
CS 6371: Advanced Programming Languages
Dr. Kevin Hamlen

Spring 2014

Multiple Choice: What does the following OCaml function do?
let foo x y = (match x with y -> “yes”);;

(A) returns “yes” only when x=y
(B) compiles with an “inexhaustive match” warning
(C) always returns “yes”
(D) both A and B

Attendance Policy Reminder: All students MUST attend at least 2 of the first
3 classes. If you missed the first week, you will be unenrolled from the class.
Please see your graduate advisor immediately to adjust your schedule!

Currying
• Def: A function is curried if none of its arguments has a

tuple type.
– Curried functions have types of the form τ1 → τ2 → … → τn
– The arrow type operator is right-associative, so whenever we

write the above, it means τ1 → (τ2 → (… → τn))
– Function application is left-associative, so (func a1 a2 … an) is

short for (((func a1) a2) … an)

• Def: To curry a function means to convert any tuple
arguments into arrow arguments
– Exercise: Curry the function “let add (x,y) = x+y;;”
– Solution: let add x y = x+y;;
– Another solution: let add = fun x -> fun y -> x+y;;

Partial Evaluation
• Def: To partially evaluate a (curried) function means to

apply the function to some of its arguments but not to the
rest
– Example function: let add x y = x+y;;
– Partially evaluated: (add 3)
– Fully evaluated: (add 3 4)

• Partially evaluating a function of type τ1 → τ2 → … → τn
always yields a new function of type τi → τi+1 → … → τn
(for some iϵ2..n)

	CS 6371: Advanced Programming Languages
	Currying
	Partial Evaluation

