
Language-Based
Information-Flow Security

Dr. Kevin W. Hamlen

eCommerce
Website

End-to-end Confidentiality

Inventory
Database

User Info
Database

Main Memory
(inexpensive)

Secure Memory
(expensive)

Credit Card
Authentication

System

User

code

passive attacker

Problem: How to prevent information leaks?

Goals
• Provide tools to…

– write software that doesn’t leak secrets
– detect potential information leaks in existing code
– measure worst-case information leaks quantitatively

• End-to-end security
– modular verification strategies
– comprehensive separate verification = full-system verification
– cross-language, cross-hardware

• Mathematical Foundations
– what does “information leak” really mean?
– how to model information flow in complex systems?
– relation to data integrity enforcement?

Non-LBS Approaches
• Access control

– deny read-access to untrusted principals
– examples: OS access control lists (ACL’s), private fields in Java
– no guarantee that principals granted read-access will not (accidentally)

leak the secret!
– how to identify these untrustworthy principals?

• Firewalls
– some info always exchanged
– how to prove that info is free of secrets?
– not enough to scan for byte sequences

• Encryption
– protects from man-in-middle eavesdropping
– eventually data is decrypted
– how to prove that decrypted secrets are not leaked?

Channels
• Notation:

– low-security (attacker-readable) variables: ℓ
– high-security (secret) variables: h

• Information Flows
– Explicit: ℓ := h
– Implicit: if h>0 then ℓ:=0 else ℓ:=1

• Covert Channels
– Termination: if h>0 then halt
– Probabilistic: ℓ := h + rand(100)
– Resource exhaustion: for i:=1 to ℓ do malloc(h)
– Power: if h>0 then decrypt(database) else skip

Integrity & Confidentiality
• Low-integrity data must not be treated as trustworthy
• Can be seen as duals [Biba, USAF ’77]

– Confidentiality: no flows (reads) from high to low
– Integrity: no flows (writes) from low to high

• Mandatory Access Control approach [Bell and LaPadula,
MITRE ’73]
– each variable x gets a confidentiality label c(x) and an

integrity label i(x)
– flows from y to x (e.g., x:=y) change labels as follows:

• confidentiality increases: c(x) := max(c(x),c(y))
• integrity decreases: i(x) := min(i(x),i(y))

– labels conform to a security lattice

A Confidentiality Label Lattice
top secret

public

team A:
confidential

team B:
confidential

research:
confidential

battle plans:
confidential

A Confidentiality Label Lattice
top secret

public

team A:
confidential

team B:
confidential

research:
confidential

battle plans:
confidential

max = join = least common parent
A ⊔ RC = TS

A Confidentiality Label Lattice
top secret

public

team A:
confidential

team B:
confidential

research:
confidential

battle plans:
confidential

max = join = least common parent
A ⊔ RC = TS

min = meet = greatest common child
BP ⊓ RC = P

Type-based Approach
source
code

Confidentiality-
checking Compiler

debug

typing
errors

reject

object
code

accept

object
code

source
code

Confidentiality-
checking Compiler

object
code

source
code

Confidentiality-
checking Compiler

Linker

end-to-end secure
executable code

Type-based Information Flow Control
[Sabelfeld & Myers, IEEE J. Selected Areas in Communications 21(1), 2003]

c ::= skip | c1;c2 | v:=e | if e then c1 else c2 | while e do c
e ::= n | v | e1+e2

τ ::= high | low
Γ : (v U {pc}) → τ

Γ n : low

Γ v : Γ(v)

Γ e1 : τ1 Γ e2 : τ2

Γ e1+e2 : τ1⊔τ2

Typing Rules for Expressions:

Type-checking Commands
Γ skip

Γ e : τ Γ(v)≥τ

Γ v:=e

Γ c1

Γ c1;c2

Γ c2

Γ e : τ

Γ if e then c1 else c2

Γ[pc:=τ] c1 Γ[pc:=τ] c2

Γ while e do c

Γ e : τ Γ[pc:=τ] c

Γ(v)≥Γ(pc)
implicit flow
protection!

Proving Noninterference

• Noninterference
– Def: x interferes with y if the value of x affects the

value of y
– wish to prove that h does not interfere with ℓ

• Low views
– Def: Low view of store σ is its low-security variables
– Def: σ1 =L σ2 if for all low-security variables ℓ, we have
σ1(ℓ) = σ2(ℓ)

• Proof goal:
– If c is well-typed and σ1 =L σ2 then D[c]σ1 =L D[c]σ2
– Running c does not make secret low-viewable

Active Research Directions
• Functions/Procedures

– recursion and polymorphism
– SLam calculus [Heintze & Riecke, POPL’98]

• λ-calculus with confidentiality & integrity labels
• Exceptions

– many opportunities for information disclosure
– overly conservative rejection problematic

• Objects
– JFlow [Myers, POPL ’99]

• Distributed Computing
– Secure Program Partitioning [Zdancewic, Zheng, Nystrom & Myers, SOSP’01]
– common source split among mutually-distrusting hosts
– synthesize appropriate communication protocols for servers/clients

Active Research Directions

• Concurrency
– Nondeterminism

• possibilistic approach – high inputs must not interfere with
SET of possible low views

• equational approach – define HH=“havoc on h” and prove
D[HH;c;HH]σ = D[c;HH]σ [Leino & Joshi, MPC’98]

– Multithreading
• desynchronized use of h: (h:=0; ℓ:=h) ǁ (h:=h´)
• timing-to-explicit: (if h=1 then clong else skip; ℓ:=1) ǁ (ℓ:=0)
• scheduler-dependence
• synchronization strategies

The Declassification Problem

• Example:
– password authenticator application
– always rejected by this type system! Why?

• Approaches
– trusted declassification operations
– spi-calculus: π-calculus for cryptography [Abadi &

Gordon, Information and Computation, 148(1), 1999]

– robust declassification: active attackers are no
more powerful than passive ones [Zdancewic & Myers,
CSFW’01]

Open Problems

• System-wide (end-to-end) security
• Certifying compilation for confidentiality

– not quite so open anymore
• Dynamic policy-changes

– see Flow Locks [Broberg & Sands, ESOP’06]

• Practical issues
– hard to satisfy the type-checker
– many covert channels (e.g., caches)
– power channels (e.g., smartcards)

Discussion
• Why aren’t confidentiality-checking compilers standard practice

yet?
– It’s been 10 years now…

• Is the covert channel problem surmountable?
• What about quantitative instead of binary information flow?

– still a significant open question
– number of bits of information disclosed?
– number of bits per time interval?
– probability of bits disclosed?

• Could this be done at the binary level? Would there be any
advantage to this over source-level?

• Would it be better to devise a new language instead of retrofitting
an existing one (e.g., Java)?

	Language-Based�Information-Flow Security
	End-to-end Confidentiality
	Goals
	Non-LBS Approaches
	Channels
	Integrity & Confidentiality
	A Confidentiality Label Lattice
	A Confidentiality Label Lattice
	A Confidentiality Label Lattice
	Type-based Approach
	Type-based Information Flow Control�[Sabelfeld & Myers, IEEE J. Selected Areas in Communications 21(1), 2003]
	Type-checking Commands
	Proving Noninterference
	Active Research Directions
	Active Research Directions
	The Declassification Problem
	Open Problems
	Discussion

