CS 6371: Advanced Programming
Languages

Dr. Kevin Hamlen
Spring 2020

Today’s Agenda

* Course overview and logistics

* Course philosophy and motivation
— What is an “advanced” programming language?
— Type-safe vs. Unsafe languages

— Functional vs. Imperative programming

* Introduction to OCaml
— The OCaml interpreter and compiler
— An OCaml demo

Course Overview

 How to design a new programming language
— specifying language formal semantics
— bad language design and the “software crisis”
— “new” programming paradigms: functional & logic
— how to formally prove program correctness

* Related courses
— CS 4337: Organization of Programming Languages
— CS 5349: Automata Theory
— CS 6353: Compiler Construction
— CS 6367: Software Verification & Testing

Course Logistics

Class Resources:
— Course homepage: www.utdallas.edu/~hamlen/cs6371sp20.html
— My homepage: www.utdallas.edu/~hamlen
— Tentative office hours: 1 hr immediately after each class
— Email: hamlen AT utdallas DOT edu
Grading
— Homework: 25%
— In-class quizzes: 15%
— Midterm exam: 25%
— Final exam: 35%
Homework
— 9 assignments: 6 programming + 3 written

— Homework must be turned in by 1:05pm on the due date.
Programming assignments submitted through eLearning; written
assignments submitted in hardcopy at start of class.

— Late homeworks NOT accepted!
Attendance of at least 2 of first 3 classes is MANDATORY.

http://www.utdallas.edu/%7Ehamlen/cs6371sp18.html
http://www.utdallas.edu/%7Ehamlen

Homework Policy

Students MAY work together with other current students on homeworks

You MAY NOT consult homework solution sets from prior semesters (or
collaborate with students who are consulting them).

CITE ALL SOURCES
— includes webpages, books, other people, etc.
— citation is required even if you don’t copy the source word-for-word
— there is nothing wrong with using someone else’s ideas as long as you cite it
— vyou will not lose any marks or credit as long as you cite
Violating the above policies is PLAGIARISM (cheating).

Cheating will typically result in automatic failure of this course and possible
expulsion from the CS program.

It is much better to leave a problem blank than to cheat!
— Usually ~¥60% is a B and ~80% is an A.
— However, cheating earns you an F. It’s not worth it!

Quizzes

in-class on specified homework due dates
about 15-20 min. each

approximately 1 quiz per unit, so about 8 total
— lowest one dropped, so you can miss one without penalty

— other misses only permitted in accordance with university
policy (e.g., illness with doctor’s note, etc.)

closed-book, closed-notes

think of them as extensions to the homework
— length/difficulty similar to one or two homework problems

— To prepare, be sure you can solve problems like those seen
on the most recent homework in about 15-20 minutes
each and without group help!

Difficulty Level

 Warning: This is a tough course
— cutting-edge, PhD-level material
— difficulty ranked very high by past students
* No required text book
— very few (approachable) texts cover this advanced material

— no large pools of sample problems exist to my knowledge

— useful texts:
* book by Glynn Winskel on reserve in UTD library
* online text and several online manuals linked from webpage

— Warning: Some online web resources devoted to this material are
INCORRECT (e.g., certain Wikipedia pages). Rely only on authoritative
sources.

 What you’ll get out of taking this course
— excellent preparation for PhD APL qualifier exam
— solid understanding of language design & semantics
— modern issues in declarative vs. imperative languages
— deep connections between abstract logic and programming

About me...

PhD & Masters from Cornell University, B.S. in CS & Math
from Carnegie Mellon University

Research: Computer Security, PL, Compilers

Industry/Government Experience: Microsoft Research; Pl
for Navy, Air Force, Army, DARPA, NSF, NSA, ...

Personal

— Christian

— married, three sons (one 7-year-old, and twin 4-year-olds)

Programming habits

— C/C++ (for low-level work)

— assembly (malware reverse-engineering)

— C#, Java (toy programs)

— Prolog (search-based programs)

— OCaml, F#, Haskell, Gallina/Coq (everything else)

Course Plan

* Running case-study: We will design and
implement a new programming language

* Code an interpreter in OCaml|

— OCaml (“Objective Categorical Abstract Meta-
Language”) is an open-source variant of ML

— Microsoft F# is OCaml for .NET (but not fully
compatible with OCaml, so don’t use it for homework)

— Warning: OCaml has a STEEP learning curve!

— Pre-homework: Install OCaml

* Go to the course website and follow the instructions entitled
“To Prepare for the Course...” by next time

What is an “Advanced”
Programming Language?

C/C++: Unsafe Languages

° Flnd the bug: #include <stdio.h>

int main ()
{
char name[1024];
printf (“Enter your name: ”);
gets (name) ;
printf (“Your name is: %s\n”, name);
return O;

C/C++: Unsafe Languages

Flnd the bug: #include <stdio.h>

int main ()
{
char name[1024];
\A printf (“Enter your name: ”);
gets (name) ;
printf (“Your name is: %s\n”, name) ;
return O;

}

o C/C++ lets you write programs that seg fault
* Some language features cannot be used safely!

Most of the software crashes you experience are
a direct result of the unsafe design of C/C++

Java: A Type-safe, Imperative
Language

* Find two bugs:

import java.io.*;
import java.util.¥*;

class Summation ({
public static void main(String[] args) {
List list = new LinkedList();

for (int i=0; i<args.length; ++i)
list.add(args[i]) ;

int sum = 0;
while (!'list.isEmpty())
sum += ((Integer)list.remove(l)) .intValue() ;

System.out.println (sum) ;

}
}

Java: A Type-safe, Imperative
Language

* Find two bugs:

import java.io.*;
import java.util.¥*;

OutOfBounds
Exception!

class Summation {
public static void main(String[] args
List list = new LinkedList();

for (int i=0; i<args.length; ++i)
list.add(args[1i]) ;

int sum = 0;
.-~‘§Hiie_ilii§t.isEmpty())
sum +=B% (Integer)list.remove (1l)) .intValue() ;

System.out.println(sum) ;

}
}

Problems with Java

e Every Java cast operation is a potential crash
— In Java, a “crash” is an uncaught exception instead
of a seg fault
* Some typecasting issues can be solved with
Generics, but not all (e.g., list emptiness
check)

* Problem: Java relies on programmer-supplied
typing annotations

Goals of Functional Languages

* |[n an “Advanced” Programming Language:

— The compiler should tell you about typing errors in
advance (not at runtime!)

— The language structure should make it difficult to
write programs that might crash (no unsafe casts!)

— 80% of your time should be spent getting the
program to compile, and only 20% on debugging

— should be tractable to create a formal, machine-
checkable proof of correctness for mission-critical
core routines, or even full production-level apps

In OCaml...

You almost never need to cast anything

— The compiler figures out all the types for you

— If there’s a type-mismatch, the compiler warns you
OCaml is fast

— Somewhere between C (fastest) and Java (slow)

— Very hard to measure precisely. (So-called “language
benchmarks” typically call underlying math libraries that aren’t
even implemented in the languages being tested!)

Functions are “first-class”:
— you can pass them around as values, assign them to variables, ...
— you can build them at runtime (Runtime Code Generation)

But: The syntax is very weird if you’ve only ever
programmed in imperative languages!

OCaml: Getting Started

e OCaml programs are text files (*.ml)
— Write them using any text editor (e.g., Notepad)
— Unix: Emacs has syntax highlighting for ML/OCaml|
— Windows: | use Vim (www.vim.org)
* |nstalling OCaml (see course website)
— Unix: pre-installed on the department Unix machines
— Windows: Self-installers for native x86 and for Cygwin
 Two ways to use OCaml:
— The OCaml compiler: ocamlc (compile *.ml to binary)
— OCaml in interactive mode (use OCaml like a calculator)
— Demo...

http://www.vim.org/

	CS 6371: Advanced Programming Languages
	Today’s Agenda
	Course Overview
	Course Logistics
	Homework Policy
	Quizzes
	Difficulty Level
	About me…
	Course Plan
	What is an “Advanced” Programming Language?
	C/C++: Unsafe Languages
	C/C++: Unsafe Languages
	Java: A Type-safe, Imperative Language
	Java: A Type-safe, Imperative Language
	Problems with Java
	Goals of Functional Languages
	In OCaml…
	OCaml: Getting Started

