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Suppose we want to prove that some property P holds for a recursively defined function
f : A ⇀ A. We can prove P (f) by fixed-point induction via the following three steps:

1. Define a non-recursive functional F : (A⇀A)→ (A⇀A) whose least fixed point is f .

2. Base Case: Prove that property P holds for the function whose preimage is empty. That is,
prove that P (⊥A⇀A) holds.

3. Inductive Case: Assume as the inductive hypothesis that P holds for some arbitrary function
g, and prove that this implies that P holds for function F (g). That is, prove P (g)⇒ P (F (g)).

Here is an example of such a proof:

Exercise 1. Consider the following recursive definition of the factorial function f : N0 → N0.

f(x) = (x=0→ 1 | x>0→ xf(x− 1))

Prove that for all x ∈ Z, f(x) is either undefined or f(x) = x!. (It also turns out that f(x) is
defined for all x ≥ 0, but we won’t prove that here.)

Proof. The property P to be proved can be formally expressed as P (g) ≡ ∀x ∈ g← . g(x) = x!. We
wish to prove P (f). Define functional F : (N0 ⇀ N0)→ (N0 ⇀ N0) as follows:

F (g) = λx . (x=0→ 1 | x>0→ xg(x− 1))

Observe that fix (F ) = f . Thus, to prove P (f) it suffices to prove P (fix (F )) by fixed-point induction.

Base Case: P (⊥N0⇀N0) holds vacuously. That is, P (⊥N0⇀N0) requires us to prove something
about all members of ⊥N0⇀N0

←, but ⊥N0⇀N0
← has no members, so there is nothing to prove.

Inductive Case: Assume that P (g) holds for some arbitrary function g. That is, assume
that ∀x∈g← . g(x)=x!. We will prove that P (F (g)) holds. That is, we will prove that
∀x∈F (g)← . F (g)(x)=x!. Let an arbitrary x ∈ F (g)← be given. Looking at the definition of
F , there are two cases to consider:

Case 1: Suppose x = 0. Then by definition of F , F (g)(x) = 1 = x!.

Case 2: Suppose x > 0. Then by definition of F , F (g)(x) = xg(x − 1). By inductive
hypothesis, g(x− 1) = (x− 1)!. Hence, F (g)(x) = x(x− 1)! = x!.
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The same general technique can be used to prove a property P of the denotation of a while loop.
First, define a non-recursive functional Γ whose least fixed point is C[[while b do c]].

Γ(f) = {(σ, (f ◦ C[[c]])(σ)) | (σ, T ) ∈ B[[b]]} ∪
{(σ, σ) | (σ, F ) ∈ B[[b]]}

We can now prove that P holds for fix (Γ) using fixed-point induction. The induction has two steps:

1. As the base case of the induction, prove P (⊥Σ⇀Σ).

2. Assume as the inductive hypothesis that P (f) holds, and prove that P (Γ(f)) holds.

To prove a property P by induction it is often easier to prove a stronger property P ′ that implies
P . The stronger P ′ yields a stronger inductive hypothesis. Here is an example:

Exercise 2. Define c to be the SIMPL program while 2<=x do (y:=y * x; x:=x - 1). Define property
P by P (f) ≡ ∀(σ, σ′) ∈ f , if σ(x) ≥ 1 and σ(y) = 1 then σ′(y) = σ(x)!. Prove P (C[[c]]).

Proof. We will instead prove a different property P ′(C[[c]]), where P ′ is defined as follows:

P ′(f) ≡ ∀(σ, σ′) ∈ f, if σ(x) ≥ 1 then σ′(y) = σ(y) · σ(x)!

Notice that P ′(f) implies P (f). That is, since we know by assumption that σ(y) = 1, P ′(f) implies
that σ′(y) = σ(y) · σ(x)! = σ(x)!. Thus, proving P ′(C[[c]]) suffices to prove the theorem.

We begin by defining a functional Γ whose least fixed point is C[[c]]:

Γ(f) = {(σ, (f ◦ C[[y:=y * x; x:=x - 1]])(σ)) | (σ, T ) ∈ B[[2<=x]]} ∪
{(σ, σ) | (σ, F ) ∈ B[[2<=x]]}

= {(σ, f(σ[y 7→ σ(y)σ(x)][x 7→ σ(x)− 1])) | σ ∈ Σ, 2 ≤ σ(x)} ∪
{(σ, σ) | σ ∈ Σ, 2 > σ(x)}

We shall prove by fixed-point induction that property P ′(fix (Γ)) holds.

Base Case: Property P ′(⊥) holds vacuously.

Inductive Case: Assume as the inductive hypothesis that property P ′(f) holds. That is, assume
that for all (σ0, σ

′
0) ∈ f , if σ0(x) ≥ 1 then σ′0(y) = σ0(y) · σ0(x)!. We wish to prove that

property P ′(Γ(f)) holds.

Let (σ, σ′) ∈ Γ(f) be given and assume that σ(x) ≥ 1. We must prove that σ′(y) = σ(y) ·σ(x)!.

Case 1: Assume that 2 ≤ σ(x). From the definition of Γ we conclude that σ′ = f(σ2)
where σ2 = σ[y 7→ σ(y)σ(x)][x 7→ σ(x)− 1]. Writing σ′ = f(σ2) is the same as writing
(σ2, σ

′) ∈ f . Therefore, we intend to apply the inductive hypothesis with σ0 = σ2 and
σ′0 = σ′. To do so, we must first prove that σ2(x) ≥ 1. From the definition of σ2 we
infer that σ2(x) = σ(x)− 1. Since 2 ≤ σ(x) by assumption, it follows that σ2(x) ≥ 1. By
inductive hypothesis, σ′(y) = σ2(y) · σ2(x)! = (σ(y)σ(x)) · (σ(x)− 1)! = σ(y) · σ(x)!.

Case 2: Assume that 2 > σ(x). From the definition of Γ we conclude that σ′ = σ, so
σ′(y) = σ(y). Since we have assumed both that σ(x) ≥ 1 and that 2 > σ(x), it follows
that σ(x) = 1. Hence, σ′(y) = σ(y) = σ(y) · σ(x)!.

We have therefore proved by fixed-point induction that property P ′(fix (Γ)) holds. Since
fix (Γ) = C[[c]], it follows that P ′(C[[c]]) holds. Since property P ′ implies the theorem, this proves the
theorem.
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