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Exercise 1. Consider the following recursively defined function f : Z→ Z.

f(x) = (x=0→ 0 | x>0→ 2− f(1− x) | x<0→ f(−x))

Find a closed-form definition of f and prove your answer.

To find a closed-form definition (i.e., one that is non-recursive and does not use fix ), it is often
useful to define functional F and then construct the graph of the least fixed point of F . Recall that
functional F is defined by

F (g) = λx . (x=0→ 0 | x>0→ 2− g(1− x) | x<0→ g(−x))

The graph of the least fixed point of F is the set of input-output pairs that comprises fix (F ). We
can construct it incrementally by applying F to itself starting with ⊥:

F 0(⊥) = {}
F 1(⊥) = {(0, 0)}
F 2(⊥) = {(0, 0), (1, 2)}
F 3(⊥) = {(−1, 2), (0, 0), (1, 2)}
F 4(⊥) = {(−1, 2), (0, 0), (1, 2), (2, 0)}
F 5(⊥) = {(−2, 0), (−1, 2), (0, 0), (1, 2), (2, 0)}
F 6(⊥) = {(−2, 0), (−1, 2), (0, 0), (1, 2), (2, 0), (3, 2)}
F 7(⊥) = {(−3, 2), (−2, 0), (−1, 2), (0, 0), (1, 2), (2, 0), (3, 2)}

As you can see, eventually a pattern starts to emerge. Function f appears to return 2 on odd
inputs and 0 on even inputs. Thus, we conjecture that f = h where h is the following closed-form
definition:

h(x) =

{
2 if x is odd

0 if x is even

This does not constitute a proof; it is merely a conjecture. We can prove the f ⊆ h half of the
conjecture using fixed point induction.

Proof. Define property P by P (g) ≡ ∀x ∈ g← . g(x)=h(x). We wish to prove P (f). Define functional
F as above, and observe that fix (F ) = f by the definition of recursion. Thus, to prove P (f) it
suffices to prove P (fix (F )) by fixed-point induction.
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Base Case: P (⊥) holds vacuously.

Inductive Hypothesis: Assume that P (g) holds for some arbitrary function g. That is, assume
that ∀x∈g← . g(x)=h(x).

Inductive Case: We will prove that P (F (g)) holds. Let x ∈ F (g)← be given. Looking at the
definition of F , there are three cases to consider:

Case 1: Suppose x = 0. Then by definition of F , F (g)(x) = 0 = h(x).

Case 2: Suppose x > 0. Then by definition of F , F (g)(x) = 2 − g(1 − x). By inductive
hypothesis, g(1− x) = 2 if 1− x is odd and 0 if 1− x is even. If x is odd then 1− x is
even, so g(1− x) = 0; thus 2− g(1− x) = 2 = h(x). If x is even then 1− x is odd, so
g(1− x) = 2; thus 2− g(1− x) = 0 = h(x). Either way, F (g)(x) = 2− g(1− x) = h(x).

Case 3: Suppose x < 0. Then by definition of F , F (g)(x) = g(−x). By inductive hypothesis,
g(−x) = 2 if −x is odd and 0 if −x is even. Since −x has the same parity as x, it follows
that F (g)(x) = 2 if x is odd and 0 if x is even. Hence, F (g)(x) = h(x).

Functions of multiple arguments can be treated as functions of a single pair argument.

Exercise 2. Consider the following recursively defined function f : N0 × N0 → N0.

f(x, y) = (x=0→ y | y=0→ x | x, y>0→ f(x− 1, y − 1) + 1)

Prove that f ⊆ max.

Proof. Define property P by P (g) ≡ ∀(x, y) ∈ g← . g(x, y)= max(x, y). We wish to prove P (f).
Define functional F in the usual way:

F (g) = λ(x, y) . (x=0→ y | y=0→ x | x, y>0→ g(x− 1, y − 1) + 1)

To prove P (f) it suffices to prove P (fix (F )) by fixed-point induction.

Base Case: P (⊥) holds vacuously.

Inductive Hypothesis: Assume that P (g) holds for some arbitrary function g. We will prove
that P (F (g)) holds. Let (x, y) ∈ F (g)← be given.

Case 1: Suppose x = 0. Then by definition of F , F (g)(x, y) = y = max(x, y).

Case 2: Suppose y = 0. Then by definition of F , F (g)(x, y) = x = max(x, y).

Case 3: Suppose x, y > 0. Then by definition of F , F (g)(x, y) = g(x − 1, y − 1) + 1. By
inductive hypothesis, F (g)(x) = max(x− 1, y− 1) + 1. If x ≥ y then max(x− 1, y− 1) =
x − 1, so F (g)(x, y) = x − 1 + 1 = x. If x < y then max(x − 1, y − 1) = y − 1, so
F (g)(x, y) = y − 1 + 1 = y. In either case F (g)(x, y) = max(x, y).
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