
APL: The Big Picture

Course Summary

• Programming Language Semantics
– Operational – for defining program behavior
– Denotational – for converting program to math
– Static – for avoiding “stuck states” (bugs)
– Axiomatic – for verifying program correctness

• Three styles of programming:
– Imperative (programs are sequences of instructions)
– Functional (programs are functions from inputs to

outputs)
– Logic (programs are declarative input-output relations)

Language Popularity

• Which languages are most popularly used in “real
life” (i.e., industry)?
– Unquestionably imperative ones (C/C++/Java)

• Why?
– easy to compile (no longer a compelling reason)
– momentum (well-developed tools, large labor pool)
– easy to write code that almost works

• The “Software Crisis”
– Microsoft spends >50% of its budget on testing (2008)
– Their code still doesn’t work
– “Find better programmers” is not the answer

Better Programming Languages
(What makes a language “advanced”?)
• Correctness over efficiency! (within reason)

– “If I want it to run faster, I’ll buy more processors.”
– Compilers as proof-assistants

• Elegant translation from mathematical spec to code
• Separation of concerns (the “what” vs. the “how”)
• Succinctness

– Less code = fewer bugs
– Code-reuse (parametric polymorphism)

• Modularity
– Object-oriented programming
– See also: OCaml module system, Aspect-oriented programming

• Programmer efficiency vs. program efficiency

Should we bury C/C++/Java?
• No! C/C++ is good for certain things:

– writing the inner loop of a matrix multiplier
– writing device drivers (but use formal verification)
– implementing some runtime libraries (e.g., fast string libs)

• But can we please stop implementing entire software
systems with it?

• Java was/is a great step forward…
– brought type-safe programming to the masses
– popularized automated garbage-collection

• But it still has major weaknesses
– uncaught exceptions are only slightly better than crashes
– language definition defies optimization

Grand Challenges
• What kind of language might segue the imperative

programming world toward functional/declarative
programming?
– Example: F# [Syme et al., 2001]

• Can we use modern PL theory to debug/correct/analyze
legacy codes?
– Example: REINS [Wartell, Mohan, Hamlen, Lin; ACSAC 2012]

• Can we use PL theory to solve security problems like data
confidentiality enforcement?
– Example: Java Information Flow [Myers, POPL 1999]

• How can we create verified, highly parallelized software?
– Example: Verification of Parameterized Concurrent Programs By

Modular Reasoning about Data and Control [Farzan & Kincaid,
POPL 2012]

Relevance/Usefulness
• Practical right now

– Functional Programming
– Operational/Denotational Semantics for compiler design and analysis
– Type-checker design & implementation

• Not practical in itself, but fundamental for understanding real-world
software verification
– Lambda calculus
– Hoare Logic
– Structural Induction

• Learning how to write formal, rigorous proofs
– essential if you want to do science, and not just programming
– infrequently taught at the undergraduate level
– if you can’t prove easy things, you can’t program hard things

• every program is a constructive proof (Curry-Howard)
• Example: if you can’t reason inductively, you can’t program recursively

Microsoft’s Functional Language: F#
(OCaml for Visual Studio .NET)

Facebook’s New Polymorphic,
Statically-typed Web Dev Language

Next Steps
• CS 6353 Compiler Construction

– we learned how to design and analyze a language
– 6353 teaches how to build a compiler for a language

• CS 6374 Computational Logic
– learn about automated theorem proving
– tools for doing formal software verification

• CS 6301-005 Language-based Security (shameless plug)
– type theory for security analysis & enforcement
– information flow, access control, etc.

• Independent study research
– Dr. Gupta: logic programming
– Me: language-based security

Course Evaluations

• Online
– Please provide (constructive!) feedback
– Non-anonymous feedback is even more helpful!

• I never allow student comments (negative or positive) to
affect the student’s grade, so please don’t worry about that.

• Some issues of interest…
– Topics you wish had been included but weren’t?
– Homework/exam difficulty level
– Helpfulness of instructor/TA
– No textbook (make Winskel a required text?)

Questions?
Feedback?

	APL: The Big Picture
	Course Summary
	Language Popularity
	Better Programming Languages�(What makes a language “advanced”?)
	Should we bury C/C++/Java?
	Grand Challenges
	Relevance/Usefulness
	Microsoft’s Functional Language: F#�(OCaml for Visual Studio .NET)
	Facebook’s New Polymorphic, Statically-typed Web Dev Language
	Next Steps
	Course Evaluations
	Questions?�Feedback?

