
Lecture #25: Axiomatic Semantics

CS 6371: Advanced Programming Languages

Consider the following SIMPL program, which computes y to be the sum of 1..x:

w = (while 1<=x do (y:=y +x;x:=x - 1))

We wish to prove the partial-correctness of program w. That is, we wish to prove the following
partial-correctness assertion:

{(x = n̄) ∧ (n̄ ≥ 1) ∧ (y = 0)}w{y = 1
2
n̄(n̄ + 1)}

The first step is to find a suitable loop invariant I for the while-loop. Suitable loop
invariants always satisfy three criteria:

1. I must be valid at the start of the loop.

2. Executing the loop body in any state where I and the loop condition are both valid
always results in a state where I is still valid.

3. I conjoined with the negation of the loop condition must imply the postcondition.

If you choose an invariant that is too weak, it will not be strong enough to prove the
postcondition and condition 3 will fail. If you choose one that is too strong, it will be falsified
on some loop iterations and conditions 1 or 2 will fail.

For example, suppose we choose y = 1
2
n̄(n̄ + 1) as our invariant. This is clearly strong

enough to prove the postcondition (since it is identical to the postcondition) but it is not
valid on every iteration. Instead, we might try y = 1

2
n̄(n̄ + 1)− 1

2
x(x + 1). This is valid on

every iteration but it is not quite strong enough to prove the postcondition. To prove the
postcondition we would also need to know that x = 0 at the end of the loop. The negation of
the loop condition is x < 1, so to infer that x = 0 we need only combine this with x ≥ 0.
This leads us to the invariant I ≡ ((x ≥ 0) ∧ (y = 1

2
n̄(n̄ + 1)− 1

2
x(x + 1))), which satisfies all

three criteria.
Armed with this invariant, we can begin our proof as follows:

|= A1

D
{I ∧ (1 ≤ x)}y:=y +x;x:=x - 1{I}

(5)
{I}w{¬(1 ≤ x) ∧ I} |= A2

(6)
{(x = n̄) ∧ (n̄ ≥ 1) ∧ (y = 0)}w{y = 1

2
n̄(n̄ + 1)}

where assertions A1 and A2 are defined by

A1 ≡ (x = n̄) ∧ (n̄ ≥ 1) ∧ (y = 0) =⇒ I

A2 ≡ ¬(1 ≤ x) ∧ I =⇒ (y = 1
2
n̄(n̄ + 1))

(You should convince yourself that A1 and A2 are both tautological before continuing.)

1



Next we must fill in derivation D. Rule 2 says that to prove a partial-correctness
assertion involving a sequence of commands, we must find an assertion C that can serve
as a postcondition for the first command and a precondition for the second. So we want a
derivation of the form:

D =

D1

{I ∧ (1 ≤ x)}y:=y +x{C}
D2

{C}x:=x - 1{I}
(2)

{I ∧ (1 ≤ x)}y:=y +x;x:=x - 1{I}

for some assertion C. If we use Rule 4 to complete sub-derivation D2, then C must be

C ≡ I[x− 1/x] ≡ (x− 1 ≥ 0) ∧ (y = 1
2
n̄(n̄ + 1)− 1

2
(x− 1)(x− 1 + 1))

To complete the proof, we only need to finish derivation D1 for our chosen C. Rule 4 says
that if the postcondition is C then the precondition must be C ′ ≡ C[y + x/y] ≡ (x − 1 ≥
0)∧ (y + x = 1

2
n̄(n̄+ 1)− 1

2
(x− 1)(x− 1 + 1)). Completing the proof therefore requires using

the rule of consequence to show that I ∧ (1 ≤ x) implies C ′:

D1 =
|= A3

(4)
{C ′}y:=y +x{C} |= C ⇒ C

(6)
{I ∧ (1 ≤ x)}y:=y +x{C}

where assertion A3 is given by

A3 ≡ I ∧ (1 ≤ x) =⇒ C ′

(Once again, you should convince yourself that this assertion is really valid.)
The final proof therefore looks like this:

|= A1

|= A3

(4)
{C ′}y:=y +x{C} |= C ⇒ C

(6)
{I ∧ (1 ≤ x)}y:=y +x{C}

(4)
{C}x:=x - 1{I}

(2)
{I ∧ (1 ≤ x)}y:=y +x;x:=x - 1{I}

(5)
{I}w{¬(1 ≤ x) ∧ I} |= A2

(6)
{(x = n̄) ∧ (n̄ ≥ 1) ∧ (y = 0)}w{y = 1

2
n̄(n̄ + 1)}

where assertions I, C, C ′, A1, A2, and A3 are defined by:

I ≡ (x ≥ 0) ∧ (y = 1
2
n̄(n̄ + 1)− 1

2
x(x + 1))

C ≡ (x− 1 ≥ 0) ∧ (y = 1
2
n̄(n̄ + 1)− 1

2
(x− 1)(x− 1 + 1))

C ′ ≡ (x− 1 ≥ 0) ∧ (y + x = 1
2
n̄(n̄ + 1)− 1

2
(x− 1)(x− 1 + 1))

A1 ≡ (x = n̄) ∧ (n̄ ≥ 1) ∧ (y = 0) =⇒ I

A2 ≡ ¬(1 ≤ x) ∧ I =⇒ (y = 1
2
n̄(n̄ + 1)− 1

2
x(x + 1))

A3 ≡ I ∧ (1 ≤ x) =⇒ C ′

2


