
Lecture #5: Proof Techniques for Large-step
Operational Semantics

CS 6371: Advanced Programming Languages

January 28, 2020

A proof by structural induction consists of two major steps: First, one proves that
the theorem holds for minimal derivations (that is, derivations that consist of only one
rule application). This is the base case of the induction. Second, one proves that for any
derivation D, if all derivations smaller than D satisfy the theorem, then derivation D satisifes
the theorem.

Here is an example proof by structural induction:

Theorem. If σ(x) = n and 〈c, σ〉 ⇓ σ′ and x does not appear in c, then σ′(x) = n.

Proof. There exists some derivation D of judgment 〈c, σ〉 ⇓ σ′. We will prove the theorem by
structural induction on D.

Base Case: Suppose D consists of only one rule. Then D = 〈skip, σ〉 ⇓ σ, so σ′ = σ. Thus,
σ′(x) = σ(x) = n.

Inductive Hypothesis: Assume that the theorem holds for all derivations that are strictly
smaller than D. That is, assume that if σ0(x) = n, and 〈c0, σ0〉 ⇓ σ′

0 has a derivation strictly
smaller than D, and x is not in c0, then σ′

0(x) = n.

Inductive Case: Suppose that D consists of more than one rule. In that case, D must end
with one of the five derivation rules for commands other than the rule for skip. We
therefore must consider five cases:

Case 1: Suppose D ends with the sequence rule:

D =

D1

〈c1, σ〉 ⇓ σ2
D2

〈c2, σ2〉 ⇓ σ′
(2)

〈c1; c2, σ〉 ⇓ σ′

Since x is not in c, we know that x is not in c1. Since σ(x) = n (by assumption) and
derivation D1 is strictly smaller than derivation D, we conclude by inductive hypothesis
that σ2(x) = n. Likewise, since σ2(x) = n, and derivation D2 is strictly smaller than
derivation D, and x is not in c2, we conclude by inductive hypothesis that σ′(x) = n.

1



Case 2: Suppose D ends with the assignment rule:

D =

D1

〈a, σ〉 ⇓ i
(3)

〈v := a, σ〉 ⇓ σ[v 7→ i]

Since x does not appear in c, we know that v 6= x. Therefore, σ[v 7→ i](x) = σ(x) = n.

Case 3: Suppose D ends with the positive rule for if :

D =

D1

〈b, σ〉 ⇓ T
D2

〈c1, σ〉 ⇓ σ′
(4)

〈if b then c1 else c2, σ〉 ⇓ σ′

Since x does not appear in c, we know that x does not appear in c1. Since σ(x) = n and
derivation D2 is strictly smaller than derivation D, we conclude by inductive hypothesis
that σ′(x) = n.

Case 4: Suppose D ends with the negative rule for if :

D =

D1

〈b, σ〉 ⇓ F
D2

〈c2, σ〉 ⇓ σ′
(5)

〈if b then c1 else c2, σ〉 ⇓ σ′

Since x does not appear in c, we know that x does not appear in c2. Since σ(x) = n and
derivation D2 is strictly smaller than derivation D, we conclude by inductive hypothesis
that σ′(x) = n.

Case 5: Suppose D ends with the rule for while :

D =

D1

〈if b then (c1; while b do c1) else skip, σ〉 ⇓ σ′
(6)

〈while b do c1, σ〉 ⇓ σ′

Since x does not appear in c, we know that x does not appear in b or c1. Thus, x does
not appear in if b then (c1; while b do c1) else skip. Since σ(x) = n and derivation
D1 is strictly smaller than derivation D, we conclude by inductive hypothesis that
σ′(x) = n.

2



Another useful proof technique involves rearranging derivations to produce a new derivation.
Here is an example:

Theorem. The judgment 〈if !b then c1 else c2, σ〉 ⇓ σ′ holds if and only if the judgment
〈if b then c2 else c1, σ〉 ⇓ σ′ holds.

Proof. We first prove the forward implication. Assume judgment 〈if !b then c1 else c2, σ〉⇓
σ′ holds. Then there exists some derivation D of this judgment. Derivation D must have one
of two possible forms:

Case 1: Suppose D ends in the positive rule for if :

D =

D1

〈b, σ〉 ⇓ F
(12)

〈!b, σ〉 ⇓ T
D2

〈c1, σ〉 ⇓ σ′
(4)

〈if !b then c1 else c2, σ〉 ⇓ σ′

Using derivations D1 and D2, we can therefore derive the following:

D′ =

D1

〈b, σ〉 ⇓ F
D2

〈c1, σ〉 ⇓ σ′
(5)

〈if b then c2 else c1, σ〉 ⇓ σ′

Derivation D′ is a proof of judgment 〈if b then c2 else c1, σ〉 ⇓ σ′.

Case 2: Suppose D ends in the negative rule for if :

D =

D1

〈b, σ〉 ⇓ T
(12)

〈!b, σ〉 ⇓ F
D2

〈c2, σ〉 ⇓ σ′
(5)

〈if !b then c1 else c2, σ〉 ⇓ σ′

Using derivations D1 and D2, we can therefore derive the following:

D′ =

D1

〈b, σ〉 ⇓ T
D2

〈c2, σ〉 ⇓ σ′
(4)

〈if b then c2 else c1, σ〉 ⇓ σ′

Derivation D′ is a proof of judgment 〈if b then c2 else c1, σ〉 ⇓ σ′.

The proof of the reverse implication is symmetric, and is left as an exercise to the reader.

3


