CS 6371 Advanced Programming Languages SAMPLE
SPRING 2014 FiNnaL Exam

This sample final exam is LONGER than a real final exam (to give you more practice problems)
but has a realistic difficulty level. You may take two, two-sided sheets of notes with you into the
exam. All other books or notes must remain closed throughout the exam. You will have 2 hours
and 45 minutes to complete the exam; all papers must be turned in by 1:45pm.

1 Problem Set

(1) (15 pts) A metric is a function m : >a — >a — int that computes some notion of distance
between two values. The path-length of a list is the sum of the distances between each
consecutive pair of elements. For example, if the data has type >a = int and the metric is
absolute difference, then the path-length of list [7;10;6] is |10 — 7| 4+ |6 — 10| = 7.

Using only List.fold_left for recursion, implement a function (pathlen m ¢) that com-
putes the path-length of £ using metric function m. If £ has less than 2 elements, the path-length
is 0. Do not use any other List library functions in your implementation.

(2) Polish mathematician Jan Lukasiewicz once reduced all of classical propositional logic to an
extremely simple language with only two operators, one rule of inference, and three axioms:

pu=v| p| pL=p2
=
p1 D2 p1(H) (A1)

D2 (—p1 = —p2) = (p2 = p1)
(A2) (A3)
p1 = (p2 = p1) (p1 = (p2 = p3)) = ((p1 = p2) = (p1 = p3))

(a) (8 pts) Implement a Prolog predicate provable(P,N) that succeeds if and only if
predicate P is provable via a derivation consisting of the above derivation rules whose
height is at most N, where N is a LOGICAL encoding of a natural number. When N=0,
only the axioms (A1-A3) are provable. To model propositional sentences in Prolog,
use Prolog atoms v for propositional variables v, use structure neg(p) for —p, and use
structure imp(py,p2) for p; = po.

(b) (4 pts) Using your solution to part a, write a Prolog predicate proofsearch(P) that
succeeds if P is provable with a derivation of any height, but that fails or loops otherwise.

(3) For each of the following System F types, say whether the type is inhabited or not. If the type
is inhabited, give an example of a System F term that inhabits it. (Do not prove that your
term inhabits the type, just state it.) If the type is not inhabited, just write “uninhabited”.

(a) (8 pts) Va.V5.Vn.((ax p) —=n) = (a = —1n)
(b) (3 pts) Va.(a + unit)
(c) (4 pts) Va.VB.(a+ B) = (a x B)



(d) (7 pts) VaVB.((a+B) = ((a = B) + (6 = @)))

(4) (5 pts) Encode an even? function in the untyped A-calculus so that (even? ny) evaluates to
true whenever n is even and to false whenever n is odd.

(5) (15 pts) Consider the untyped A-calculus expression foo defined as follows:
foo =Y (Af.Xz.((natzero ) 7 x = (f (natpred z))))

Prove by fixed-point induction that P(foo) holds, where P is the property defined by
P(g9) =VY(rn,yn) € 9 - yn = Oy

In your proof when you claim that an expression e; evaluates to another expression es, you
may do so without a formal proof of e; —* e2. That is, you need not formally expand all
abbreviations and then write out a small-step derivation.

(6) (5 pts) Derive the following typing judgment using the typing rules for the simply-typed
A-calculus:

{}F (Azuint.x)3 @ int
(7) (20 pts) Derive the following partial correctness assertion using Hoare Logic:

{z = n}while z<=—1do x:=x+1{x = maz(n,0)}

2 Solutions

(1) let pathlen m = function [] -> O | h::t —->
fst (List.fold_left (fun (s,p) x -> (s+(m p x),x)) (0,h) t);;

(2) (a) provable(P2,s(N)) :- provable(imp(P1,P2),N), provable(P1,N).
provable (imp (imp(neg(P1) ,neg(P2)),imp(P2,P1)),_).
provable (imp(P1,imp(_,P1)),_).
provable (imp (imp(P1,imp(P2,P3)) ,imp (imp(P1,P2),imp(P1,P3))),_).
(b) isnum(0).
isnum(s(N)) :- isnum(N).
proofsearch(P) :- isnum(N), provable(P,N).

(3) (a) Aa.ABAnAf:((a x B) = n) Az y:B.f(z,y)
(b) Aa.in§tum()
(c) uninhabited
(d) The type is inhabited. The following is a term that inhabits it:

Ao A Ax:a+f . case = of inj(y) — ingaﬁﬁ)ﬂﬂﬁa) (\z:8.y)

| ina(y) — in(la_”BH(ﬁﬁa) (Az:a.y)



(4) The even? function can be encoded this way:

even? =Y (Af.\n.((natzero n) 7 true :
((natzero (natpred n)) ? false :

(f (natpred (natpred n))))))

(5) Proof. Define functional I' by
I(f) = Ax.((natzero ) ? x : (f (natpred x)))

Since foo = YT = fiz(I'), we can prove the theorem by fixed-point induction on I'.

Base Case: P(L) holds vacuously.
Inductive Case: We must prove that P(g) implies P(I'(g)). Therefore, assume P(g) holds
and let (zn,yn) € I['(g) be given. We wish to prove that yy = Ox.
Case 1: Suppose xy = Oy. By the definition of T', I'(zy) = 2n = Oy, so yn = Ox.
Case 2: Suppose oy # Oy. Then by definition of I', yy = (g (natpred zy)) = (g (z—1)n).

This is the same as saying ((z — 1)y, yn) € g. Since we assumed P(g) holds, it follows

that yny = On. ]

(6) The following typing derivation proves the typing judgment:

: —(10)
{(z,int)} F x : int 1) ©
{} F (A\z:int.x) : int — int {}F3: mt(12)

{} F Ax:int.z)3 : int

(7) Choose loop invariant I = ((x < 0)V (z =n)) A (x > n) and derive the following:

EINb=C {C’}m:=x+1{]}(4) ):I:>I6
{INb}z:=x+1{I} ©)

EA=1T {Itp{-bA I} }:—|b/\I=>B(6)
{Alp{B}
where p=vwhile x<=—1do z:=x+1
b=(x<-1)
I=((z<0)V(z=n))A(x>n)
A= (z=n)
B = (z = maxz(n,0))
C=Ilz+1/z]=((z+1<0)V(z+1=n)A(z+1>n)

3 Reference

In addition to the material in this reference section, you will also be provided any relevant material
from the reference section of the sample midterm exam.



3.1 Syntax of IMP

commands

boolean expressions

c:=skip | ¢1;¢2 | vi=a | if b then ¢; else ¢y | while b do ¢
b::=true | false | aj<=ay | by &&by | by |1 bg | 1b

arithmetic expressions a:==1i | v | a;+ag | a1 -ag | a; * a9
variable names v
integer constants 1

3.2 Axiomatic Semantics of IMP

{A}skip{4}
{Aje{C}  {C}e{B}
{A}er; cof B}

{ANb}e {B} {A A —b}ea{B}
{A}if b then c¢; else co{B}
{Bla/v]}v:=a{B}

{I Nb}e{T}

{I}while b do c{-bAT}

EA= A {A'}e{B'} B =B

{A}je{B}

3.3 Untyped Lambda Calculus
3.3.1 Syntax and Semantics of Untyped A-calculus

ex=v | \v.e | ejey
e1 — €]

er1eg — €)ey

(Av.e1)eas = eqlea/v]



3.3.2 Abbreviations in Untyped A-calculus

true = (Ax.\y.x)

pair = (Ax.\y.\b.(b%eq:€32))
false = (Az.Ay.y) m = (Az .z true)
e17ez:e3 = (erezes) mo = (Az .z false)
Oy = (Az.z)

and = (Aa.\b.(a?b:false))
a.\b.(a?true:b))
A O f(22) (e f (22))

i natsucc = (pair false)

natpred = o

(
(
(
not = (Ab.(b?false:true))
(
(
(Af

natzero = m

natadd = (Y (Af.Am. n.((natzero m) ?n: (f(natpred m)(natsucc n)))))
natsub = (Y (Af.Am.An.((natzero n) ?m: (f(natpred m)(natpred n))))
natmult = (Y (A f.Am.An.((natzero m) ? Oy : (natadd (f (natpred m) n) n))))

3.4 Simply-typed Lambda Calculus
3.4.1 Syntax of A\~

expressions ex=n| v | A:Te | elezs | true | false | e; aop ez | e1 bop e
| e1 cmp ey | (e1,e2) | me | me | () | in] e | in]' e
| (case e of inj(vy) — e1 | ing(ve) — e2)

types Tu=idnt | bool | 1 = 1o | 71 X T2 | unit | 71 + 12 | void

arithmetic ops aop =+ | = | *

boolean ops bop := AN | V

comparisons cmp =<|>|<|>|=



3.4.2 Static Semantics of A\

['kEnint (9) 'k ey : bool 'k ey : bool
I'Fov:T(v) (10) 'k ey bop es : bool
Mo 7nllke:n (11) I'teq:int It ey:int
F'E(A\v:im.e):m — 7 I' ey cmp es : bool
I'kFe:7— 7 I'kFeg:T (12) ke :m T'Feg:m
I'Fejex: 7 'k (e1,e2) : 71 X T
I' - true : bool (13) F'Fe:m X1 ie{1,2}
I' - false : bool (14) I'Eme:m
I'Fep:int I'Feg:int LE(): unit
: (15)
I' ey aop e :int 'bte:n,  ie{l,2}

I+ inzﬁme ST 4T

T'kte:m+1 Loy —»n)ke:r Clvg = 1) Feg: T

't (case e of iny(v1) — e | ing(v2) — e2) : 7T

3.5 System F

expressions en=--| Aa.e | e[7]

types Tu=-- | a| VYar

(Aae)[r] =1 e[T/q]

Tke:T (23) I'ke: Va1
' Aa.e: Va.1 I'kelr]:7'[t/a]




