Lectures \#9: Fixed-point Induction Examples

CS 6371: Advanced Programming Languages

February 13, 2014

Exercise 1. Consider the following recursively defined function $f: \mathbb{Z} \rightarrow \mathbb{Z}$.

$$
f(x)=(x=0 \rightarrow 0|x>0 \rightarrow 2-f(1-x)| x<0 \rightarrow f(-x))
$$

Find a closed-form definition of f and prove your answer.
To find a closed-form definition (i.e., one that is non-recursive and does not use fix), it is often useful to define functional F and then construct the graph of the least fixed point of F. Recall that functional F is defined by

$$
F(g)=\lambda x .(x=0 \rightarrow 0|x>0 \rightarrow 2-g(1-x)| x<0 \rightarrow g(-x))
$$

The graph of the least fixed point of F is the set of input-output pairs that comprises $f i x(F)$. We can construct it incrementally by applying F to itself starting with \perp :

$$
\begin{aligned}
& F^{0}(\perp)=\{ \} \\
& F^{1}(\perp)=\{(0,0)\} \\
& F^{2}(\perp)=\{(0,0),(1,2)\} \\
& F^{3}(\perp)=\{(-1,2),(0,0),(1,2)\} \\
& F^{4}(\perp)=\{(-1,2),(0,0),(1,2),(2,0)\} \\
& F^{5}(\perp)=\{(-2,0),(-1,2),(0,0),(1,2),(2,0)\} \\
& F^{6}(\perp)=\{(-2,0),(-1,2),(0,0),(1,2),(2,0),(3,2)\} \\
& F^{7}(\perp)=\{(-3,2),(-2,0),(-1,2),(0,0),(1,2),(2,0),(3,2)\}
\end{aligned}
$$

As you can see, eventually a pattern starts to emerge. Function f appears to return 2 on odd inputs and 0 on even inputs. Thus, we conjecture that $f=h$ where h is the following closed-form definition:

$$
h(x)= \begin{cases}2 & \text { if } x \text { is odd } \\ 0 & \text { if } x \text { is even }\end{cases}
$$

This does not constitute a proof; it is merely a conjecture. We can prove the $f \subseteq h$ half of the conjecture using fixed point induction.

Proof. Define property P by $P(g) \equiv \forall x \in g^{\leftarrow} . g(x)=h(x)$. We wish to prove $P(f)$. Define functional F as above, and observe that $f x(F)=f$ by the definition of recursion. Thus, to prove $P(f)$ it suffices to prove $P(f i x(F))$ by fixed-point induction.

Base Case: $P(\perp)$ holds vacuously.
Inductive Hypothesis: Assume that $P(g)$ holds for some arbitrary function g. That is, assume that $\forall x \in g^{\leftarrow} . g(x)=h(x)$.

Inductive Case: We will prove that $P(F(g))$ holds. Let $x \in F(g) \leftarrow$ be given. Looking at the definition of F, there are three cases to consider:

Case 1: Suppose $x=0$. Then by definition of $F, F(g)(x)=0=h(x)$.
Case 2: Suppose $x>0$. Then by definition of $F, F(g)(x)=2-g(1-x)$. By inductive hypothesis, $g(1-x)=2$ if $1-x$ is odd and 0 if $1-x$ is even. If x is odd then $1-x$ is even, so $g(1-x)=0$; thus $2-g(1-x)=2=h(x)$. If x is even then $1-x$ is odd, so $g(1-x)=2$; thus $2-g(1-x)=0=h(x)$. Either way, $F(g)(x)=2-g(1-x)=h(x)$.
Case 3: Suppose $x<0$. Then by definition of $F, F(g)(x)=g(-x)$. By inductive hypothesis, $g(-x)=2$ if $-x$ is odd and 0 if $-x$ is even. Since $-x$ has the same parity as x, it follows that $F(g)(x)=2$ if x is odd and 0 if x is even. Hence, $F(g)(x)=h(x)$.

Functions of multiple arguments can be treated as functions of a single pair argument.
Exercise 2. Consider the following recursively defined function $f: \mathbb{N}_{0} \times \mathbb{N}_{0} \rightarrow \mathbb{N}_{0}$.

$$
f(x, y)=(x=0 \rightarrow y|y=0 \rightarrow x| x, y>0 \rightarrow f(x-1, y-1)+1)
$$

Prove that $f \subseteq \max$.
Proof. Define property P by $P(g) \equiv \forall(x, y) \in g^{\leftarrow} . g(x, y)=\max (x, y)$. We wish to prove $P(f)$. Define functional F in the usual way:

$$
F(g)=\lambda(x, y) \cdot(x=0 \rightarrow y|y=0 \rightarrow x| x, y>0 \rightarrow g(x-1, y-1)+1)
$$

To prove $P(f)$ it suffices to prove $P(f i x(F))$ by fixed-point induction.
Base Case: $P(\perp)$ holds vacuously.
Inductive Hypothesis: Assume that $P(g)$ holds for some arbitrary function g. We will prove that $P(F(g))$ holds. Let $(x, y) \in F(g) \leftarrow$ be given.

Case 1: Suppose $x=0$. Then by definition of $F, F(g)(x, y)=y=\max (x, y)$.
Case 2: Suppose $y=0$. Then by definition of $F, F(g)(x, y)=x=\max (x, y)$.
Case 3: Suppose $x, y>0$. Then by definition of $F, F(g)(x, y)=g(x-1, y-1)+1$. By inductive hypothesis, $F(g)(x)=\max (x-1, y-1)+1$. If $x \geq y$ then $\max (x-1, y-1)=$ $x-1$, so $F(g)(x, y)=x-1+1=x$. If $x<y$ then $\max (x-1, y-1)=y-1$, so $F(g)(x, y)=y-1+1=y$. In either case $F(g)(x, y)=\max (x, y)$.

