
CS 6371: Advanced Programming
Languages

Dr. Kevin Hamlen
Spring 2020

Today’s Agenda

• Course overview and logistics
• Course philosophy and motivation

– What is an “advanced” programming language?
– Type-safe vs. Unsafe languages
– Functional vs. Imperative programming

• Introduction to OCaml
– The OCaml interpreter and compiler
– An OCaml demo

Course Overview

• How to design a new programming language
– specifying language formal semantics
– bad language design and the “software crisis”
– “new” programming paradigms: functional & logic
– how to formally prove program correctness

• Related courses
– CS 4337: Organization of Programming Languages
– CS 5349: Automata Theory
– CS 6353: Compiler Construction
– CS 6367: Software Verification & Testing

Course Logistics
• Class Resources:

– Course homepage: www.utdallas.edu/~hamlen/cs6371sp20.html
– My homepage: www.utdallas.edu/~hamlen
– Tentative office hours: 1 hr immediately after each class
– Email: hamlen AT utdallas DOT edu

• Grading
– Homework: 25%
– In-class quizzes: 15%
– Midterm exam: 25%
– Final exam: 35%

• Homework
– 9 assignments: 6 programming + 3 written
– Homework must be turned in by 1:05pm on the due date.

Programming assignments submitted through eLearning; written
assignments submitted in hardcopy at start of class.

– Late homeworks NOT accepted!
• Attendance of at least 2 of first 3 classes is MANDATORY.

http://www.utdallas.edu/%7Ehamlen/cs6371sp18.html
http://www.utdallas.edu/%7Ehamlen

Homework Policy
• Students MAY work together with other current students on homeworks
• You MAY NOT consult homework solution sets from prior semesters (or

collaborate with students who are consulting them).
• CITE ALL SOURCES

– includes webpages, books, other people, etc.
– citation is required even if you don’t copy the source word-for-word
– there is nothing wrong with using someone else’s ideas as long as you cite it
– you will not lose any marks or credit as long as you cite

• Violating the above policies is PLAGIARISM (cheating).
• Cheating will typically result in automatic failure of this course and possible

expulsion from the CS program.
• It is much better to leave a problem blank than to cheat!

– Usually ~60% is a B and ~80% is an A.
– However, cheating earns you an F. It’s not worth it!

Quizzes
• in-class on specified homework due dates
• about 15-20 min. each
• approximately 1 quiz per unit, so about 8 total

– lowest one dropped, so you can miss one without penalty
– other misses only permitted in accordance with university

policy (e.g., illness with doctor’s note, etc.)
• closed-book, closed-notes
• think of them as extensions to the homework

– length/difficulty similar to one or two homework problems
– To prepare, be sure you can solve problems like those seen

on the most recent homework in about 15-20 minutes
each and without group help!

Difficulty Level
• Warning: This is a tough course

– cutting-edge, PhD-level material
– difficulty ranked very high by past students

• No required text book
– very few (approachable) texts cover this advanced material
– no large pools of sample problems exist to my knowledge
– useful texts:

• book by Glynn Winskel on reserve in UTD library
• online text and several online manuals linked from webpage

– Warning: Some online web resources devoted to this material are
INCORRECT (e.g., certain Wikipedia pages). Rely only on authoritative
sources.

• What you’ll get out of taking this course
– excellent preparation for PhD APL qualifier exam
– solid understanding of language design & semantics
– modern issues in declarative vs. imperative languages
– deep connections between abstract logic and programming

About me…
• PhD & Masters from Cornell University, B.S. in CS & Math

from Carnegie Mellon University
• Research: Computer Security, PL, Compilers
• Industry/Government Experience: Microsoft Research; PI

for Navy, Air Force, Army, DARPA, NSF, NSA, …
• Personal

– Christian
– married, three sons (one 7-year-old, and twin 4-year-olds)

• Programming habits
– C/C++ (for low-level work)
– assembly (malware reverse-engineering)
– C#, Java (toy programs)
– Prolog (search-based programs)
– OCaml, F#, Haskell, Gallina/Coq (everything else)

Course Plan

• Running case-study: We will design and
implement a new programming language

• Code an interpreter in OCaml
– OCaml (“Objective Categorical Abstract Meta-

Language”) is an open-source variant of ML
– Microsoft F# is OCaml for .NET (but not fully

compatible with OCaml, so don’t use it for homework)
– Warning: OCaml has a STEEP learning curve!
– Pre-homework: Install OCaml

• Go to the course website and follow the instructions entitled
“To Prepare for the Course…” by next time

What is an “Advanced”
Programming Language?

C/C++: Unsafe Languages

• Find the bug: #include <stdio.h>

int main()
{

char name[1024];
printf(“Enter your name: ”);
gets(name);
printf(“Your name is: %s\n”, name);
return 0;

}

C/C++: Unsafe Languages

• Find the bug:

• C/C++ lets you write programs that seg fault
• Some language features cannot be used safely!
• Most of the software crashes you experience are

a direct result of the unsafe design of C/C++

#include <stdio.h>

int main()
{

char name[1024];
printf(“Enter your name: ”);
gets(name);
printf(“Your name is: %s\n”, name);
return 0;

}

Buffer
Overflow!

Java: A Type-safe, Imperative
Language

• Find two bugs:
import java.io.*;
import java.util.*;

class Summation {
public static void main(String[] args) {
List list = new LinkedList();

for (int i=0; i<args.length; ++i)
list.add(args[i]);

int sum = 0;
while (!list.isEmpty())
sum += ((Integer)list.remove(1)).intValue();

System.out.println(sum);
}

}

Java: A Type-safe, Imperative
Language

• Find two bugs:
import java.io.*;
import java.util.*;

class Summation {
public static void main(String[] args) {
List list = new LinkedList();

for (int i=0; i<args.length; ++i)
list.add(args[i]);

int sum = 0;
while (!list.isEmpty())
sum += ((Integer)list.remove(1)).intValue();

System.out.println(sum);
}

}

Cast
Exception!

OutOfBounds
Exception!

Problems with Java

• Every Java cast operation is a potential crash
– In Java, a “crash” is an uncaught exception instead

of a seg fault

• Some typecasting issues can be solved with
Generics, but not all (e.g., list emptiness
check)

• Problem: Java relies on programmer-supplied
typing annotations

Goals of Functional Languages

• In an “Advanced” Programming Language:
– The compiler should tell you about typing errors in

advance (not at runtime!)
– The language structure should make it difficult to

write programs that might crash (no unsafe casts!)
– 80% of your time should be spent getting the

program to compile, and only 20% on debugging
– should be tractable to create a formal, machine-

checkable proof of correctness for mission-critical
core routines, or even full production-level apps

In OCaml…
• You almost never need to cast anything

– The compiler figures out all the types for you
– If there’s a type-mismatch, the compiler warns you

• OCaml is fast
– Somewhere between C (fastest) and Java (slow)
– Very hard to measure precisely. (So-called “language

benchmarks” typically call underlying math libraries that aren’t
even implemented in the languages being tested!)

• Functions are “first-class”:
– you can pass them around as values, assign them to variables, …
– you can build them at runtime (Runtime Code Generation)

• But: The syntax is very weird if you’ve only ever
programmed in imperative languages!

OCaml: Getting Started
• OCaml programs are text files (*.ml)

– Write them using any text editor (e.g., Notepad)
– Unix: Emacs has syntax highlighting for ML/OCaml
– Windows: I use Vim (www.vim.org)

• Installing OCaml (see course website)
– Unix: pre-installed on the department Unix machines
– Windows: Self-installers for native x86 and for Cygwin

• Two ways to use OCaml:
– The OCaml compiler: ocamlc (compile *.ml to binary)
– OCaml in interactive mode (use OCaml like a calculator)
– Demo…

http://www.vim.org/

	CS 6371: Advanced Programming Languages
	Today’s Agenda
	Course Overview
	Course Logistics
	Homework Policy
	Quizzes
	Difficulty Level
	About me…
	Course Plan
	What is an “Advanced” Programming Language?
	C/C++: Unsafe Languages
	C/C++: Unsafe Languages
	Java: A Type-safe, Imperative Language
	Java: A Type-safe, Imperative Language
	Problems with Java
	Goals of Functional Languages
	In OCaml…
	OCaml: Getting Started

