Lecture #8-9: Fixed-point Induction

CS 6371: Advanced Programming Languages

February 11–13, 2014

Suppose we want to prove that some property P holds for a recursively defined function $f: A \rightarrow A$. We can prove P(f) by fixed-point induction via the following three steps:

- 1. Define a non-recursive functional $F: (A \rightarrow A) \rightarrow (A \rightarrow A)$ whose least fixed point is f.
- 2. Base Case: Prove that property P holds for the function whose preimage is empty. That is, prove that $P(\perp_{A \rightarrow A})$ holds.
- 3. Inductive Case: Assume as the inductive hypothesis that P holds for some arbitrary function g, and prove that this implies that P holds for function F(g). That is, prove $P(g) \Rightarrow P(F(g))$.

Here is an example of such a proof:

Exercise 1. Consider the following recursive definition of the factorial function $f : \mathbb{N}_0 \to \mathbb{N}_0$.

$$f(x) = (x = 0 \to 1 | x > 0 \to x f(x - 1))$$

Prove that for all $x \in \mathbb{Z}$, f(x) is either undefined or f(x) = x!. (It also turns out that f(x) is defined for all $x \ge 0$, but we won't prove that here.)

Proof. The property P to be proved can be formally expressed as $P(g) \equiv \forall x \in g^{\leftarrow} . g(x) = x!$. We wish to prove P(f). Define functional $F : (\mathbb{N}_0 \to \mathbb{N}_0) \to (\mathbb{N}_0 \to \mathbb{N}_0)$ as follows:

$$F(g) = \lambda x \cdot (x = 0 \rightarrow 1 \mid x > 0 \rightarrow xg(x - 1))$$

Observe that fix(F) = f. Thus, to prove P(f) it suffices to prove P(fix(F)) by fixed-point induction.

- **Base Case:** $P(\perp_{\mathbb{N}_0 \to \mathbb{N}_0})$ holds vacuously. That is, $P(\perp_{\mathbb{N}_0 \to \mathbb{N}_0})$ requires us to prove something about all members of $\perp_{\mathbb{N}_0 \to \mathbb{N}_0}$, but $\perp_{\mathbb{N}_0 \to \mathbb{N}_0}$ has no members, so there is nothing to prove.
- **Inductive Case:** Assume that P(g) holds for some arbitrary function g. That is, assume that $\forall x \in g^{\leftarrow} . g(x) = x!$. We will prove that P(F(g)) holds. That is, we will prove that $\forall x \in F(g)^{\leftarrow} . F(g)(x) = x!$. Let an arbitrary $x \in F(g)^{\leftarrow}$ be given. Looking at the definition of F, there are two cases to consider:

Case 1: Suppose x = 0. Then by definition of F, F(g)(x) = 1 = x!.

Case 2: Suppose x > 0. Then by definition of F, F(g)(x) = xg(x-1). By inductive hypothesis, g(x-1) = (x-1)!. Hence, F(g)(x) = x(x-1)! = x!.

The same general technique can be used to prove a property P of the denotation of a while loop. First, define a non-recursive functional Γ whose least fixed point is $\mathcal{C}[[while b \text{ do } c]]$.

$$\Gamma(f) = \{ (\sigma, (f \circ \mathcal{C}\llbracket c \rrbracket)(\sigma)) \mid (\sigma, T) \in \mathcal{B}\llbracket b \rrbracket \} \cup \\ \{ (\sigma, \sigma) \mid (\sigma, F) \in \mathcal{B}\llbracket b \rrbracket \}$$

We can now prove that P holds for $fix(\Gamma)$ using fixed-point induction. The induction has two steps:

- 1. As the base case of the induction, prove $P(\perp_{\Sigma \rightarrow \Sigma})$.
- 2. Assume as the inductive hypothesis that P(f) holds, and prove that $P(\Gamma(f))$ holds.

To prove a property P by induction it is often easier to prove a stronger property P' that implies P. The stronger P' yields a stronger inductive hypothesis. Here is an example:

Exercise 2. Define c to be the SIMPL program while $2 \le x$ do (y := y * x; x := x - 1). Define property P by $P(f) \equiv \forall (\sigma, \sigma') \in f$, if $\sigma(x) \ge 1$ and $\sigma(y) = 1$ then $\sigma'(y) = \sigma(x)!$. Prove $P(\mathcal{C}[\![c]\!])$.

Proof. We will instead prove a different property $P'(\mathcal{C}[c])$, where P' is defined as follows:

 $P'(f) \equiv \forall (\sigma, \sigma') \in f, \text{ if } \sigma(\mathbf{x}) \geq 1 \text{ then } \sigma'(\mathbf{y}) = \sigma(\mathbf{y}) \cdot \sigma(\mathbf{x})!$

Notice that P'(f) implies P(f). That is, since we know by assumption that $\sigma(\mathbf{y}) = 1$, P'(f) implies that $\sigma'(\mathbf{y}) = \sigma(\mathbf{y}) \cdot \sigma(\mathbf{x})! = \sigma(\mathbf{x})!$. Thus, proving $P'(\mathcal{C}[\![c]\!])$ suffices to prove the theorem.

We begin by defining a functional Γ whose least fixed point is $\mathcal{C}[\![c]\!]$:

$$\begin{split} \Gamma(f) &= \{ (\sigma, (f \circ \mathcal{C}\llbracket \mathbf{y} := \mathbf{y} * \mathbf{x}; \mathbf{x} := \mathbf{x} - 1 \rrbracket)(\sigma)) \mid (\sigma, T) \in \mathcal{B}\llbracket 2 <= \mathbf{x} \rrbracket \} \cup \\ &\{ (\sigma, \sigma) \mid (\sigma, F) \in \mathcal{B}\llbracket 2 <= \mathbf{x} \rrbracket \} \\ &= \{ (\sigma, f(\sigma[\mathbf{y} \mapsto \sigma(\mathbf{y})\sigma(\mathbf{x})][\mathbf{x} \mapsto \sigma(\mathbf{x}) - 1])) \mid \sigma \in \Sigma, \ 2 \leq \sigma(\mathbf{x}) \} \cup \\ &\{ (\sigma, \sigma) \mid \sigma \in \Sigma, \ 2 > \sigma(\mathbf{x}) \} \end{split}$$

We shall prove by fixed-point induction that property $P'(fix(\Gamma))$ holds.

Base Case: Property $P'(\perp)$ holds vacuously.

- **Inductive Case:** Assume as the inductive hypothesis that property P'(f) holds. That is, assume that for all $(\sigma_0, \sigma'_0) \in f$, if $\sigma_0(\mathbf{x}) \geq 1$ then $\sigma'_0(\mathbf{y}) = \sigma_0(\mathbf{y}) \cdot \sigma_0(\mathbf{x})!$. We wish to prove that property $P'(\Gamma(f))$ holds.
 - Let $(\sigma, \sigma') \in \Gamma(f)$ be given and assume that $\sigma(\mathbf{x}) \geq 1$. We must prove that $\sigma'(\mathbf{y}) = \sigma(\mathbf{y}) \cdot \sigma(\mathbf{x})!$.
 - **Case 1:** Assume that $2 \leq \sigma(\mathbf{x})$. From the definition of Γ we conclude that $\sigma' = f(\sigma_2)$ where $\sigma_2 = \sigma[\mathbf{y} \mapsto \sigma(\mathbf{y})\sigma(\mathbf{x})][\mathbf{x} \mapsto \sigma(\mathbf{x}) 1]$. Writing $\sigma' = f(\sigma_2)$ is the same as writing $(\sigma_2, \sigma') \in f$. Therefore, we intend to apply the inductive hypothesis with $\sigma_0 = \sigma_2$ and $\sigma'_0 = \sigma'$. To do so, we must first prove that $\sigma_2(\mathbf{x}) \geq 1$. From the definition of σ_2 we infer that $\sigma_2(\mathbf{x}) = \sigma(\mathbf{x}) 1$. Since $2 \leq \sigma(\mathbf{x})$ by assumption, it follows that $\sigma_2(\mathbf{x}) \geq 1$. By inductive hypothesis, $\sigma'(\mathbf{y}) = \sigma_2(\mathbf{y}) \cdot \sigma_2(\mathbf{x})! = (\sigma(\mathbf{y})\sigma(\mathbf{x})) \cdot (\sigma(\mathbf{x}) 1)! = \sigma(\mathbf{y}) \cdot \sigma(\mathbf{x})!$.
 - **Case 2:** Assume that $2 > \sigma(\mathbf{x})$. From the definition of Γ we conclude that $\sigma' = \sigma$, so $\sigma'(\mathbf{y}) = \sigma(\mathbf{y})$. Since we have assumed both that $\sigma(\mathbf{x}) \ge 1$ and that $2 > \sigma(\mathbf{x})$, it follows that $\sigma(\mathbf{x}) = 1$. Hence, $\sigma'(\mathbf{y}) = \sigma(\mathbf{y}) = \sigma(\mathbf{y}) \cdot \sigma(\mathbf{x})!$.

We have therefore proved by fixed-point induction that property $P'(fix(\Gamma))$ holds. Since $fix(\Gamma) = C[[c]]$, it follows that P'(C[[c]]) holds. Since property P' implies the theorem, this proves the theorem.