadget as-
signment for GA

Input: S,G, nodeNum
V← S−1(nodeNum) {Obtain vertex in GA for nodeNum}
if V = ⊥ then {Base case to end recursion}

return true
5: end if

gadgets← GADGETSOFTYPE(GADGETTYPE(V))
for all g ∈ gadgets do

if ISCOMPATIBLE(G, nodeNum, g) then {Ensure g is com-
patible with all gadgets before time slot nodeNum}

if Algorithm 2(S,G[V ← g], nodeNum + 1) then {Try
to schedule later schedule slots}

10: return true
end if

end if
end for
return false {No gadgets matched}

Algorithm 3 Iteratively try to satisfy larger subtrees of a
GA, caching results over all arrangements.

Input: GA,C
for all GA′ ∈ SUBTREES(GA) do {In order from shortest to
tallest}

if C(GA′) = ? then
C(GA′) ← exists S ∈ SCHEDULES(GA′) such that
Algorithm 2(S, EMPTY, 0) = true

5: end if
if C(GA′) = false then {Stop early if a subtree cannot be
satisfied}

return false
end if

end for
10: return C(GA) {Return the final value from the cache}

program P and an input exploit that triggers a vulnera-
bility. The input exploit can be an exploit that does not
bypass defenses, or can even be a proof of concept crash-
ing input. The goal is to output an exploit for P that
bypasses W⊕X and ASLR.

Intuitively, the input exploit should provide useful in-
formation about a vulnerability in P . Q uses this infor-
mation to consider other inputs that follow the execution
path of the input exploit (i.e., the sequence of conditional
branches and jumps taken by an execution of the input)
on P , and attempts to find a new input that uses a return-
oriented payload instead (Section 4).

Q does not always succeed (e.g., sometimes it returns
with no exploit), but we show that it works for real Linux
and Windows vulnerabilities in Section 7. The fact that
our system works with even a few real exploits means that
an attacker can sometimes download an exploit and au-
tomatically harden it to one that works even when W⊕X
and ASLR are enabled.
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5.1 Background: Generating Formulas
from a Concrete Run

There can be a very large number of inputs along the
vulnerable path. Rather than trying to reason about each
input individually, we build a logical constraint formula
representing all inputs that follow the vulnerable path.
Such constraint formulas have been used in many research
areas, including automatic test case generation, automatic
signature creation, and others [5, 7, 24, 41].

Generating constraint formulas from an input involves
two steps. First, we record at the binary level the concrete
execution of the vulnerable program running on the input
exploit; we call such a recording an execution trace. Our
recording tool incorporates dynamic taint analysis [11, 34,
41] to keep track of which instructions deal with tainted
(or input-derived) data. Our tool uses this information
to 1) record only the instructions that access or modify
tainted data, for performance reasons; and 2) halt the
recording once control-hijacking takes place (i.e., when
the instruction pointer becomes tainted).

After recording the concrete execution, Q symbolically
executes [7, 41] the target program, following the same
path as in the recording. Symbolic execution is similar
to normal execution, except each input byte is replaced
with a symbol (e.g., si for input byte i). Any computation
involving a symbolic input is replaced with a symbolic
expression. Computations not involving a symbolic input
are computed as normal (i.e., using the processor). Any
constraints on the inputs to ensure that execution would
be guided down the same path as the execution trace are
stored in the constraint formula Π.

Before performing any analysis, we use the Binary
Analysis Platform [23] to raise binary code into an inter-
mediate language that is better suited to program analysis.
This frees our analysis from needing to understand the
semantics of each assembly instruction.

5.2 Exploit Constraint Generation

The constraint formula Π describes all inputs that follow
the vulnerable path. In this paper, we are only interested
in inputs that hijack control to our desired computation.
We build two constraints, α (control flow) and Σ (com-
putation), that exclude any inputs that do not work as
exploits. α maps to true only if a program’s control flow
has been diverted, and Σ maps to true only if the payload
for some desired computation is in the exploit.

5.2.1 Assuring Control Flow Hijacking

α takes the form jumpExp = targetExp, where
jumpExp is the symbolic expression representing the
target of the jump that tainted the instruction pointer, and
targetExp depends on the type of exploit.

The value of jumpExp can be obtained from the ex-
ecution trace. Since the trace halts when the program
jumps to a user-derived address, jumpExp is simply the
symbolic expression for the target of this jump. Consider
the following program.

1 x := 2∗ g e t i n p u t ( )
2 goto x

Our trace system would halt the above program at Line
2, because the program jumps to a user-derived address.
The symbolic jump expression from symbolic execution
of the program is 2 ∗ s1. α for this program would be
2 ∗ s1 = targetExp.

For a typical stack exploit, targetExp =
&(shellcode), where & means the address of. With
a return oriented payload, this would usually be
targetExp = &(ret). This assumes that the ROP
payload is located in memory at the address in %esp.
If not, Q can use a pivot, which its ROP system
can automatically find. For instance, targetExp =
&(xchg %eax, %esp; ret) would transfer control
to the ROP payload pointed to by %eax.

5.2.2 Assuring Computation

Computation constraints ensure that the computation pay-
load is available in memory at the proper address at
the time of exploitation. For instance, computation con-
straints for a strcpy buffer overflow would be unsatisfi-
able for a payload containing a null byte, since this would
result in only part of the payload being copied.

Computation constraints take the form Σ =
(mem[payloadBase] = payload[0] ∧ . . . ∧
mem[payloadBase + n] = payload[n]), where
payloadBase denotes the starting address of the pay-
load in memory, and payload denotes the bytes in the
payload (e.g., the ROP payload from Section 4). When
using a basic ROP payload, payloadBase will be set
to %esp, since that is where a ret will start executing.
When using a pivot, this value will depend on the pivot in
the natural way.

5.2.3 Finding an Exploit

By combining these constraints with Π, which only holds
for inputs following the vulnerable path, we can create a
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constraint formula that only describes exploits along the
vulnerable path:

Π ∧ α ∧ Σ. (2)

Any assignment to the initial program state that satisfies
this constraint formula is an exploit for the program se-
mantics recorded in the trace. We use an off the shelf
decision procedure, STP [19], to solve the formulas.

6 Implementation

The ROP component (Section 4) of Q is built on top of
the BAP framework [23]. The implementation for the
gadget discovery, arrangement, and assignment phases
comprises 4,585 lines of ML code. The ROP system uses
the STP [19] decision procedure to determine the validity
of generated weakest preconditions.

Q’s exploit hardening component (Section 5) itself con-
sists of a tracing (recording) component and an analysis
component. We implemented the tracing tool using the
Pin [29] framework, which allows analysis code to in-
strument a running process and take measurements in
between instruction execution. Our tool is optimized to
only record instructions that are considered to be user-
derived; the user can mark any input coming from files,
network sockets, environment variables, or program ar-
guments as being user-derived, and can record processes
that fork (e.g., network daemons). The tracing component
is written in C++, and includes 2,102 lines of code written
for this project.

The analysis portion of the hardening system is im-
plemented in the BAP [23] framework. It consists of
components that 1) lift the recorded assembly instructions
into the BAP intermediate language, 2) symbolically exe-
cute the trace, obtaining the constraint formula Π, and 3)
compute the constraints α and Σ. Our analysis tool then
uses STP [19] to find a satisfying answer to the resulting
constraint formula, and uses the result to build an exploit.
It also fully understands Windows SEH (structured excep-
tion handler) exploits, in which the exception handler is
overwritten. The analysis implementation is written in
ML, and includes 1,090 new lines of code for this project.

All components of Q are fully capable of reasoning
about Windows and Linux binaries.

7 Evaluation

We evaluate Q’s capabilities to produce ROP payloads
and harden exploits in this section.

7.1 Return Oriented Programming

Applicability We would like to know how often Q can
build ROP payloads when given a random source program
P . To evaluate this, we ran Q on all of the 1,298 ELF
programs in /usr/bin on an author’s Ubuntu 9.10 desk-
top machine and tried to generate various return oriented
payloads. We then discarded the results for the 66 pro-
grams that were marked as ASLR-compatible (PIE). We
used Linux programs for our corpus because it is easier to
gather a typical set of Linux programs than for Windows.
For each program P , we consider if Q can create a ROP
payload to:

Call functions also called by P External functions
called by P have an entry in the program’s Proce-
dure Linkage Table (PLT). Q calls the PLT entries
directly; if the external function has not been loaded,
the dynamic loader will be invoked to load it before
transferring control to the called function.

Call external functions in libc Calling external func-
tions that do not have a PLT entry is more com-
plicated. For this, we build on a technique for cal-
culating the address of functions in libc even when
libc is randomized [40]. This involves more compu-
tation than the above case, and so is more likely to
be unsatisfiable.

Write to memory We consider a payload that writes
four bytes to an arbitrary address.

For each of the target programs above, we measure
whether our system can create a payload for it using in-
struction sequences taken from each source program in
our corpus. We consider an attempt successful if our sys-
tem successfully builds a payload. Note that the attacker
must still find a way to load the payload into memory and
redirect control to it for it to be used as an exploit.

The results of this experiment are shown in Figure 4.
The probability of success for the above payload types is
plotted as a function of source program size. The Call/-
Store line represents the Call functions also called by P
and Write to memory cases above, since the results are
visually indistinguishable. The Call (libc) line represents
Call external functions in libc.

The results support the claim that ROP is more difficult
when there is less binary code. Even so, Q is able to
call linked functions and store arbitrary memory bytes
to arbitrary locations in 80% of binaries that are at least
20KB. Q can also call any function in libc in 80% of
binaries 100KB or larger6.

6The fact that Q generated payloads for so many binaries was dis-
turbing to the author whose machine the programs came from.
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Figure 4: The probability that Q can generate various payload types, shown as a function of source file size. As expected,
the probability grows with file size. The percentage is calculated over non position independent executables. Q can call
linked functions in 80% of programs that are 20KB or larger, and can call any function in linked shared libraries in 80%
of programs that are at least 100KB in size.

Efficiency While we found that semantic gadget discov-
ery techniques are useful for finding gadgets, they are not
very fast. In our implementation, we found that adding a
concrete randomized testing stage increased Q’s perfor-
mance. To measure this, we collected a random sample of
32 programs from our /usr/bin dataset and ran gadget
discovery. For each program, we ran Q twice, once with
randomized testing enabled, and once disabled. Figure 5
shows a boxplot of the elapsed wall times when running
with 16 active threads. (The time difference would be
greater with fewer threads, but the experiment would take
a very long time to complete for the non-randomized
cases.) As expected, Q runs faster when randomized
testing is enabled.
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Figure 5: Boxplots of the time it takes to discover gadgets
from a program for a random sample of 32 programs,
when randomized testing is enabled and disabled.

Sizes Our results from Figure 4 show that larger pro-
grams are generally easier to build return oriented pro-
grams from. Figure 6 shows the sizes of the programs in
our experiments, and compares them to the binaries used
in prior research, libc [39], the iPhone library [16], and

the windows kernel [21]. We note that these binaries are
significantly larger than most /usr/bin programs.

Gadget Frequency Figure 7 shows the frequency of
various types of gadgets in programs larger than 20KB.7

It offers some insight on why ROP on small binaries
is difficult. The most useful gadget types, like STORE-
MEMG and LOADMEMG, are not very common. Instead,
combined gadgets like ARITHMETICSTOREG are more
prevalent. This is not surprising, given that compilers
try to combine operations to optimize efficiency. These
results are what inspired Q’s gadget arrangement system,
which can cope with missing gadget types.

7.2 Exploit Hardening
To evaluate exploit hardening, we tested it with a variety
of publicly available exploits for Linux and Windows.
We consider each experiment a success if Q can harden
a public exploit for real software by producing working
exploits that bypass W⊕X and ASLR. We do not expect
that our system will always produce a hardened exploit.

We compiled each vulnerable program from source
when possible, disabled all defenses (including ASLR and
W⊕X), and then verified that the exploit at least crashed
the vulnerable program. We then ran the exploit through
the exploit hardening component of Q, and created two
payloads that bypass W⊕X and ASLR. These payloads
1) call a linked function and 2) call system(‘‘w’’)

7These results are after a pre-processing step that throws away re-
dundant gadgets. A gadget g1 is redundant to g2 if they both have the
same type and input registers, and g1 clobbers a superset of the registers
that g2 clobbers. This is why there is only one NOOPG gadget type
listed for all programs, even though every ret instruction can be used
as a NOOPG.
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Figure 6: The empirical cumulative distribution function of the file sizes in /usr/bin. In this graph, a point at (x, y)
means that 100y percent of the files in /usr/bin have a size less than or equal to x bytes. We also show the sizes of
the iPhone libsystem library [16], libc [39] and the windows kernel [21], which prior work has targeted. libc and the
iPhone library are both larger than 95% of the programs in our corpus, while the windows kernel is larger than 99%.
We plot dotted lines at 20 and 100KB for reference; these are the sizes at which Q works well, as shown in Figure 4.

Figure 7: The frequency of various types of gadgets in /usr/bin programs larger than 20KB.

on Linux or WinExec(‘‘calc.exe’’) on Windows.
We tested these two exploits with ASLR and W⊕X en-
abled. The results of these experiments are shown in
Table 4.

We found that our system was able to harden exploits
for several large, real programs. In general, our sys-
tem performed as expected: it only output exploits that
worked, and in some cases reported it could not produce
a hardened exploit.

8 Discussion

Ret-less ROP When we designed Q, no one had shown
that ROP was possible without using ret-like instruc-
tions. Since then, Checkoway, et al. have shown [8] that
it is possible to create a Turing-complete gadget set that
does not use ret instructions. Their gadgets have control
flow preservation preconditions. For example, the gadget
pop %eax; jmp *%edx only preserves control flow
if %edx is preset to the next gadget address. Q does not
make any assumptions about the preconditions for a gad-
get when considering control flow preservation, which

prevents it from finding gadgets of the above form. We
leave it as future work to determine whether it is possible
to automatically construct ROP exploit payloads that do
not use ret instructions.

Side effects Q conservatively handles side effects by
discarding any instruction sequence that might cause
the program to crash, such as a pointer dereference.
As one example, pushl %eax; popl %ebx; ret
will move the value in %eax to %ebx. Since a
MOVEREGG gadget does not intentionally use memory,
however, Q would discard this gadget. We plan to add a
more advanced memory analysis that can statically detect
when a memory access will be safe, which will allow Q
to use more gadgets.

Turing completeness Q’s language for describing tar-
get programs, QooL, is not Turing-complete. Our early
tests revealed that the ARITHMETICG gadgets needed
for conditional jumps, such as equality tests, were often
unavailable in small programs. As a result, we focused on
the gadgets needed for practical exploitation, rather than
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Program Reference Tracing Analysis Call Linked Call System OS SEH

Free CD to MP3 Converter OSVDB-69116 89s 41s Yes Yes Win No

FatPlayer CVE-2009-4962 90s 43s Yes Yes Win Yes

A-PDF Converter OSVDB-67241 238s 140s Yes Yes Win No

A-PDF Converter OSVDB-68132 215s 142s Yes Yes Win Yes

MP3 CD Converter Pro OSVDB-69951 103s 55s Yes Yes Win Yes

rsync CVE-2004-2093 60s 5s Yes Yes Lin NA

opendchub CVE-2010-1147 195s 30s Yes No Lin NA

gv CVE-2004-1717 113s 124s Yes Yes Lin NA

proftpd CVE-2006-6563 30s 10s Yes Yes Lin NA

Table 4: A list of public exploits hardened by Q. For each exploit, we record how long the trace and analysis components
took to run, and report if Q produced hardened exploits that call 1) a linked function, and 2) system or WinExec.

striving for Turing-completeness.

9 Related Work

Return Oriented Programming Krahmer was the first
to propose using borrowed code chunks [26] from the pro-
gram text to perform meaningful actions. Later, Shacham
showed in his seminal paper [42] on ROP that a set of
Turing complete gadgets can be created using the pro-
gram text of libc. Shacham developed an algorithm that
put instruction sequences into trie form to help a human
manually select useful instruction sequences.

Since then, several researchers have investigated how
to more fully automate ROP [16, 21, 39]. Dullien and
Kornau [16, 25] automatically found gadgets in mobile
support libraries (on order of 1,000KB), and Roemer [39]
demonstrated it was possible to automatically discover
gadgets in libc (1,300KB). Hund [21] used gadgets
from ntoskrnl.exe (3,700KB) and win32k.sys
(2,200KB). In contrast, our techniques often only have
20KB of binary code to create gadgets from, because
generally only small code modules are unrandomized in
user-mode exploitation contexts. Previous work focusing
on such small code bases was mostly or entirely manual;
for instance, Checkoway, et al. manually crafted a Turing
complete set of gadgets from 16KB of Z80 BIOS [9].

Automatic Exploitation Our exploit hardening system
(Section 5) is related to existing automatic exploitation
research [3, 5, 20, 27]. In automatic exploitation, the goal
is to automatically find an exploit for a bug when given
some starting information (such as a patch [5], guiding
input [20, 27], or program precondition [3]). Some auto-
matic exploitation research focuses on creating an input
that triggers a particular vulnerability [5, 18, 27], but does

not focus on control flow exploitation, which is one of the
focuses of our work. Our techniques can use the inputs
produced by these projects as an input exploit, and harden
them so that they bypass W⊕X and ASLR.

We are only aware of one other project that considers
creating an exploit given another exploit [20]; in this case
the input exploit only causes a crash. Our work uses
symbolic execution to reason about other inputs that take
the same path as the input exploit. In contrast, Heelan [20]
tracks data dependencies between the desired payload
bytes and the input bytes, but does not ensure that control
flow will stay the same and preserve the observed data
dependencies. As a result, his approach is heuristic in
nature, but is likely to be faster than ours.

Related Attacks Other researchers have previously
used simple ROP gadgets in the .text section of bi-
naries to calculate the address of functions in libc [40].
Unfortunately, this is insufficient to make arbitrary func-
tion calls when ASLR is enabled, because many functions
require pointers to data. Recall from Section 2 that all
modern operating systems except for Mac OS X random-
ize the stack and heap, thus making it difficult for an
attacker to introduce argument data and know a pointer to
its address. QooL (Section 4.3.1) allows target programs
to write payloads to known addresses, typically in the
.data segment, which eliminates this problem.

A recent attack developed concurrently with Q [28] can
also write data to known constant memory locations, and
thus can also make arbitrary function calls in the W⊕X
and ASLR setting. This attack uses repeated strcpy
return-to-libc calls to copy data from the binary itself to
a specified location. In contrast, our attack uses ROP
gadgets discovered by Q.

There are specialized attacks against W⊕X and ASLR
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that are only applicable inside of a browser, such as JIT
spraying [4, 44]. The downside is that they are not appli-
cable to all programs.

Related Defenses The most natural way of defeating
ROP is to randomize all executable code. For instance, we
are not able to deterministically attack position indepen-
dent executables in Linux, because we do not know where
any instruction sequences will be in memory. Operating
systems have chosen not to randomize all code in the past
because of performance and compatibility issues; these
reasons should now be reevaluated considering the new
evidence that allowing even small amounts of unrandom-
ized code can enable an attacker to use ROP payloads.

ROP attacks can also be limited by enforcing control
flow integrity [1]. Control flow integrity ensures that
control transfers must respect the intended control flow
of the program. ROP gadgets are generally not part of the
intended control flow, and thus will be disallowed.

Other defenses that are more specific to ROP have
been proposed. One defense is to dynamically instru-
ment running programs and look for sequences of instruc-
tions that contain returns with few instructions spaced
between [10, 12]. The assumption is that normal code
will generally execute non-trivial amounts of code in be-
tween ret instructions, whereas ROP code will not.

A similar defense is to ensure that the call chain of a
program respects the stack semantics, i.e., that a ret will
only transfer control to a program location that previously
executed a call instruction. Such techniques [13, 38]
are implemented using a shadow stack that is maintained
outside of normal memory space.

Unfortunately for defenders, researchers [8] have re-
cently shown that it is possible to perform ROP on x86
without using ret instructions at all, which is enough to
bypass the last two classes of defenses [10, 12, 13, 38].
However, the proof of concept techniques [8] required
access to large libraries, which are randomized in modern
operating systems. It remains an open question whether
such attacks are possible in modern user-mode exploita-
tion contexts, where little unrandomized code is available.

10 Conclusion

We developed return oriented programming (ROP) tech-
niques that work on small, unrandomized code bases as
found in modern systems. We demonstrated that it is pos-
sible to synthesize ROP payloads for 80% of programs
larger than 20KB, implying that even a small amount of
unrandomized code is harmful. We also built an end-
to-end exploit hardening system, Q, that reads as input

an exploit that does not bypass defenses, and automati-
cally hardens it to one that bypasses ASLR and W⊕X.
Our techniques and experiments demonstrate that current
ASLR and W⊕X implementations, which allow small
amounts of code to be unrandomized, continue to allow
ROP attacks. Operating system designers should weigh
the dangers of such attacks against the performance and
compatibility penalties imposed by randomizing all code
by default.
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