
A Study of C/C++ Code Weaknesses
on Stack Overflow

Haoxiang Zhang , Shaowei Wang , Heng Li , Tse-Hsun Chen , and Ahmed E. Hassan, Fellow, IEEE

Abstract—Stack Overflow hosts millions of solutions that aim to solve developers’ programming issues. In this crowdsourced

question answering process, Stack Overflow becomes a code hosting website where developers actively share its code.

However, code snippets on Stack Overflow may contain security vulnerabilities, and if shared carelessly, such snippets can

introduce security problems in software systems. In this paper, we empirically study the prevalence of the Common Weakness

Enumeration – CWE, in code snippets of C/C++ related answers. We explore the characteristics of Codew, i.e., code snippets that

have CWE instances, in terms of the types of weaknesses, the evolution of Codew, and who contributed such code snippets. We

find that: 1) 36 percent (i.e., 32 out of 89) CWE types are detected in Codew on Stack Overflow. Particularly, CWE-119, i.e.,

improper restriction of operations within the bounds of a memory buffer, is common in both answer code snippets and real-world

software systems. Furthermore, the proportion of Codew doubled from 2008 to 2018 after normalizing by the total number of

C/C++ snippets in each year. 2) In general, code revisions are associated with a reduction in the number of code weaknesses.

However, the majority of Codew had weaknesses introduced in the first version of the code, and these Codew were never revised

since then. Only 7.5 percent of users who contributed C/C++ code snippets posted or edited code with weaknesses. Users

contributed less code with CWE weakness when they were more active (i.e., they either revised more code snippets or had a

higher reputation). We also find that some users tended to have the same CWE type repeatedly in their various code snippets.

Our empirical study provides insights to users who share code snippets on Stack Overflow so that they are aware of the potential

security issues. To understand the community feedback about improving code weaknesses by answer revisions, we also conduct

a qualitative study and find that 62.5 percent of our suggested revisions are adopted by the community. Stack Overflow can

perform CWE scanning for all the code that is hosted on its platform. Further research is needed to improve the quality of the

crowdsourced knowledge on Stack Overflow.

Index Terms—Code security, C/C++, empirical software engineering, crowdsourced knowledge sharing and management, stack overflow

Ç

1 INTRODUCTION

STACK Overflow is the world’s most popular Q&A website
for programming questions. Since its launch in 2008,

Stack Overflow has accumulated millions of questions and
answers related to programming. When answering ques-
tions on Stack Overflow, it is common for developers to
attach code snippets within their answers as part of the sol-
utions. Wu et al. observe that 75 percent of the answers con-
tain code snippets [1]. The large collection of code snippets

within these answers becomes a code repository for solving
programming problems among developers. Prior studies
show that the code snippets on Stack Overflow are widely
shared by developers [1], [2].

Security is a critical property in any code repository.
ISO 27005 defines vulnerability as a weakness that can be
exploited [3]. Code with weaknesses – Codew, can be risky
to share or reuse among developers. As the world’s most
successful crowdsourced knowledge sharing platform in
programming, Stack Overflow has hosted a very large
code base. The activities of code sharing lead to code
snippets propagating quickly across software systems.
Prior studies observe that code snippets in various pro-
gramming languages on Stack Overflow can be insecure.
For example, Meng et al. identified security vulnerabil-
ities, e.g., bypassing certificate validation and using inse-
cure cryptographic hash functions, in the suggested code
snippets of accepted answers on Stack Overflow [4]. Rah-
man et al. observed that 7.1 percent of the Python answers
contain at least one insecure coding practice, e.g., code
injection [5]. Fischer et al. observed that 15.4 percent of
the 1.3 million Android applications contain security-
related code snippets from Stack Overflow, and 97.9 per-
cent of such code snippets contain at least one insecure
code snippet [2]. Furthermore, on Meta Stack Overflow,
which is the part of Stack Overflow where users discuss
the inner workings and policies of Stack Overflow, we

� Haoxiang Zhang is with the Centre for Software Excellence, Huawei
Technologies Co Ltd Canada, Markham, ON L3R 5A4, Canada.
E-mail: hzhang@cs.queensu.ca.

� Shaowei Wang is with the Department of Computer Science, University of
Manitoba, Winnipeg, MB R3T 2N2, Canada.
E-mail: shaowei@cs.umanitoba.ca.

� Heng Li is with the Department of Computer Engineering and Software
Engineering, Polytechnique Montreal, Montreal, QC H3T 1J4, Canada.
E-mail: heng.li@polymtl.ca.

� Tse-Hsun Chen is with the Software Performance, Analysis, and Reliability
(SPEAR) Lab, Concordia University,Montreal, QCH3G 1M8, Canada.
E-mail: peterc@encs.concordia.ca.

� Ahmed E. Hassan is with the Software Analysis and Intelligence Lab
(SAIL), Queen’s University, Kingston, ON K7L 3N6, Canada.
E-mail: ahmed@cs.queensu.ca.

Manuscript received 1 Mar. 2020; revised 7 Feb. 2021; accepted 9 Feb. 2021.
Date of publication 19 Feb. 2021; date of current version 18 July 2022.
(Corresponding author: Shaowei Wang.)
Recommended for acceptance by E. Murphy-Hill.
Digital Object Identifier no. 10.1109/TSE.2021.3058985

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 7, JULY 2022 2359

0098-5589 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 10,2023 at 22:38:35 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-3921-1724
https://orcid.org/0000-0002-3921-1724
https://orcid.org/0000-0002-3921-1724
https://orcid.org/0000-0002-3921-1724
https://orcid.org/0000-0002-3921-1724
https://orcid.org/0000-0003-3823-1771
https://orcid.org/0000-0003-3823-1771
https://orcid.org/0000-0003-3823-1771
https://orcid.org/0000-0003-3823-1771
https://orcid.org/0000-0003-3823-1771
https://orcid.org/0000-0001-5441-6763
https://orcid.org/0000-0001-5441-6763
https://orcid.org/0000-0001-5441-6763
https://orcid.org/0000-0001-5441-6763
https://orcid.org/0000-0001-5441-6763
https://orcid.org/0000-0003-4027-0905
https://orcid.org/0000-0003-4027-0905
https://orcid.org/0000-0003-4027-0905
https://orcid.org/0000-0003-4027-0905
https://orcid.org/0000-0003-4027-0905
mailto:hzhang@cs.queensu.ca
mailto:shaowei@cs.umanitoba.ca
mailto:heng.li@polymtl.ca
mailto:peterc@encs.concordia.ca
mailto:ahmed@cs.queensu.ca

observe that users are concerned about the vulnerable
code that is shared on Stack Overflow.1,2,3,4,5,6

For instance, a user posted the following C code snippet
in the first version of an answer7:

system(“sudo rm—no-preserve-root -rf /”);

This code snippet would wipe the entire hard drive. Within
4 minutes, another user removed the insecure code with a
revision note saying “some person may actually try your code
without fully understanding it first.” In another example,8 a user
proposed an answer to print a message by initializing a vari-
able string [100]. Within 5 minutes, another user commented
that “the biggest flaw here is the glaring security hole (buffer over-
run!).” More than two months later, the answerer revised
the answer to fix the issue. However, the answer exposed a
security vulnerability formore than twomonths.

In this paper, we focus on studying the weaknesses of C/
C++ code snippets on Stack Overflow because C/C++ are
widely used in different types of software systems [6]. In
order to study code weaknesses, we use the Common Weak-
ness Enumeration – CWE, a community-developed collection
of common software security weaknesses.9 C/C++ have the
most reported CWE types of all the programming lan-
guages that contain CWE [7], [8], and have the most security
vulnerabilities [9], [10]. In particular, our study aims to
answer the following three research questions (RQs):

� RQ1: What are the types of code weaknesses that are
detected in C/C++ code snippets on Stack Overflow?

� RQ2: How does code with weaknesses evolve
through revisions?

� RQ3: What are the characteristics of the users who
contributed to code with weaknesses?

In summary, this papermakes the following contributions:

� We scan 646,716 C/C++ code snippets from Stack
Overflow answers. We observe that code weaknesses
are detected in 2 percent of the C/C++ answers with
code snippets; more specifically, there are 12,998
detected codeweaknesses that fall into 36 percent (i.e.,
32 out of 89) of all the existing C/C++ CWE types.
Especially, we observe that CWE-119/416/190/476/
415 are commonly detected in Stack Overflow as well
as CVE instances in real-world software systems. We
suggest that Stack Overflow can perform CWE scan-
ning for all the code that is hosted on its platform.

� We analyze the trend of code weaknesses, and find
that the proportion of Codew grew year by year dou-
bling from 2008 to 2018 after normalizing by the total
C/C++ code snippets that are posted in the corre-
sponding years.

� We examine the code evolution history of all the
posted C/C++ code snippets on Stack Overflow. We

find that in general, code revisions are associated with
a reduction in the number of code weaknesses. How-
ever, the majority of Codew have weaknesses in the
first version of the code, and they are never revised.

� We conduct a study with users who contribute
Codew. We encourage Stack Overflow to improve the
code review mechanism since users tended to com-
mit the same weaknesses repeatedly. We observe
that only 7.5 percent of users who posted C/C++
code contributed code weaknesses, and more active
users contributed fewer weaknesses.

� Acar et al. analyzed how Stack Overflow threads are
used by Android developers, and observed that
developers can copy and paste insecure solu-
tions [11]. Similarly, our study of mining C/C++
code snippets on Stack Overflow wishes to gain a
better understanding of the impact of the Stack Over-
flow information source in terms of code security.
The recommendations based on our findings can be
used to improve the quality of Stack Overflow as an
information source. The building of crowdsourced
knowledge while managing any security risks can
benefit Stack Overflow as an information resource
provider, can benefit the software engineering com-
munity in sharing code, and can benefit developers
in fixing their security issues.

Paper Organization. The rest of this paper is organized as
follows. Section 2 introduces the background of code secu-
rity on Stack Overflow. Section 3 describes our studied code
snippets and our approach to detect weaknesses in these
code snippets. Section 4 details the results from our case
study. Section 5 discusses our findings and their implica-
tions. Section 6 discusses the potential threats to the validity
of our findings. Section 7 surveys relevant work to our
study. Finally, Section 8 concludes our study.

2 BACKGROUND

2.1 Code Snippets and Their Security Weaknesses
on Stack Overflow

Many software systems are written in C/C++, or rely on
system components that have been written in C/C++. A
survey of sourceforge.com in September 2004 notes that a
substantial percentage of open source projects are using C
(14,0 percent) and C++ (14,2 percent). By October 2019, the
TIOBE index – an indicator of the popularity of program-
ming languages, ranked C and C++ as No. 2 and 4, respec-
tively [12]. Furthermore, out of the 839 CWE types, the
programming language with the most reported CWE types
is C/C++. There are 89 types of weaknesses, i.e., CWE
types, that can be found in the C/C++ programming lan-
guage. C contains 80 CWE types [7], and C++ contains 84
CWE types [8]. For comparison, Java contains 73 CWE
types, and PHP contains 23 CWE types.

Therefore, in this empirical study, we wish to gain a
deeper understanding of the weaknesses in code snippets
on Stack Overflow by analyzing C/C++ code snippets –
which is the programming language with the most CWE
types out of all programming languages, within answers on
Stack Overflow in RQ1. We refer to code snippets on Stack
Overflow as the code snippets that are displayed within

1. https://meta.stackoverflow.com/q/318722/
2. https://meta.stackexchange.com/q/9460/
3. https://meta.stackoverflow.com/q/373629/
4. https://meta.stackoverflow.com/q/266180/
5. https://meta.stackoverflow.com/q/266339/
6. https://meta.stackoverflow.com/q/273058/
7. https://stackoverflow.com/revisions/35926150/1/
8. https://stackoverflow.com/posts/52633163/revisions
9. https://cwe.mitre.org/

2360 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 7, JULY 2022

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 10,2023 at 22:38:35 UTC from IEEE Xplore. Restrictions apply.

sourceforge.com
https://meta.stackoverflow.com/q/318722/
https://meta.stackexchange.com/q/9460/
https://meta.stackoverflow.com/q/373629/
https://meta.stackoverflow.com/q/266180/
https://meta.stackoverflow.com/q/266339/
https://meta.stackoverflow.com/q/273058/
https://stackoverflow.com/revisions/35926150/1/
https://stackoverflow.com/posts/52633163/revisions
https://cwe.mitre.org/

answers on Stack Overflow in the rest of the paper, if not
otherwise specified. We offer actionable suggestions based
on our empirical observations to improve the quality of the
crowdsourced code knowledge on Stack Overflow.

2.2 The Evolution of Code Snippets on
Stack Overflow

Stack Overflow encourages the community to revise the
content of answers, including both textual description and
code snippets, to maintain the quality of such answers. Any
code snippet in answers can be revised, and new code snip-
pets can be introduced to the answer at either the answer
creation phase or revision phase. To illustrate the evolution
of code snippets on Stack Overflow, we show both the
answer evolution timeline and the two possible code snip-
pet evolution timelines in Fig. 1.

Code weaknesses might be introduced at the creation of a
code snippet or during the revision phase. Code weaknesses
could also be removedduring the revision phase. It is interest-
ing to understand if such revisions help in improving the
quality of code snippets in terms of their security weaknesses.
Therefore, we study how Codew evolve through revisions in
RQ2, e.g., when are the code weaknesses introduced, and
whether the code revision helps in reducing code weak-
nesses? In addition, the activity level of contributors may
have an impact on the quality of code snippets that they create
or revise. For example, whether less active users are more
likely to introduce weaknesses compared to more active
users. Therefore, we wish to investigate the characteristics of
contributors of code weaknesses and their relationship with
codeweaknesses in RQ3.

3 STUDY DESIGN

Our study aims to gain a deep understanding of code weak-
nesses in Stack Overflow C/C++ answers. In this section,
we first describe the process to create our datasets. Then we
describe the motivation and approach of our study to
answer the research questions. Fig. 2 illustrates the research
approaches that we follow to conduct our study.

3.1 Data Collection

This subsection describes how we collect and construct our
studied datasets. We first collect C/C++ code snippets
from Stack Overflow answers. Then we detect code weak-
nesses in these collected code snippets by performing static
code analysis. We elaborate on the details of each step
below.

3.1.1 Collecting Code Snippets in Stack

Overflow Answers

On Stack Overflow, developers post answers to specific
questions that other developers ask. In addition to textual
content, questions and answers may contain code snippets.
Code snippets are segments of source code that are dis-
played with a gray background color embedded in the
<code>. . .</code> HTML tags on Stack Overflow. Users
can learn from such code snippets that are posted by others,
and might even reuse such code snippets [13], [14], [15]. For
example, in Fig. 3, a user posted a vulnerable C/C++ code
snippet in a Stack Overflow answer.10 The answerer posted
the code snippet that used the string functions strlcpy/
strlcat. A commenter pointed out that these functions were
not safe and provided an alternative secure solution.

We analyze the SOTorrent dataset to study the weak-
nesses of shared code measured by the identified CWE
types in such snippets. The SOTorrent dataset provides the
version history of Stack Overflow at both the post level and
the code snippet/text level within a post – question/
answer [16]. Each code snippet has at least one version, i.e.,
the original version, or multiple versions, i.e., developers
made revisions to the original version of the code. To under-
stand security weaknesses in code snippets and their evolu-
tion on Stack Overflow, we leverage the version history of
code snippets, i.e., code versions.

In this paper, we focus on studying code snippets in
answers that are associated with the C/C++ tags because
C/C++ are the languages that have the most security vul-
nerabilities [10]. More specifically, from the SOTorrent data-
set11 that is published in December 2018, we collect all the
code snippets from answers that are associated with the C/
C++ tags and their associated code versions. In SOTorrent,
code version history is reconstructed by mapping a code

Fig. 1. Possible timelines for code snippet evolution during the answer
creation and revision phases.

Fig. 2. Overview of our research approaches.

Fig. 3. An example of an accepted answer with a comment which flags
the unsafe use of the string functions in the posted code snippet.

10. https://stackoverflow.com/a/48032218/
11. https://zenodo.org/record/2273117#.XZtTyEFKjmE

ZHANG ET AL.: STUDY OF C/C++ CODEWEAKNESSES ON STACK OVERFLOW 2361

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 10,2023 at 22:38:35 UTC from IEEE Xplore. Restrictions apply.

https://stackoverflow.com/a/48032218/
https://zenodo.org/record/2273117#.XZtTyEFKjmE

block to its predecessors in prior post versions through syn-
tax-based similarity metrics. As shown in Table 1, from the
1,598,646 answers in the C/C++ tags, we study the 867,734
(i.e., 54.3 percent) answers that have code snippets. From
these answers, there are 1,561,550 code snippets, i.e.,
14,194,563 lines of code in their latest version, with
1,833,449 code versions in total.

Many code snippets on Stack Overflow are pseudo code or
command line functions, which may introduce bias to our
study. Tomitigate such bias, we further remove code snippets
with less than five lines of code from the above-mentioned
dataset by following prior studies [16], [17]. Baltes et al.
observed that the median line count of code blocks on Stack
Overflow is five [16]. We use the median line count (i.e., five
lines of code) as a cutoff value to remove trivial code snippets
and to ensure our studied code snippets are meaningful. As a
result, we obtain 724,784 code snippets (with 919,947 code
versions) from 527,932 answers. We also observe that code
snippets in answers that are associated with the C/C++ tags
are not necessarily C/C++ code. For example, users may tag a
question as C/C++, but may put none-code text within the
HTML <code>. . .</code> tags. Therefore, we use a tool
called Guesslang12 to determine whether a code snippet is
actually written in C/C++. Guesslang generates a probability
of a code snippet being one of 20 pre-defined programming
languages, including C and C++, with a guessing accuracy
higher than 90 percent according to its website.13 We check
the top five language guesses to see if any of them is C or C++
because we notice that this simple criterion gives high accu-
racy. We manually check the languages predicted by Gue-
slang using 100 randomly sampled code snippets, which
ensure that we can reach a confidence level of 95 percent and
a confidence interval of 10 percent. We find that the program-
ming language of 91 (i.e., 91 percent) of these code snippets is
correctly determined. By using Guesslang, we obtain 646,716
C/C++ code snippets (with 826,520 code versions) from
490,778 answers.

3.1.2 Detecting Weaknesses in Code Snippets

Common Weakness Enumeration, i.e., CWE, is a community-
developed list of common software security weaknesses.14

In order to detect C/C++ code snippets with weaknesses,
i.e., Codew, we use a static C/C++ code analysis tool called
Cppcheck15 to scan all of the 826,520 code versions of the
resulting C/C++ code snippets. Cppcheck is a static

analysis tool for C/C++ that supports various source code
level checks, e.g., memory/resource leaks, automatic vari-
able checking, and bounds checking [18], [19], [20]. It sup-
ports static checks that may not be covered by the compiler
itself [21]. Cppcheck is widely used in error analysis for soft-
ware systems, such as OpenOffice.org,16 and Debian.17

From prior studies, Cppcheck is observed to be highly pre-
cise. For example, Pomorova et al. observed that Cppcheck
has a precision of 89 percent [22]. Arusoaie et al. observed
that all the reported errors by Cppcheck were accurate in
their experiment [23]. Note that Cppcheck can identify 59
out of the 89 types of code weaknesses in C/C++.18

The accuracy of Cppcheck is subject to a rigorous evalua-
tion. Three raters, i.e., the first three authors, constructed an
oracle dataset of 100 C/C++ code weaknesses – CWE
instances, on Stack Overflow that were detected by
Cppcheck. Each CWE instance was manually examined by
at least two raters to determine whether it is a true CWE
instance or not. We observe that Cppcheck achieves an
accuracy of 0.85 – 85 out of the 100 detected CWE instances
are labelled as true CWEs. Note that any disagreement was
discussed until consensus was reached among the three
raters. We also observe that the agreement among the raters
is substantial with a Cohen’s Kappa of 0.68 [24].

We observe that 682,588 code versions have no weakness
– no CWE is reported for the scanned code snippets, and
143,932 code versions have at least one weakness, i.e., a
CWE instance that is reported by Cppcheck). In addition,
we collect all the 154,198 CWE instances. Among all the
CWE instances, Cppcheck reports that 129,395 CWE instan-
ces are related to syntax errors. Such syntax errors are usu-
ally due to the incomplete nature of Stack Overflow code
snippets. We remove these instances from our analysis and
focus on the resulting 24,803 CWE instances in our follow-
ing study, which come from 11,748 Codew in 11,235 answers.
Note that a code snippet with weaknesses can be from
either the latest version of an answer or the earlier versions.
From these 11,748 Codew, we collect 14,934 code versions
with weaknesses, i.e., Versionw, out of the 17,591 code ver-
sions. Note that these 11,235 answers with code weaknesses
– Answerw, are associated with 10,634 questions, indicating
that a question can have more than one answer with code
weaknesses. In the rest of this paper, we further study these
CWE instances and their evolution in Stack Overflow code
snippets. In RQ1 (Section 4.1), we analyze Codew and their
associated CWE instances from the latest version of answers
in order to capture the current state of C/C++ security
weaknesses from Stack Overflow. In RQ2 (Section 4.2) and
RQ3 (Section 4.3), we analyze the evolution of these Codew
in order to capture the evolution of C/C++ security weak-
nesses and the user aspects of such weaknesses.

3.2 Study Approach

This subsection discusses the approaches of our empirical
study.

TABLE 1
The Statistics of the Studied Code Snippets

With Weaknesses, i.e., Codew

Answer # Code Snippet # Code Version #

SOTorrent 867,734 1,561,550 1,833,449
LOC >= 5 527,932 724,784 919,947
Guesslang 490,778 646,716 826,520
Codew 11,235 11,748 14,934

12. https://pypi.org/project/guesslang
13. https://github.com/yoeo/guesslang
14. https://cwe.mitre.org
15. http://cppcheck.sourceforge.net

16. https://wiki.documentfoundation.org/Development/
Cppcheck

17. https://lwn.net/Articles/420252/
18. We examined the source code of the Cppcheck version that we

used and observed that it supports 59 CWE types.

2362 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 7, JULY 2022

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 10,2023 at 22:38:35 UTC from IEEE Xplore. Restrictions apply.

https://pypi.org/project/guesslang
https://github.com/yoeo/guesslang
https://cwe.mitre.org
http://cppcheck.sourceforge.net
https://wiki.documentfoundation.org/Development/Cppcheck
https://wiki.documentfoundation.org/Development/Cppcheck
https://lwn.net/Articles/420252/

3.2.1 RQ1: What are the Types of Code Weaknesses

That are Detected in C/C++ Code Snippets on

Stack Overflow?

Motivation. StackOverflowhas a large number of C/C++ code
snippets. Code with weaknesses can lead to security vulner-
abilities if it is carelessly shared among developers. To gain
first-hand insights of C/C++ security weaknesses on Stack
Overflow, in this RQ, we analyze all the C/C++ code snippets
in answers and investigate the characteristics of CWE instan-
ces that are detected in these code snippets. We wish to find
out how commonly each CWE type is detected in the C/C++
code snippets on Stack Overflow, and the impact of these
CWE types on real-world software systems. By answering
this RQ, we wish to provide insights to developers on poten-
tial security riskswhen reusing StackOverflow code snippets,
and to inform Stack Overflow about potential security risks
together with their trends over time, thus further action can
be proposed to enhance the quality of crowdsourced code
snippets on StackOverflow.

Approach. To understand how common different types of
security weaknesses are detected on Stack Overflow, we
first analyze the CWE instances and their types as reported
by Cppcheck in the code snippets of the latest versions of
C/C++ answers. After identifying the types of CWE instan-
ces, we analyze the characteristics of different CWE types,
e.g., the proportion of each CWE type among all CWE
instances and the trend of different CWE types in terms of
their number of instances over time, that is, from September
2008 to December 2018.

Furthermore, to evaluate the impact of our detected secu-
rity weaknesses of each CWE type, wemap each CWE type to
its associated vulnerabilities in the Common Vulnerabilities and
Exposures – CVE, which is a database containing vulnerabil-
ities that are exposed in real-world software systems [25].
While a CWE instance represents common patterns of vulner-
abilities in source code, a CVE instance represents actually
vulnerable instances within real-world software products or
systems. For example, CVE-2019-1591619 is a denial of service
overflow vulnerability reported in the Linux kernel. That
CVE is associated with CWE-119,20 i.e., improper restriction of
operations within the bounds of a memory buffer. Wewish to char-
acterize the impact of different CWE types by examining the
number of CVE instances that are related to each CWE type.
A CWE type with a larger number of CVE instances indicates
that this CWE type has a more practical impact in terms of
security vulnerabilities on real-world software systems. We
also use the median score of the Common Vulnerability Scoring
System – CVSS,21 of all the CVE instances within a CWE type
to represent the severity of a CWE type. In this study, we are
specifically interested in the security impact of each code
weakness, i.e., CWE, and cvedetails.com enables us to count
the number of CVE instances for each CWE type directly. On
the other hand, nvd.nist.gov only lists CVE instances with
their associated CWE types. Hence, we collect the vulnerabil-
ity data from cvedetails.com. To evaluate the impact of differ-
ent CWE types, we also refer to the 2019 CWE top 25 list that

is made by the CWE team [26], [27]. The list ranks weaknesses
based on both their prevalence and the severity of their associ-
ated CVEs. The list is a demonstration of themostwidespread
and critical weaknesses with potentially serious vulnerabil-
ities. Weaknesses that are both popular and severe can rank
high in the CWE top 25 list.

Lastly, to understand how answers with code weaknesses
are recognized by the community, i.e., through vote or accep-
tance of an answer, we analyze the distribution of answer
scores across the latest code snippets with different numbers
of CWE instances, and calculate the Spearman’s rank-order
correlation to understand whether answers containing more
weaknesses are less likely to be upvoted.We also calculate the
proportion of answers with weaknesses that are accepted by
the askers to understand whether answers can still contain
weaknesses even though they are accepted.

3.2.2 RQ2: How Does Code With Weaknesses Evolve

Through Revisions?

Motivation. Stack Overflow answers, including their associ-
ated code snippets, can be revised through revisions as an
effort to maintain the quality of the crowdsourced knowl-
edge [28]. Security weaknesses might be introduced or elim-
inated through the evolution of such code snippets. To gain
a deeper understanding of when such Codew are introduced
and how they evolve, we study the evolution of Versionw.
We wish to provide insights into the impact of code revi-
sions on the security weaknesses of code snippets, e.g.,
whether the revision mechanism helps improve the quality
of code snippets in terms of their security weaknesses.

Approach. We first investigate when security weaknesses
are introduced throughout the evolution of Codew, i.e., which
versions of code snippets start to contain weaknesses. To do
so, we collect all the versions of C/C++ code snippets, i.e.,
including the initial and revised code, in Stack Overflow
answers, and scan them with Cppcheck to identify CWE
instances and their corresponding types. More specifically,
we examine all code snippets that have ever been revised and
analyze whether revisions help improve such snippets in
terms of security weaknesses. We compare the first and last
versions of a code snippet and aim to identify the patterns of
the evolution, i.e., whether the last version of a code snippet
has an additional, a reduced, or an equal number of weak-
nesses compared to the first version of a code snippet. Fur-
thermore, we exam these patterns within different CWE
types. We also analyze code revisions by comparing all the
consecutive code versions to understand the evolution of
code quality over time.

We define the code snippets whose last version has more
CWE instances than their first version as deteriorated Codew,
while code snippets whose last version has less CWE instan-
ces than their first version as improved Codew, and code snip-
pets whose last version has the same number of CWE
instances as their first version as unchanged Codew. If a code
snippet is identified as improved Codew, we consider that
revisions to this code snippet improve it in terms of reduc-
ing security weaknesses.

We observe that users can point out the security issues of
a code snippet in comments. Therefore, it is also interesting
to investigate the relationship between the number of

19. https://www.cvedetails.com/cve/CVE-2019-15916/
20. https://cwe.mitre.org/data/definitions/119.html
21. https://nvd.nist.gov/vuln-metrics/cvss

ZHANG ET AL.: STUDY OF C/C++ CODEWEAKNESSES ON STACK OVERFLOW 2363

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 10,2023 at 22:38:35 UTC from IEEE Xplore. Restrictions apply.

https://www.cvedetails.com/cve/CVE-2019-15916/
https://cwe.mitre.org/data/definitions/119.html
https://nvd.nist.gov/vuln-metrics/cvss

comments of an answer and the quality of Codew, i.e.,
whether the associated answer of Codew that has more com-
ments is more likely to be improved eventually.

3.2.3 RQ3: What are the Characteristics of the Users

who Contributed to Code With Weaknesses?

Motivation. During the creation or revision of a code snippet,
users may introduce CWE instances in the code snippet as
shown in Section 4.2. In this RQ, we study the users who
introduce CWE instances, i.e., by either posting or editing
code, during the evolution of Codew. Furthermore, we
explore the characteristics when they contribute Codew. A
better understanding of such users who participate in the
evolution of code snippets can provide insights for Stack
Overflow to improve their current mechanism, e.g., code
revision, for better code security practices.

Approach. We first identify those users who contributed
Versionw. We examine whether the majority of Versionw were
contributed by a small group of the users. Next, we examine
whether the activity level of a user on Stack Overflow is asso-
ciated with the likelihood of their involvement in Versionw.
To do so, we estimate a user’s activity level through two
aspects: the number of code versions that were performed by
a user and the reputation of the user. It is challenging to mea-
sure a user’s activity level on Stack Overflow. In our study,
we use both code revision count in C/C++ posts and reputa-
tion points as proxies tomeasure user activity level. The repu-
tation of a user is a common proxy to measure user activity
level in prior studies [5], [29], [30], [31]. However, the reputa-
tion of a user is not directly related to his/her activity level on
Stack Overflow. For example, a user can have a high reputa-
tion even if he/she only asks popular questions and never
posts any answer. Therefore, reputation can be biased to the
types of activities, i.e., asking or answering, or activities in
other programming languages. To alleviate bias from reputa-
tion points, we also use the number of code revisionsmade by
a user tomeasure their activity level inmaintaining code snip-
pets on Stack Overflow. Furthermore, we only consider the
number of C/C++ code revisions, which directly reflects a
user’s activity level with regard to C/C++.

We analyze the correlation between the number of contrib-
uted code versions by a user, including both Versionw and
code versions without weaknesses, and the code weakness
density, i.e., the proportion of Versionw, in all the posted code
versions by the same user. Second, we study the characteris-
tics of those involved users who contribute any code version,
including both Versionw and code versions without weak-
nesses, using their gained reputation points, as a proxy for
user activity/involvement on Stack Overflow [29], [31]. We
examine whether the number of CWE instances within the
contributed Versionw by a user is correlated with the gained
reputation points by the same user. More specifically, we
wish to examine whether or not active users in terms of repu-
tation points are more likely to post secure code snippets.
Finally, we wish to understand if users repeatedly contribute
the same type ofweaknesses, i.e., the same CWE type.We cal-
culate the number of CWE instances by a user across different
CWE types. For users who repeatedly post the same CWE
type, wemeasure the timespan of the CWE instances between
the first and last CWE instance.

Measurement of User Reputation. The Stack Overflow plat-
form only provides the current reputation points of a user.
In order to measure the reputation points of a user when
he/she posts or edits a code version, we first crawled 22 the
information of all users who posted/edited C/C++ code
snippets, including Codew and code snippets without weak-
nesses, about their daily gain of reputation points. To calcu-
late the reputation points when a user posted/edited a code
snippet, we sum up the daily gain of reputation points
before the date of the specific code version.

3.2.4 Qualitative Study: How Does the Stack Overflow

Community Respond to Security Issues of C/C++

Code Snippets?

By the quantitative analyses described in Section 3.2.2, we
aim to understand whether code revisions have an impact
on the security weaknesses of Stack Overflow code snippets.
To better explain the impact of code revisions in code weak-
nesses reduction [32], we conducted a qualitative study to
find out the community feedback about the improvement to
code weaknesses. More specifically, we randomly selected
40 Answerw from which Cppcheck detected code weak-
nesses and manually suggested revisions to the correspond-
ing Codew to fix these CWE instances. Then we collected the
feedback towards our suggested answer revisions, e.g.,
approving our suggested edit, or rejecting our suggestion to
revise the answer.

4 EVALUATION RESULTS

This section provides the detailed results of our empirical
study for analyzing the characteristics of code with weak-
nesses – Codew, in terms of the types of weaknesses in
Section 4.1 (RQ1), the evolution of Codew in Section 4.2
(RQ2), and the contributors of such code snippets in
Section 4.3 (RQ3).

4.1 RQ1: What are the Types of Code Weaknesses
That are Detected in C/C++ Code Snippets on
Stack Overflow?

36 percent (i.e., 32 out of 89) of all the C/C++ CWE types are
identified in the C/C++ code snippets on Stack Overflow. 12,998
CWE instances are identified within the latest versions of the
7,481 answers. Fig. 4 shows the number of CWE instances in
each of the 32 CWE types. The definition of our detected
CWE types can be found in Appendix A, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TSE.2021.3058985.
The top six most frequent CWE types are:

� CWE-908, i.e., the use of an uninitialized resource, with
7,041 (54.2 percent) instances:The resource is not prop-
erly initialized, and the program can change in an
unintended way.

� CWE-401, i.e., improper release of memory before remov-
ing last reference, with 1,820 (14 percent) instances:
Memory is not properly released, and an attacker
may take advantage of the program in a lowmemory
condition or even launch a denial of service attack.

22. We crawled the data on May 12, 2019.

2364 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 7, JULY 2022

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 10,2023 at 22:38:35 UTC from IEEE Xplore. Restrictions apply.

http://doi.ieeecomputersociety.org/10.1109/TSE.2021.3058985
http://doi.ieeecomputersociety.org/10.1109/TSE.2021.3058985

� CWE-775, i.e., missing release of file descriptor or handle
after effective lifetime, with 672 (5.2 percent) instances:A
file handler is not explicitly closed after it is used,
and an attacker can prevent other processes from
accessing the resource.

� CWE-562, i.e., return of stack variable address, with 612
(4.7 percent) instances:A function call returns an
address on the stack, and the value referenced by the
address can change unexpectedly.

� CWE-119, i.e., improper restriction of operations within
the Bounds of a Memory Buffer, with 518 (4 percent)
instances:A program can read from or write to a
memory location outside of a buffer, and arbitrary
code may be executed by redirecting a function
pointer to malicious code.

� CWE-758, i.e., reliance on undefined, unspecified, or
implementation-defined behavior, with 482 (3.7 percent)
instances:A property may change its behavior when
the software is ported to a different platform.

Certain CWE types, e.g., CWE-119/416/190/476/415, are
associated with more security risks in real-world software sys-
tems. More specifically, CWE-119/416/190/476/415 have a
larger number of related CVE instances, with 12,285/1,073/
996/803/151 CVE instances, respectively. Fig. 4 shows the
number of the reported CVE instances23 that are related to
each CWE type. A CWE type with a larger number of CVE
instances indicates that this CWE type has a more practical
impact in terms of the security vulnerability on real-world
software systems. For example, 12,328 CVE instances24

related to CWE-119 – improper restriction of operations
within the bounds of a memory buffer, were reported, e.g.,
by companies who found CWE instances in their code,
while only one CVE instance25 related to CWE-775 – miss-
ing release of file descriptor or handle after effective life-
time, was reported. Such Codew with CWE types that are

labeled in red in Fig. 4 probably should be tagged with
potential security risks since such CWE types have higher
potential impact on real-world software systems.

In addition, we calculate the viewcount of question
threads that are associated with CWE-119/416/190/476/
415, and find that it is higher than the viewcount for ques-
tion threads associated with other CWE types – see
Appendix B, available in the online supplemental material.
Therefore, the former case attracts significantly more traffic,
and are more likely to be used by developers. Neglecting
the security weaknesses that are associated with CWE types
with a large number of CVE instances can expose crowd-
sourced code snippets with weaknesses and even poten-
tially lead to harmful situations.

Although CWE-908/401 are detected frequently (i.e., 54.2/14
percent instances, respectively), no CVE instance is ever reported
for these CWE types. In total, there are 20 CWE types with no
reported CVE instance. One possible explanation is that these
CWE types are either non-critical in real-world software
systems or are easy to detect using security analysis tools
during in-house testing, in turn minimizing their security
risks in real-world software systems. It is also possible that
the CVE database only documents certain types of vulner-
abilities, while it does not cover vulnerabilities related to
such CWE types. We observe that CWE-908 is the most fre-
quently-detected CWE type in our studied code snippets. In
a world of code searching and sharing activities on Stack
Overflow, developers can post/share a code snippet in
which the variables are not properly initialized, making
themselves exposed to potential vulnerabilities. For
instance, the uninitialized resource, such as a variable, may
contain random values or content that are not properly
cleared, which may alter the expected program behavior.
Therefore, we suggest that developers pay special attention
to the missing initialization when reusing C/C++ code snip-
pets from Stack Overflow.

We observe that of the top 10 CWE types on Stack Over-
flow in terms of the CWE instance count, CWE-119 and
CWE-476 are also in the 2019 CWE top 25 list, with a rank of
1 and 14, respectively. In addition, the top 5 CWE types on
Stack Overflow, i.e., CWE-119/416/190/476/772, which are
associated with the largest CVE instance count, are all in the
2019 CWE top 25 list, with a rank of 1, 7, 8, 14, and 21,
respectively. This finding suggests that the abovementioned
CWE types that are prevalent in terms of either CWE count
or CVE count have a large security impact.

Furthermore, we observe that CWE-119 that is associated
with more than 10K CVE instances contains high severity
vulnerabilities with a median CVSS score in the 7.0 – 8.9
range.26 The CWE types, i.e., CWE-416/190/476/772/415/
369, that are associated with 111 – 1256 CVE instances con-
tain medium severity vulnerabilities with a median CVSS
score in the 4.0 – 6.9 range. Surprisingly, the CWE types that
are associated with fewer than 100 CVE instances contain
high severity vulnerabilities, except for CWE-665 that has a
median severity score of 5.8.

Overall, the proportion of Codew doubled from 2008
to 2018. Furthermore, Codew in certain CWE types, e.g.,

Fig. 4. The number of detected CWE instances in the latest versions of
answers on Stack Overflow, and the number of CVE instances that are
related to each CWE type. The intensity level of the color, e.g., red, indi-
cates the frequency of the reported CVE instances in real-world software
systems. A darker red indicates that more CVE instances were reported
in real-world software systems. The median CVSS score of CVE instan-
ces in each CWE type is shown in parentheses within the legend box.

23. The data was obtained on June 28, 2019.
24. https://www.cvedetails.com/vulnerability-list/cweid-119/

vulnerabilities.html
25. https://www.cvedetails.com/vulnerability-list/cweid-775/

vulnerabilities.html 26. https://nvd.nist.gov/vuln-metrics/cvss

ZHANG ET AL.: STUDY OF C/C++ CODEWEAKNESSES ON STACK OVERFLOW 2365

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 10,2023 at 22:38:35 UTC from IEEE Xplore. Restrictions apply.

https://www.cvedetails.com/vulnerability-list/cweid-119/vulnerabilities.html
https://www.cvedetails.com/vulnerability-list/cweid-119/vulnerabilities.html
https://www.cvedetails.com/vulnerability-list/cweid-775/vulnerabilities.html
https://www.cvedetails.com/vulnerability-list/cweid-775/vulnerabilities.html
https://nvd.nist.gov/vuln-metrics/cvss

CWE-119, has increased in recent years. The growth trend of
Codew and CWE instance count in each individual CWE
type are shown in Appendix C, available in the online
supplemental material. To further understand the impact
of such growing CWE types, we analyze the trend of
CWE-119, which is the CWE type with the largest number
of CVE instances in real-world software systems, and its
related CVE instances.27 We observe that the number of
CWE-119 instances dropped from 2008 to 2011 and since
then had a rising trend, although in both 2014 and 2017
the number of CWE instances dropped from the preced-
ing years, respectively. The corresponding CVE instances
were increasing until 2017 as shown in Fig. 5. In particu-
lar, the severity level of CWE-119 is considerably higher
than other CWE types. Therefore, we suggest that devel-
opers be cautious about these CWE types when reusing
code snippets from Stack Overflow answers, especially
paying attention to the boundary of memory buffers
when reusing C/C++ code snippets on Stack Overflow.

We observe that the median score of answers with differ-
ent numbers of CWE instances is either zero or one. There is
no significant correlation between the answer scores and
the number of associated CWE instances (p-value = 0.01).
Thus, there is no difference in the scores of answers that
contain more or less weakness. In addition, out of the 12,998
CWE instances in the latest version of code snippets with
weaknesses, 9,535 (i.e., 73.4 percent) are in non-accepted
answers, showing that the majority of the code weaknesses
are in non-accepted answers.

We identify 36 percent (i.e., 32 out of 89) CWE types in
Stack Overflow answers. CWE-908 – use of uninitialized
resource, accounts for 54.2 percent of all the CWE instan-
ces. In particular, some types of the detected CWEs, such
as CWE-119 – improper restriction of operations within the
bounds of a memory buffer, are common in code snippets
and are common weaknesses in real-world software sys-
tems. We also observe that the proportion of Codew dou-
bled from 2008 to 2018, and that the number of instances
in some CWE types, e.g., CWE-775/119/685, is rising in
recent years.

4.2 RQ2: How Does Code With Weaknesses Evolve
Through Revisions?

92.6 percent (i.e., 10,884) of the 11,748 Codew has weaknesses
introduced when their code snippets were initially created on
Stack Overflow, and 69 percent (i.e., 8,103 out of 11,748) of the
Codew has never been revised, as shown in Table 2. For example,
an answer28 recommended the use of the strcpy function to
solve an error when checking if words in an array of
pointers to char are the same as words in a function,
although a comment pointed out that “this is bad, it uses scanf
and strcpy unsafely, which causes buffer overflows, a very serious
security vulnerability”, the answer was never revised.

In general, more rounds of code revisions are more likely to
reduce code weaknesses. In 31 percent (i.e., 3,645) of Codew,
there are 6,831 Versionw, that is, code versions with weak-
nesses. In these 3,645 code snippets with weaknesses, there
are a total number of 9,488 code versions. Table 2 lists the
number of Codew with different revision numbers. Note that
a code snippet with zero revision has one version in its his-
tory. The proportion of improved Codew increases as the
number of revisions increases, indicating that having more
code revisions is beneficial in reducing security weaknesses. More
specifically, as the number of revisions increases from one
to � three, the proportion of improved Codew increases from
30.1 to 41.8 percent. We also perform a Mann-Whitney test
for both the improved and deteriorated Codew with different
revision numbers, and find that for each case the last code
version is significantly different from the first code version
in terms of the number of CWE instances for each Codew (p-
value < 0.05). To illustrate how users revised their code
snippets leading to a reduce of weaknesses, we observe an
accepted answer29 that was revised five times. The initial
code snippet in the answer contained CWE-562 – return of
stack variable address, while the latest code snippet no longer
contained any weakness. The answerer also posted two
comments under the question to explain that “I had to fix my
answer so dest wasn’t statically allocated ...”, and to further
warn that “... to reduce risk of misuse and memory leaks. A com-
mon problem is that people may come back later to make changes
‘borrow’ a function for quick use in another feature of the program
or another solution and miss that fact and introduce a leak. So it’s
a good precautionary action.”

In Codew with different rounds of code revisions, a larger pro-
portion of code snippets have reduced rather than increased the
number of their associated security weaknesses. To illustrate, an
answer30 created a file but never closed it. Later, another

Fig. 5. The growth of the number of CWE-119 instances normalized by
the number of C/C++ code snippets in each year. The growth of CVE
instances related to CWE-119 is also shown.

TABLE 2
The Number/Proportion of Codew versus
Different Number of Code Revisions

#Revisions #Codew #Unchanged #Improved #Deteriorated

0 8,103 NA NA NA
� 1 3,645 1,886 (51.7%) 1,218 (33.4%) 541 (14.8%)
1 2,369 1,340 (56.6%) 714 (30.1%) 315 (13.3%)
2 774 349 (45.1%) 294 (38.0%) 131 (16.9%)
� 3 502 197 (39.2%) 210 (41.8%) 95 (18.9%)

27. The data is collected by crawling the CVE information website
on October 9, 2019 at https://www.cvedetails.com/vulnerability-list/
cweid-119/vulnerabilities.html

28. https://stackoverflow.com/a/52807726/
29. https://stackoverflow.com/a/41971294/
30. https://stackoverflow.com/revisions/18637122/3/

2366 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 7, JULY 2022

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 10,2023 at 22:38:35 UTC from IEEE Xplore. Restrictions apply.

https://www.cvedetails.com/vulnerability-list/cweid-119/vulnerabilities.html
https://www.cvedetails.com/vulnerability-list/cweid-119/vulnerabilities.html
https://stackoverflow.com/a/52807726/
https://stackoverflow.com/a/41971294/
https://stackoverflow.com/revisions/18637122/3/

user edited the code to properly close the file in order to
release the file handler. Table 2 shows that the improved
Codew are at least twice more than the deteriorated Codew for
different numbers of code revisions. In the circumstances
when code revisions introduce more weaknesses, i.e., deteri-
orated Codew, the proportion of deteriorated Codew slightly
increases from 13.3 to 18.9 percent as the number of code
revisions increases from one to � three. Compared with the
improved Codew, the deteriorated Codew have more CWE
instances that are possibly related to the addition of more
LOC to existing code snippets. To test this assumption, we
investigate the relationship between the change of lines of
code and the change of number of CWE instances from the
first to the last version of a code snippet. We calculate the
LOC change ratio using the following equation:

LOC change ratio ¼ LOCðlastÞ � LOCðfirstÞ
LOCðfirstÞ ;

where LOCðfirstÞ and LOCðlastÞ present the LOC in the
first and last versions, respectively. We calculate the change
of the CWE instance number as the change of CWE instan-
ces from the first code version to the last code version

CWE countðlastÞ � CWE countðfirstÞ:
We find that the higher the proportion of LOC change ratio, the
more the number of CWE instances changes, suggesting that there
is a positive correlation between the LOC change ratio and the
CWE change. The distribution of the change of CWE instan-
ces number in Codew with different ranges of LOC change
ratio is shown in Fig. 6. Code weaknesses are more likely to
be detected and a Stack Overflow user is exposed to a
higher security risk, especially after revising an answer by
adding more code. We cannot make any data-supported
conclusion of the reasons for this observation, but one possi-
ble explanation is that the user is not aware of the security
consequences of the provided content, and the chance of
having risk increases when more code is given.

We compare Codew and code snippets without weak-
nesses in terms of their revision number to exam whether
Codew are more likely to be revised. Among all the 646,716
code snippets that are scanned by Cppcheck, 20.1 percent
(i.e., 130,100) have been revised, while a larger proportion,
that is, 31 percent (i.e., 3,645 out of 11,748) of Codew have
been revised, indicating that Codew are more likely (54.2 per-
cent) to be revised. The rest 69 percent of the Codew have

never been revised. Weaknesses are present in these code
snippets as they are created and no further action is ever
performed. Khandelwal et al. conducted a survey to under-
stand whether gamification helps in peer code review activ-
ity, and found that 54 percent of the correspondents were in
strong favour of gamification in code review [33]. Therefore,
future research may study whether a gamification mecha-
nism can encourage code review and thus alleviate the risk
of code weaknesses on Stack Overflow.

We calculate the change of CWE instances in two conse-
cutive versions in the 3,645 code snippets with at least two
code versions (i.e., 5,843 code revisions in total). In the 5,843
code revisions, 3,728 (i.e., 63.8 percent) of them have the
same number of CWE instances compared with the preced-
ing code version. 1,400 (i.e., 24.0 percent) of the revisions
have fewer CWE instances compared with the preceding
code version. 715 (i.e., 12.2 percent) of the revisions have
more CWE instances compared with the preceding code
version. Therefore, the majority of the consecutive code
revisions (i.e., 63.8 percent) do not change code weakness.
In the rest (i.e., 36.2 percent) of the code revisions, revisions
are more likely to decrease the code weakness than to
increase the code weakness. Among all the consecutive
code revisions, 24 percent correct code weaknesses, while
after multiple code revisions, i.e., comparing the last version
with the first version, 33.4 percent eventually correct code
weaknesses. Therefore, more weaknesses are eventually
fixed even though they were not fixed in earlier revisions.
Fig. 7 shows the distributions of code revisions with differ-
ent numbers of CWE instances. We observe that the time
between the first and last version with weaknesses is much
shorter than the time from the last version with weaknesses
to present time,31 as shown in Appendix D, available in the
online supplemental material. In other words, users do not
see much of the earlier versions compared to the latest ver-
sion, and the latest version is the final version that is pre-
sented to users.

We further examine the impact of code revisions on the
number of CWE instances within each CWE type. For each
specific CWE type, we extract the number of CWE instances
in the last code version, i.e., Clast, the number of CWE

Fig. 6. The distribution of the change of CWE instances number across
different ranges of LOC change ratio. The negative CWE change occurs
within the improved Codew. The zero CWE change occurs within the
unchanged Codew. The positive CWE change occurs within the deterio-
rated Codew.

Fig. 7. The distribution of code revisions with different number of CWE
instances in an unchanged, improved, and deteriodated revision,
respectively.

31. As of December 2018, when our data was collected.

ZHANG ET AL.: STUDY OF C/C++ CODEWEAKNESSES ON STACK OVERFLOW 2367

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 10,2023 at 22:38:35 UTC from IEEE Xplore. Restrictions apply.

instances in the first code version, i.e., Cfirst, and calculate
the change of CWE instances as: ðClast � CfirstÞ=Cfirst.

For the majority of CWE types, revisions of Codew reduce the
number of CWE instances. For each CWE type, we extract all
theCodew that contain such CWE instances, and compare the
number of CWE instances in this CWE type between the first
and last version of the same Codew. As shown in Fig. 8, we
observe that the CWE instances increase for only 6 CWE
types, i.e., 404/672/682/786/825/910, while it drops for 24
CWE types. To test if the difference is statistically significant,
we perform a Wilcoxon signed-rank test for each CWE type
by comparing the number of CWE instances between the first
and last version (i.e., paired comparisons). In Fig. 8, we label
the change of CWE instances with a � sign when the differ-
ence is statistically significant (i.e., p-value < 0.05). Note
that none of the increases in the number of CWE instances
for CWE-404/672/682/786/825/910 is statistically signifi-
cant, indicating that the revisions of Codew do not increase
the number of CWE instances significantly. On the other
hand, the improved Codew have a statistically significant drop
in their number of CWE-119/401/562/664/665/685/687/
758/762/775/788/908, indicating the revision of such Codew
leads to a decrease in the security weaknesses. Note that for
the rest of CWE types with a drop in their last code versions,
the revision does not lead to a decrease in the security weak-
nesses, possibly due to the small number of CWE instances
in such cases, i.e., a median value of 20, and a maximum
value of 78. We encourage users to pay extra attention to the
rest of these CWE types.

In summary, we observe that code revisions are associ-
ated with a reduction in the number of security weaknesses
in code snippets in general; however, some code revisions
can also introduce weaknesses. We suggest online weakness
detection tools to be used to identify Codew. We find that the
majority of Codew remain unchanged to the community:
they are never revised and may be reused by others. We
also observe that 4,271 (i.e., 36.4 percent) of Codew are in an
answer revision, i.e., weaknesses still exist even after an
answer is revised. We suggest Stack Overflow to use better
incentives together with weakness detection tools to moti-
vate users to actively reduce code weaknesses through
answer revisions, in turn improving the crowdsourced code
quality from a security perspective.

We observe that Codew without any revisions are less
likely to have comments in the associated answer, while
Codew that are eventually improved have more comments
in the associated answer – see Appendix E, available in the
online supplemental material. This finding suggests the posi-
tive effect of discussions through commenting on improving the
quality of code snippets. As shown in Fig. 3, a comment
pointed out that the strlcpy/strlcat functions are insecure in
an answer although the answer was never edited. Users are
recommended to read through the associated comments in
an answer in case security knowledge is added by the com-
munity through commenting.

More rounds of code revisions are associatedwith a reduc-
tion in the number of code weaknesses. A larger propor-
tion of Codew have reduced rather than increased the
number of securityweaknesses. There is a positive correla-
tion between the LOC change ratio and the CWE change
number. In the majority of CWE types, code revisions
reduce their associated CWE instances. Especially for
CWE-119/401/562/664/665/685/687/758/762/775/
788/908, the number of weaknesses drops significantly. In
addition,Codew are more likely (54.2 percent) to be revised
than code in general. However, the majority ofCodew have
weaknesses introduced in the first code version and they
are never revised.

4.3 RQ3: What are the Characteristics of the Users
who Contributed to Code With Weaknesses?

The majority of the C/C++ Versionw were contributed by a small
number of users. 72.4 percent (i.e., 10,652) of Versionw were
posted by 36 percent (i.e., 2,292) of users, as shown in Fig. 9.
64.0 percent (i.e., 4,070) of the users who contribute
Versionw have contributed only one Versionw. Among all the
85,165 users who posted C/C++ code snippets, only 7.5 percent
(i.e., 6,361) of them posted code snippets that have weaknesses.

More active users are less likely to introduce Codew. Fig. 10
illustrates the relationship between the number of code revi-
sions contributed by a user and the weakness density of a
user’s code. The figure shows that the weakness density of a
user’s code drops when the number of contributed code revisions
by the user increases. In particular, 15.1 percent (i.e., 958) of
the users contribute only one code version ever and it is a
Versionw, as shown by the top left point in Fig. 10. In Fig. 11,
we compare the reputation of the contributor for a code ver-
sion with different numbers of CWE instances in the code

Fig. 8. The change of CWE instances for different CWE types. * indi-
cates that the change is statistically significant (i.e., p-value < 0.05).

Fig. 9. The accumulative proportion of Versionw that were posted by the
proportion of users.

2368 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 7, JULY 2022

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 10,2023 at 22:38:35 UTC from IEEE Xplore. Restrictions apply.

version, which shows that users with higher reputation tend to
introduce fewer CWE instances in their contributed code versions.
As an example, one user has only 6 Versionw, while the cur-
rent reputation of that user is more than 500K.32 In particu-
lar, we show the median user reputation for each group of
contributors, and the medium reputation of the contributors
to code versions without weaknesses are at least three times
higher than the medium reputation of the contributor to
Versionw. We run a Mann-Whitney test and observe that
the difference in contributors’ reputation between code
versions without weaknesses and Versionw is significant
with a p-value < 0.05.

In total, 78.0 percent of users contribute code with only
one CWE type. Furthermore, 42.2 percent (i.e., 2,686) of the
users contribute only one CWE instance in all their
Versionw, as shown in Fig. 12. 81.8 percent (i.e., 5,206) of the
users contribute less than five CWE instances in all their
Versionw.

Users Tend to Commit the Same Types of CWE Instances
Repeatedly. For each CWE type, we show the distribution
of the number of contributed CWE instances by different
users in Fig. 13. The figure suggests that certain Stack
Overflow users repeatedly contribute code snippets with
specific CWE types. For example, we observe that in
CWE-401/775/908 some users contribute code with such
CWE types for more than 10 times. In other words, users
may not even realize that they are posting code snippets
with the same potential security weaknesses repeatedly.
For example, one user has contributed CWE-775, i.e.,
missing release of file descriptor or handle after effective life-
time, for 79 times.33 Furthermore, we observe that the
timespan when users repeatedly post the same CWE type
is short for the majority of the CWE types, i.e., a median
value of less than one day except for CWE-562 – see
Appendix F, available in the online supplemental mate-
rial. Future tooling support to identify Stack Overflow
code vulnerability can actively support users who repeat-
edly contribute the same code weakness type.

To better understand how users contribute different CWE
types, we analyze the users who actively contribute code
weaknesses, i.e., at least five CWE instances, in their

Versionw. To understand the CWE types that are contributed
by each user, we calculate the normalized entropy of the
CWE types from his/her posted Codew. More specifically,
we wish to measure whether the CWE types that are contrib-
uted by a user are concentrated on a small number of CWE.
We count the number of CWE instances for each CWE type,
and calculate the normalized entropy of the resulting distri-
bution. Fig. 14 shows the distribution of the normalized
entropy for 1,153 users who contributed at least 5 CWE
instances. An entropy value of 0 indicates that the user only
contributed a single type of CWE in their code snippets. We
observe that 37.7 percent of users are likely to introduce a single
type of CWE instances in their posted code versions.

Fig. 10. As the number of code revisions increases for a user, the density
of contributed Versionw by that user drops.

Fig. 11. The distribution of user reputation points for users who contrib-
ute code versions both without and with different numbers of CWE
instances.

Fig. 12. The number/proportion of users who contribute a different num-
ber of CWE instances.

Fig. 13. The distribution of contributed CWE instances by different users
for different CWE types.

32. https://stackoverflow.com/users/505088/
33. https://stackoverflow.com/users/3422102/

ZHANG ET AL.: STUDY OF C/C++ CODEWEAKNESSES ON STACK OVERFLOW 2369

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 10,2023 at 22:38:35 UTC from IEEE Xplore. Restrictions apply.

https://stackoverflow.com/users/505088/
https://stackoverflow.com/users/3422102/

The majority (i.e., 72.4 percent) of Versionw were contrib-
uted by 36 percent of the users who contributed
Versionw. Only 7.5 percent of users who contributed C/
C++ code snippets had code weaknesses. Users contrib-
ute fewer Versionw as their activities increase in terms of
both the number of contributed code versions and the
gained reputation. 78.0 percent of the users contribute
only one CWE type, and users tend to have the same
CWE type repeatedly in their contributed code.

5 IMPLICATIONS OF OUR FINDINGS

5.1 How Does the Stack Overflow Community
Respond to Security Issues of C/C++
Code Snippets?

In our qualitative study to understand how the Stack Over-
flow community responds to code weaknesses, we observe
that 25 out of our 40 (i.e., 62.5 percent) suggested revisions
are adopted by the Stack Overflow community, i.e.,
approved by either the answerers themselves or the Stack
Overflow moderators. For example, we fixed a potential
memory leak caused by inappropriate use of realloc in an
answer,34 which has been adopted by the answerer. Note
that no reason was provided when a suggested revision
was approved.

For the suggested revisions that were rejected, the rea-
sons for the rejections can be: “this edit was intended to address
the author of the post and makes no sense as an edit, it should have
been written as a comment or an answer.” For example, our
attempt35 to fix a potential resource leak was rejected by
Stack Overflow moderators based on the above-mentioned
reason. Note that most of the rejected revisions were done
by Stack Overflow moderators. Although they considered
the revisions should have been contributed in a different
format, they agreed that the revisions addressed security
weaknesses. From our experiment, we do note that the post-
ing of a comment before suggesting the actual code revi-
sions can improve the chance of the suggested revisions
being adopted [28]. Our experiment indicates that the effort
of fixing the detected code weaknesses are acknowledged
by the Stack Overflow community; however, we observe
that even for the same code weakness, one suggested revi-
sion in an associated answer can be approved while a sug-
gested revision in another answer can be rejected. Some

moderators may not be aware of the risk of weaknesses in
code snippets, and they are possibly rejecting code revisions
that aim to improve the security of the shared code snippets
on Stack Overflow. In the 15 out of our 40 suggested revi-
sions that were rejected, the different reasons are summa-
rized in Appendix G, available in the online supplemental
material.

The feedback from the Stack Overflow community high-
lights the need of a tool to automatically detect and correct
Codew, which can identify vulnerable C++ code snippets
and warn the user with both explanation and mitigation of
the vulnerability as proposed in [6].

5.2 Implications for Stack Overflow Users

Table 3 shows our major findings from empirically mining
the C/C++ Codew on Stack Overflow and their implications.

We find that certain types of weaknesses, e.g., CWE-119,
are common on Stack Overflow while also popular in real-
world software systems. We suggest users to pay attention to
operations at the bounds of thememory buffer in their code.

Overall, users should be cautious when reusing code
from Stack Overflow, since we find the proportion of Codew
have doubled during 10 years, i.e., 2008 – 2018. Further-
more, the frequency of CWE-775/119/685 is rising in recent
years. Certain users are repeatedly contributing the same
type of weaknesses. New mechanism can be designed to
alert such users about their security issues when they con-
tribute Stack Overflow code snippets. Based on our finding
that code revisions are associated with a reduction in code
weaknesses, additional efforts are needed to better assist
developers with removing code weaknesses.

We observe that more active users on Stack Overflow con-
tribute fewer Codew. Code revisions, especially the ones that
reduce codeweaknesses, can be rewarded by extra reputation
points and/or badges to improve the quality of the crowd-
sourced code snippets on Stack Overflow. Note that prior
work [5] observe that the user reputation does not correlate
with insecure Python code snippets on Stack Overflow. One
assumption is that different programming languages may
have different phenomenons. We encourage future research
to investigate the usage patterns of code vulnerability across
different programming languages.

Furthermore, the answerers who contributed more code
weaknesses are less active since we observe that more active
users contributed fewer Versionw. We suggest that Stack
Overflow can scan the code snippets online when users post
answers. Therefore, inactive users can be alerted about their
potentially insecure code before they contribute such code
in their answers. Our qualitative study of 40 Codew demon-
strates the value of online code review to actively improve
the security quality of the code base on Stack Overflow,
together with commenting on code weaknesses.

Currently, it is up to the users themselves to decide
whether code snippets are secure enough to share and/or
reuse on Stack Overflow. To illustrate the current situation
of code security on Stack Overflow, we show a Stack Over-
flow META discussion.36 In the question, the asker cited
that “Internet resources such as Stack Overflow are blamed for

Fig. 14. The distribution of entropy for CWE instances of different types.

34. https://stackoverflow.com/review/suggested-edits/24247281
35. https://stackoverflow.com/review/suggested-edits/24246951 36. https://meta.stackoverflow.com/q/356892/

2370 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 7, JULY 2022

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 10,2023 at 22:38:35 UTC from IEEE Xplore. Restrictions apply.

https://stackoverflow.com/review/suggested-edits/24247281
https://stackoverflow.com/review/suggested-edits/24246951
https://meta.stackoverflow.com/q/356892/

promoting insecure solutions that are naively copypasted by inex-
perienced developers”, and asked that “does this mean we should
do something about it or is it all the developers fault?”. In the
two associated answers within this question, one answer
starts with “no, we don’t have to change a thing”, while the
other starts with “I don’t think we have to change anything sys-
tematically.” Thus, on Stack Overflow META, the opinions
of how code security should be maintained show that both
the community and the platform do not need to be responsi-
ble for improving code security. Our study analyzes how
the improvement of code security is done in real-world
practices on Stack Overflow. We observe more than 10,000
code weaknesses in our experiment. Our qualitative study
demonstrates that actively tagging code with weaknesses is
accepted by the community, leading to an improvement of
the crowdsourced code quality.

6 THREATS TO VALIDITY

External Validity. In this study, we focus on C/C++ code
snippets, while code snippets in other programming lan-
guages may have distinct characteristics from our findings
of C/C++ code snippets. We encourage future research to
investigate security weaknesses in other programming
languages.

Furthermore, we only investigate code snippets from
Stack Overflow answers. Note that code snippets from ques-
tions can also have weaknesses. Since questions are posted
by askers to seek solutions for their problems, the code snip-
pets in questions are probably problematic to start with.
However, code snippets in answers are posted by users
who aim to solve issues. Their code snippets are shared
more frequently. Therefore, we study code snippets in
answers to provide security related insights.

To mitigate the bias from pseudo code or command line
functions, we remove code snippets with less than five lines

of code. We may lose a portion of code snippets. However,
we do note that there is no standard way to determine the
threshold for removing such code snippets, and we follow
prior studies [16], [17] in using a threshold of five lines of
code. In addition, we use the Guesslang tool to determine
whether a code snippet is written in C/C++. Guesslang is
based on a deep learning model trained with source code
files. Although the accuracy of the tool is evaluated to be 91
percent from our 100 randomly sampled code snippets,
around 10 percent of our collected C/C++ code snippets
can be false positives. Code snippets that are not in C/C++
can be introduced in our study and may bias our under-
standing of code weaknesses in Stack Overflow answers.
We encourage future research to develop more accurate
techniques to identify C/C++ code snippets.

We detect code snippets with weaknesses using
Cppcheck. Cppcheck can identify 59 out of the 89 types of
C/C++ code weaknesses. The results that are generated by
Cppcheck can contain false positives, which may bias our
results, although it aims to minimize false positives.37 In
order to understand the bias of studying the code snippets
with Cppcheck, we manually evaluated the accuracy of
Cppcheck in Section 3.1.2 and found that it has an accuracy
of 0.85.

Internal Validity. When we scan code snippets with
Cppcheck, we skip any code snippet that returns syntax
errors. Such code snippets are probably code segments that
miss a substantial part of the compilable code, thus are not
included in our study. This approach may not capture all
types of security weaknesses in C/C++ code snippets on
Stack Overflow. We evaluate users’ activity level by their
reputation points on Stack Overflow. It is possible that a
user has gained reputation points by activities in other tags.
Thus, the gained reputation points may not accurately

TABLE 3
Our Major Findings From Empirically Mining the C/C++ Codew on Stack Overflow and Their Implications

37. http://cppcheck.sourceforge.net/manual.pdf

ZHANG ET AL.: STUDY OF C/C++ CODEWEAKNESSES ON STACK OVERFLOW 2371

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 10,2023 at 22:38:35 UTC from IEEE Xplore. Restrictions apply.

http://cppcheck.sourceforge.net/manual.pdf

reflect the activity level in C/C++ programming languages.
To complement this, we also consider the number of code
revisions that a user has done as the proxy of the activity
level of the user.

We note that there is no single approach that can fully
specify the impact of code weaknesses. To provide a thor-
ough view of the impact of code weaknesses, in this study
we evaluate the impact of different CWE types by referring
to both the CVSS scores and the 2019 CWE top 25 list to pro-
vide an overview picture of the impact of CWEs in real
world projects. While the CVSS score assesses the severity
of a CVE instance, the 2019 CWE top 25 list characterizes
the impact of a code weakness that can potentially lead to
software vulnerabilities. The CWE top 25 list is provided by
the CWE team in evaluating the impact of each CWE type.
This approach uses vulnerabilities that have CVE records in
the National Vulnerability Database – NVD. However, even in
the same top 25 list, some CWE types may have a higher
severity score than others, and weaknesses that are not
included in the list can still have an impact while being
underrepresented in the CWE top 25 list. In addition, the
vulnerabilities that are reported by their vendors in the
CVE dataset may not represent all the security risks that
developers encounter. Last but not least, we use the CWE
top 25 list that was published in 2019, while the list itself
can evolve over time with their rankings changed or certain
CWE types added/removed in the future. Although the
majority (i.e., 22) of the CWE types in 2019 still remain as
the top 25 in 2020, the interpretation of our analysis reflects
the exposure of code weaknesses in 2019. We encourage
future work to evaluate the impact of code weaknesses on
Stack Overflow, for example, by considering an industry
standard third party independent list of security impact, or
conducting user surveys. Future work can also study the
evolution of code weaknesses over time.

Construct Validity. Threats related to the construct valid-
ity is related to how we define a code snippet as
unchanged/improved/deteriorated in terms of its weak-
ness. In our study, we use the number of CWE instances
that are detected by Cppcheck as a proxy to measure the
quality of a code snippet. However, certain CWE types are
more severe than other CWE types. Thus, a quantitative
measure, e.g., CWE count, that indicates the quality of code
may be biased, as one CWE instance may be more severe
than multiple CWE instances combined. To evaluate the
impact of code weaknesses, we also show in Fig. 4 the
median CVSS score, i.e., a score to represent the severity of
software vulnerabilities, of CVE instances that are crawled
from cvedetails.com in July 2020 in each CWE type in Sec-
tion 4.1. According to NVD,38 a CVSS score of 4.0 to 6.9 is
considered medium severity, and a CVSS score of 7.0 to 10.0
is considered high severity. To further understand how
code weaknesses are evolving, we also analyze the change
of CWE instances for different CWE types in Fig. 8. Further-
more, in our experiment of reporting the results of our
scanned code weaknesses on Stack Overflow, 62.5 percent
of the identified weaknesses were acknowledged and
addressed by users, indicating that Cppcheck can detect

code weaknesses that are of concern by the Stack Overflow
community.

Another threat to our construct validity is about how we
measure the activity level of a user. It is challenging to mea-
sure a user’s activities on Stack Overflow. In our study, we
use both code revision count and reputation points as prox-
ies to measure user activities. Although these two proxies
may introduce bias, our results that are observed based on
them are aligned. Future research can explore other metrics
to characterize user activities and understand how different
users post insecure code snippets on Stack Overflow.

In RQ3, we select the users that have contributed more
than five CWE instances. The threshold selection could be a
construction threat to our results. To mitigate the threat, we
set the threshold of at least two CWE instances from a user
and observed that our result still holds. For 3,666 users who
contributed at least two CWE instances, the majority (i.e.,
61.8 percent) of users are likely to introduce a single CWE
type in their posted code versions.

7 RELATED WORK

7.1 Security in Software Systems

Code security is a critical issue in software engineering. Vul-
nerable code can undermine the quality of software systems.
A remarkable research effort has been invested in the security
issues of software systems. For example, Pletea et al. found
that 10 percent of discussions on GitHub are related to secu-
rity [34]. Acar et al. surveyed security guidance resources on
the web to inform developers about how to write secure
code [35]. Especially, C/C++ security issues are commonly
studied in the literature [36], [37], [38], [39], [40], [41], [42],
[43]. Alnaeli et al. analyzed how vulnerable source code is
used in 15 C/C++ software systems. They showed that vul-
nerable functions, such as strcmp, strlen and memcpy, play a
major roles in unsafe code [42]. Mcheick et al. proposed a tool
to detect memory management and type errors in C/C++
based on runtime information [40]. Yang et al. proposed an
approach in a commercial security analysis tool to assist
developers in fixing software vulnerabilities [44]. Different
from prior studies that focus on security at the system level,
we focus our study on code snippets.

7.2 Studying Code on Stack Overflow

For more than 10 years, Stack Overflow has accumulated
questions and answers related to programming, including
millions of code snippets. Stack Overflow code snippets are
valuable resources for developers. They have been actively
studied in the software engineering community. Yang et al.
studied the usability of code snippets across C#, Java, Java-
Script and Python [15]. They observed that Python and Java-
Script code snippets are more parsable/runnable than Java/
C#. An et al. analyzed 399 Android apps to investigate
potential license violations when developers reuse code
snippets from Stack Overflow and from Android apps into
Stack Overflow [13]. Treude et al. surveyed how Stack Over-
flow code snippets are self-explanatory [45]. Campos et al.
analyzed JavaScript code snippets on Stack Overflow and
flagged violations, such as errors and stylistic issues [46].

To better understand whether security issues exist and
how they are present in the crowdsourced knowledge of38. https://nvd.nist.gov/vuln-metrics/cvss

2372 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 7, JULY 2022

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 10,2023 at 22:38:35 UTC from IEEE Xplore. Restrictions apply.

https://nvd.nist.gov/vuln-metrics/cvss

Stack Overflow, prior studies investigated various security
aspects on Stack Overflow. For example, Yang et al. investi-
gated security-related questions on Stack Overflow. They
identified both popular and difficult topics related to secu-
rity that are asked on Stack Overflow [47]. Barua et al.
explored the discussion topics on Stack Overflow and iden-
tified security as a diverse topic that crosses multiple
domains [48]. Fischer et al. analyzed insecure code snippets
related to Android on Stack Overflow, and found that
15 percent of 1.3 million Android applications contained
insecure code snippets from Stack Overflow [2]. Meng et al.
inspected Stack Overflow threads that are related to Java
security and identified the root causes and solutions for
Java secure coding [4]. Chen et al. extracted Stack Overflow
code snippets related to Java security and observed that at
least 41 percent of their inspected security-related answers
are insecure [31]. Acar et al. surveyed the security quality of
Stack Overflow threads and observed that although Stack
Overflow crowdsourced knowledge is accessible compared
with official API documentation it often leads to insecu-
rity [49]. Lopez et al. conducted a study to examine how
users ask questions related to security on Stack Overflow.
They found that security conversations are rich, and some
askers and commenters are actively involved in such con-
versations [50]. Rahman et al. analyzed Python code snip-
pets on Stack Overflow and found that they suffered from
insecure coding practices such as code injection [5].

Prior studies examined vulnerabilities on Stack Overflow
for Android [2], Java [4], and Python [5]. Different from these
studies, our study focuses on C/C++ code snippets, which is
the programming language with the most CWE types out of
all programming languages – giving us a much larger num-
ber of observations. We have a number of observations. For
instance, a prior study [5] notes that the user reputation does
not correlate with insecure Python code snippets on Stack
Overflow, which is the opposite of our finding. In their
study, user reputation is normalized by the membership
period of a user. We also calculated the normalized user rep-
utation and our findings still hold in terms of the reputation
points normalized by time – more active users contribute
fewer C/C++ code weaknesses. Different programming lan-
guage communities may have different user contributions in
terms of code weaknesses. In addition, we studied how code
weaknesses evolve through revisions and the characteristics
of the contributors of these codeweaknesses.

C/C++ code weaknesses on Stack Overflow have not been
extensively studied in prior work. In [6], Verdi et al. observed
that the number of both CWE and vulnerable answers drops
over the years.39 Different from their study, we observe that
the proportion of code snippets with C/C++ weaknesses are
increasing over the years from 2009 to 2018. The difference in
the research designmay contribute to the differences between
the two findings. For example, Verdi et al. studied answers
with the C++ tag, while in our study answers from both the C
and C++ tags are examined. In our qualitative study, we
observe that users do care about code weaknesses, i.e., Stack
Overflow moderators/users frequently fixed the code weak-
nesses that we reported. Our study highlights the need for a
better mechanism to improve the management of Codew,

especially given that the number of code weaknesses is
increasing over time but weakness maintenance efforts are
not increasing proportionally, leading to Stack Overflow
becoming a more and more insecure platform for crowd-
sourced knowledge sharing.

In addition, Verdi et al. analyzed the prevalence of the
migration of vulnerable C++ code snippets from Stack
Overflow to GitHub [6], while our study focuses on all C/C
++ code snippets on Stack Overflow, including both code
snippets that are possibly migrated to GitHub and code
snippets that are not migrated to GitHub. Code snippets
with weaknesses may pose a risk even if they have yet to
migrate to GitHub. For example, code snippets may be
already in use by commercial systems or other open source
systems that are not hosted publicly on GitHub; in addition,
such vulnerable code may get migrated to GitHub in the
future. Besides analyzing the vulnerability types, we also
analyze the revision history of Codew and users that contrib-
ute such code snippets. We obtain insightful observations,
e.g., revisions do help reduce the number of CWE instances,
and some contributors repeat the same CWE throughout
their different contributions.

In this paper, we conduct a large-scale empirical study to
analyze all code snippets in Stack Overflow answers tagged
with C/C++. We are the first study that studies the weak-
nesses of C/C++ code, which is known to have themost secu-
rity vulnerabilities [10]. We provide insights to developers so
their code sharing activities lead to fewer security risks.

8 CONCLUSION

Code snippets on Stack Overflow are shared widely by
developers and code security is a critical condition for reuse.
In this study, we investigate the weakness of C/C++ code
snippets on Stack Overflow by scanning 646,716 C/C++
code snippets in Stack Overflow answers using Cppcheck.
We identified 32 types of code weaknesses on Stack Over-
flow, and observed that some CWE types, i.e., CWE-119/
416/190/476/415, are also associated with many vulnerabil-
ities in real-world software systems. In order to explore how
Codew evolve, we analyze the revision history of such Codew
and find that more code revisions are associated with a
reduction of code weaknesses. Our analysis also shows that
more active users contribute fewer Versionw. Our findings
can be leveraged by future studies to improve the quality of
Stack Overflow’s crowdsourced code snippets.

REFERENCES

[1] Y. Wu, S. Wang, C.-P. Bezemer, and K. Inoue, “How do develop-
ers utilize source code from stack overflow?,” Empir. Softw. Eng.,
vol. 24, no. 2, pp. 637–673, 2019.

[2] F. Fischer et al., “Stack overflow considered harmful? The impact
of copy & paste on Android application security,” in Proc. IEEE
Symp. Secur. Privacy, 2017, pp. 121–136.

[3] Wikipedia, “Vulnerability (computing).” Accessed: Feb. 01, 2020.
[Online]. Available: https://en.wikipedia.org/wiki/Vulnerability_
(computing)

[4] N. Meng, S. Nagy, D. Yao, W. Zhuang, and G. Arango-Argoty,
“Secure coding practices in Java: Challenges and vulnerabilities,”
in Proc. 40th Int. Conf. Softw. Eng., 2018, pp. 372–383.

[5] A. Rahman, E. Farhana, and N. Imtiaz, “Snakes in paradise?:
Insecure python-related coding practices in stack overflow,” in
Proc. IEEE/ACM 16th Int. Conf. Mining Softw. Repositories, 2019,
pp. 200–204.39. Fig. 6 from https://arxiv.org/abs/1910.01321

ZHANG ET AL.: STUDY OF C/C++ CODEWEAKNESSES ON STACK OVERFLOW 2373

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 10,2023 at 22:38:35 UTC from IEEE Xplore. Restrictions apply.

https://en.wikipedia.org/wiki/Vulnerability_(computing)
https://en.wikipedia.org/wiki/Vulnerability_(computing)
https://arxiv.org/abs/1910.01321

[6] M. Verdi, A. Sami, J. Akhondali, F. Khomh, G. Uddin, and
A. K. Motlagh, “An empirical study of C++ vulnerabilities in
crowd-sourced code examples,” 2021, arXiv:1910.01321.

[7] MITRE, “Weaknesses in software written in C.” Accessed:
Oct. 01, 2019. [Online]. Available: https://cwe.mitre.org/data/
definitions/658.html

[8] MITRE, “Weaknesses in software written in C++.” Accessed:
Oct. 01, 2019. [Online]. Available: https://cwe.mitre.org/data/
definitions/659.html

[9] WhiteSource, “What are themost secure programming languages?”
Accessed: Jan. 04, 2020, 2019. [Online]. Available: https://www.
whitesourcesoftware.com/most-secure-programming-languages/

[10] Slashdot, “Which programming language has the most security
vulnerabilities?” Accessed: Jan. 04, 2020, 2019. [Online]. Available:
https://developers.slashdot.org/story/19/03/25/0322202/which-
programming-language-has-the-most-security-vulnerabilities

[11] Y. Acar,M. Backes, S. Fahl, D. Kim,M. L.Mazurek, and C. Stransky,
“You get where you’re looking for: The impact of information
sources on code security,” in Proc. IEEE Symp. Secur. Privacy, 2016,
pp. 289–305.

[12] TIOBE, “Programming Language C awarded Programming
Language of the Year 2019.” Accessed: Oct. 01, 2019. [Online].
Available: https://www.tiobe.com/tiobe-index/

[13] L. An, O. Mlouki, F. Khomh, and G. Antoniol, “Stack overflow: A
code laundering platform?,” in Proc. IEEE 24th Int. Conf. Softw.
Anal. Evol. Reeng., 2017, pp. 283–293.

[14] R. Abdalkareem, E. Shihab, and J. Rilling, “On code reuse from
StackOverflow: An exploratory study on android apps,” Inf. Softw.
Technol., vol. 88, pp. 148–158, 2017.

[15] D. Yang, A. Hussain, and C. V. Lopes, “From query to usable
code: An analysis of stack overflow code snippets,” in Proc. 13th
Int. Conf. Mining Softw. Repositories, 2016, pp. 391–402.

[16] S. Baltes, L. Dumani, C. Treude, and S. Diehl, “SOTorrent:
Reconstructing and analyzing the evolution of stack overflow
posts,” in Proc. 15th Int. Conf. Mining Softw. Repositories, 2018,
pp. 319–330.

[17] I. Keivanloo, J. Rilling, and Y. Zou, “Spotting working code exam-
ples,” in Proc. 36th Int. Conf. Softw. Eng., 2014, pp. 664–675.

[18] T. Liu and R. Huuck, “Case study: Static security analysis of the
android goldfish kernel,” in Proc. Int. Symp. Formal Methods, 2015,
pp. 589–592.

[19] A. Joshi, A. Tewari, V. Kumar, and D. Bordoloi, “Integrating static
analysis tools for improving operating system security,” Int. J.
Comput. Sci. Mobile Comput., vol. 3, no. 4, pp. 1251–1258, 2014.

[20] S. V. Yulianto and I. Liem, “Automatic grader for programming
assignment using source code analyzer,” in Proc. Int. Conf. Data
Softw. Eng., 2014, pp. 1–4.

[21] D. J. Worth, C. Greenough, and L. Chin, “A survey of C and C++
software tools for computational science,” Sci. Technol. Facilities
Council, pp. 1–38, 2009.

[22] O. V. Pomorova and D. O. Ivanchyshyn, “Assessment of the
source code static analysis effectiveness for security requirements
implementation into software developing process,” in Proc. IEEE
7th Int. Conf. Intell. Data Acquisition Adv. Comput. Syst., 2013,
pp. 640–645.

[23] A. Arusoaie, T. Ciobâc�a, V. Cr�aciun, D. Gavrilut, and D. Lucanu,
“A comparison of static analysis tools for vulnerability detection
in C/C++ code,” in Proc. Int. Symp. Symbolic Numeric Algorithms
Sci. Comput., 2017, pp. 161–168.

[24] J. R. Landis and G. G. Koch, “An application of hierarchical
kappa-type statistics in the assessment of majority agreement
among multiple observers,” Biometrics, vol. 33, pp. 363–374, 1977.

[25] Q. Chen, L. Bao, L. Li, X. Xia, and L. Cai, “Categorizing and pre-
dicting invalid vulnerabilities on common vulnerabilities and
exposures,” in Proc. 25th Asia-Pacific Softw. Eng. Conf., 2018,
pp. 345–354.

[26] MITRE, “2019 CWE top 25 most dangerous software errors.”
Accessed: Jan. 28, 2021, 2019. [Online]. Available: https://cwe.
mitre.org/top25/archive/2019/2019_cwe_top25.html

[27] M. Howard, “Improving software security by eliminating the
CWE top 25 vulnerabilities,” IEEE Secur. Privacy, vol. 7, no. 3,
pp. 68–71, May/Jun. 2009.

[28] S. Wang, T.-H. Chen, and A. E. Hassan, “How do users revise
answers on technical Q&A websites? A case study on stack over-
flow,” IEEE Trans. Softw. Eng., vol. 46, no. 9, pp. 1024–1038,
Sep. 2020.

[29] A. Bosu, C. S. Corley, D. Heaton, D. Chatterji, J. C. Carver, and
N. A. Kraft, “Building reputation in StackOverflow: An empirical
investigation,” in Proc. 10th Work. Conf. Mining Softw. Repositories,
2013, pp. 89–92.

[30] D. Movshovitz-Attias, Y. Movshovitz-Attias, P. Steenkiste, and
C. Faloutsos, “Analysis of the reputation system and user contribu-
tions on a question answering website: StackOverflow,” in
Proc. IEEE/ACM Int. Conf. Advances Soc. Netw. Anal. Mining, 2013,
pp. 886–893.

[31] M.Chen, F. Fischer,N.Meng, X.Wang, and J.Grossklags, “Howreli-
able is the crowdsourced knowledge of security implementation?”
in Proc. 41st Int. Conf. Softw. Eng., 2019, pp. 536–547.

[32] S. Easterbrook, J. Singer, M.-A. Storey, and D. Damian, “Selecting
empirical methods for software engineering research,” in, Guide to
Advanced Empirical Software Engineering. Berlin, Germany: Springer,
2008, pp. 285–311.

[33] S. Khandelwal, S. K. Sripada, and Y. R. Reddy, “Impact of gamifi-
cation on code review process: An experimental study,” in Proc.
10th Innov. Softw. Eng. Conf., 2017, pp. 122–126.

[34] D. Pletea, B. Vasilescu, and A. Serebrenik, “Security and emotion:
Sentiment analysis of security discussions on GitHub,” in Proc.
11th Work. Conf. Mining Softw. Repositories, 2014, pp. 348–351.

[35] Y. Acar, C. Stransky, D. Wermke, C. Weir, M. L. Mazurek, and
S. Fahl, “Developers need support, too: A survey of security advice
for software developers,” in Proc. IEEE Cybersecur. Develop., 2017,
pp. 22–26.

[36] R. C. Seacord, Secure Coding in C and C++. Reading, MA, USA:
Addison-Wesley, 2013.

[37] Y. Younan, W. Joosen, F. Piessens, and H. V. den Eynden, “Security
of memory allocators for C and C++,” Department of Computer Sci-
ence, Katholieke Universiteit Leuven, Belgium, Jul. 2005. [Online]. Avail-
able: http://www.fort-knox.org/system/files/CW419.pdf

[38] R. Seacord, “Secure coding in C and C++ of strings and integers,”
IEEE Security Privacy, vol. 4, no. 1, pp. 74–76, Jan./Feb. 2006.

[39] Y. Younan, W. Joosen, F. Piessens, and H. Van den Eynden,
“Improving memory management security for C and C++,” Int. J.
Secure Softw. Eng., vol. 1, no. 2, pp. 57–82, 2010.

[40] H. Mcheick, H. Dhiab, M. Dbouk, and R. Mcheik, “Detecting type
errors and secure coding in C/C++ applications,” in Proc. ACS/
IEEE Int. Conf. Comput. Syst. Appl., 2010, pp. 1–9.

[41] W. Dietz, P. Li, J. Regehr, and V. Adve, “Understanding integer
overflow in C/C++,” ACM Trans. Softw. Eng. Methodol., vol. 25,
no. 1, pp. 2:1–2:29, Dec. 2015.

[42] S. M. Alnaeli, M. Sarnowski, M. S. Aman, K. Yelamarthi,
A. Abdelgawad, and H. Jiang, “On the evolution of mobile com-
puting software systems and C/C++ vulnerable code: Empirical
investigation,” in Proc. IEEE 7th Annu. Ubiquitous Comput. Electron.
Mobile Commun. Conf., 2016, pp. 1–7.

[43] S. M. Alnaeli, M. Sarnowski, M. S. Aman, A. Abdelgawad, and
K. Yelamarthi, “Vulnerable C/C++ code usage in IoT software
systems,” in Proc. IEEE 3rd World Forum Internet of Things, 2016,
pp. 348–352.

[44] J. Yang, L. Tan, J. Peyton, and K. A. Duer, “Towards better utiliz-
ing static application security testing,” in Proc. 41st Int. Conf. Softw.
Eng.: Softw. Eng. Practice, 2019, pp. 51–60.

[45] C. Treude and M. P. Robillard, “Understanding stack overflow
code fragments,” in Proc. IEEE Int. Conf. Softw. Maintenance Evol.,
2017, pp. 509–513.

[46] U. Campos, G. Smethurst, J. A. P. Moraes, R. Bonif�acio, and
G. Pinto, “Mining rule violations in JavaScript code snippets,” in
Proc. 16th Int. Conf. Mining Softw. Repositories, 2019, pp. 195–199.

[47] X.-L. Yang, D. Lo, X. Xia, Z.-Y. Wan, and J.-L. Sun, “What security
questions do developers ask? A large-scale study of stack over-
flow posts,” J. Comput. Sci. Technol., vol. 31, no. 5, pp. 910–924,
Sep. 2016.

[48] A. Barua, S. W. Thomas, and A. E. Hassan, “What are developers
talking about? An analysis of topics and trends in stack overflow,”
Empir. Softw. Eng., vol. 19, no. 3, pp. 619–654, Jun. 2014.

[49] Y. Acar,M. Backes, S. Fahl, D. Kim,M. L.Mazurek, andC. Stransky,
“You get where you’re looking for: The impact of information sour-
ces on code security,” in Proc. IEEE Symp. Secur. Privacy, 2016,
pp. 289–305.

[50] T. Lopez, T. T. Tun, A. Bandara, M. Levine, B. Nuseibeh, and
H. Sharp, “An investigation of security conversations in stack over-
flow: Perceptions of security and community involvement,” in Proc.
1st Int.Workshop Secur. Awareness Des. Deployment, 2018, pp. 26–32.

2374 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 48, NO. 7, JULY 2022

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 10,2023 at 22:38:35 UTC from IEEE Xplore. Restrictions apply.

https://cwe.mitre.org/data/definitions/658.html
https://cwe.mitre.org/data/definitions/658.html
https://cwe.mitre.org/data/definitions/659.html
https://cwe.mitre.org/data/definitions/659.html
https://www.whitesourcesoftware.com/most-secure-programming-languages/
https://www.whitesourcesoftware.com/most-secure-programming-languages/
https://developers.slashdot.org/story/19/03/25/0322202/which-programming-language-has-the-most-security-vulnerabilities
https://developers.slashdot.org/story/19/03/25/0322202/which-programming-language-has-the-most-security-vulnerabilities
https://www.tiobe.com/tiobe-index/
https://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html
https://cwe.mitre.org/top25/archive/2019/2019_cwe_top25.html
http://www.fort-knox.org/system/files/CW419.pdf

Haoxiang Zhang is a senior researcher at the
Centre for Software Excellence at Huawei, Canada.
His research interests include empirical software
engineering, mining software repositories, and intel-
ligent software analytics. He received the PhD
degree in computer science from Queen’s Univer-
sity, Canada and the second PhD degree in physics
and the MSc degree in electrical engineering from
Lehigh University, and obtained his BSc in Physics
from the University of Science and Technology of
China. For more information, please visit https://
haoxianghz.github.io/.

Shaowei Wang received the BSc degree from
Zhejiang University, Hangzhou, China, and the
PhD degree from Singapore Management Uni-
versity, Singapore. He is an assistant professor
with the Department of Computer Science, Uni-
versity of Manitoba. His research interests
include software engineering, machine learning,
data analytics for software engineering, auto-
mated debugging, and secure software develop-
ment. He is one of four recipients of the 2018
Distinguished Reviewer Award for the Springer

EMSE (SE’s highest impact journal). For more information, please visit
https://sites.google.com/site/wswshaoweiwang/.

Heng Li received the BEng degree from Sun
Yat-sen University, Guangzhou, China, the MSc
degree from Fudan University, Shanghai, China,
and thePhD degree from the School of Computing,
Queen’s University, Kingston, Canada. He is an
assistant professor with the Department of Com-
puter Engineering and Software Engineering,
Polytechnique Montreal, Montreal, Canada, where
he leads the Maintenance, Operations and Obser-
vation of Software with Intelligence (MOOSE) Lab.
He also worked with Synopsys as a software engi-

neer for two years and worked with BlackBerry as a software performance
engineer for another two years. His research interests lie within software
engineering, in particular, software observability, intelligent operations
of software systems, software log mining, software performance engineer-
ing, and mining software repositories. More information at: https://www.
hengli.org.

Tse-Hsun Chen received the BSc degree from
the University of British Columbia, Vancouver,
Canada, and the MSc and PhD degrees from
Queen’s University, Kingston, Canada. He is an
assistant professor with the Department of Com-
puter Science and Software Engineering, Con-
cordia University, Montreal, Canada. He leads
the Software Performance, Analysis, and Relia-
bility (SPEAR) Lab, which focuses on conducting
research on performance engineering, program
analysis, log analysis, production debugging, and

mining software repositories. His work has been published in flagship
conferences and journals such as ICSE, FSE, IEEE Transactions on Soft-
ware Engineering, Empirical Software Engineering, and MSR. He serves
regularly as a program committee member of international conferences in
the field of software engineering, such as ASE, ICSME, SANER, and
ICPC, and he is a regular reviewer for software engineering journals such
as the Journal of Systems and Software, Empirical Software Engineering,
and IEEE Transactions on Software Engineering. Besides his academic
career, he also worked as a software performance engineer with Black-
Berry for more than four years. Early tools developed by him were inte-
grated into industrial practice for ensuring the quality of large-scale
enterprise systems. For more information, please visit http://petertsehsun.
github.io/.

Ahmed E. Hassan (Fellow, IEEE) received the
PhD degree in computer science from the Univer-
sity of Waterloo, Waterloo, Canada. He is an
ACM SIGSOFT influential educator, an NSERC
steacie fellow, the Canada research chair (CRC)
in software analytics, and the NSERC/BlackBerry
software engineering chair with the School of
Computing, Queen’s University, Canada. His res-
earch interests include mining software reposito-
ries, empirical software engineering, load testing,
and log mining. He spearheaded the creation of

the Mining Software Repositories (MSR) conference and its research
community. He also serves/d on the editorial boards of IEEE Transac-
tions on Software Engineering, Springer Journal of Empirical Software
Engineering, and PeerJ Computer Science. For more information,
please visit http://sail.cs.queensu.ca/.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

ZHANG ET AL.: STUDY OF C/C++ CODEWEAKNESSES ON STACK OVERFLOW 2375

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on August 10,2023 at 22:38:35 UTC from IEEE Xplore. Restrictions apply.

https://haoxianghz.github.io/
https://haoxianghz.github.io/
https://sites.google.com/site/wswshaoweiwang/
https://www.hengli.org
https://www.hengli.org
http://petertsehsun.github.io/
http://petertsehsun.github.io/
http://sail.cs.queensu.ca/

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

