
Lecture #14: Proving Type-Safety

CS 6371: Advanced Programming Languages

February 27, 2020

A language’s static semantics are designed to eliminate runtime stuck states. Recall that
stuck states are non-final configurations whose runtime behavior is undefined according to
the language’s small-step operational semantics.

Definition 1 (Final state). Configuration 〈c, σ〉 is a final state if c = skip.

Definition 2 (Stuck state). Configuration 〈c, σ〉 is a stuck state if it is non-final and there is
no configuration 〈c′, σ′〉 such that the judgment 〈c, σ〉 →1 〈c′, σ′〉 is derivable.

A language is said to be type-safe if its static semantics prevent all stuck states. To define
this formally, we need a definition of what it means for a program to be well-typed.

Definition 3 (Well-typed commands). A program c is well-typed in context Γ if there exists
a typing context Γ′ such that judgment Γ ` c : Γ′ is derivable. We say simply that c is
well-typed if it is well-typed in context ⊥.

Definition 4 (Well-typed expressions). Similarly, an expression e is well-typed in context Γ
if there exists a type τ such that judgment Γ ` e : τ is derivable; and we say simply that e is
well-typed if it is well-typed in context ⊥.

Definition 5 (Type safety). A language is type-safe if for every well-typed program c and
number of steps n ∈ N, if 〈c,⊥〉 →n 〈c′, σ′〉 then configuration 〈c′, σ′〉 is not a stuck state.

Proving that a language is type-safe can be a non-trivial undertaking. To do so, one
usually must first define a notion of consistency between a typing context and a store. This
allows us to say that the typing context is consistent with each memory state that the
program enters at runtime.

Definition 6 (Modeling of stores by typing contexts). We say that a typing context Γ
models a store σ, writing Γ |= σ, if for all v ∈ Γ←, the following two conditions hold: (1) If
Γ(v) = (int , T) then σ(v) ∈ Z, and (2) if Γ(v) = (bool , T) then σ(v) ∈ {T, F}.

Another complication involves variables appearing and disappearing from the typing
context due to local scopes (e.g., if statements). To type-check the intermediate steps
introduced by such scopes, we will need the concept of a typing context stack—a non-empty
list of typing contexts, Γ1, . . . ,Γn (n ≥ 1) such that Γ1 � · · · � Γn, where � is the following
subtyping relation.

1

Definition 7 (Subtypes). Typing context Γ1 is a subtype of typing context Γ2, written
Γ1 � Γ2, if ∀v ∈ Γ←2 . (Γ2(v) = (τ, p))⇒

(
(Γ1(v) = (τ, q)) ∧ (p⇒ q)

)
.

Subtyping relation Γ1 � Γ2 asserts that context Γ1 is “less restrictive” than Γ2 in the sense
that it might have more variables in it or it might assert that variables in Γ2 are now initialized
and can therefore be read. Conceptually, the context stack lists the typing contexts for each
nested scope, from outermost (most restrictive) to innermost (least restrictive). Henceforth

we will abbreviate a context stack by writing a vector arrow above it (
−⇀
Γ) and we will refer

to the first (most restrictive, outermost) context in such a stack by leaving off the arrow (Γ).

We will write
−⇀
Γ |= σ if for every context Γi in stack

−⇀
Γ we have Γi |= σ.

We can keep track of commands contained within a local scope by adding a new command
syntax {c}. The braces are typing annotations; they have no effect upon programs at runtime
(see operational semantics Rules S1 and S2). We add them solely to help the type-checker
remember the extent of local scopes (see Rules 25, 26, and 27).

It is important to understand why changing the operational and static semantics still
allows us to prove type-safety for the original operational and static semantics. The proof
argument is as follows: (1) It is trivial to prove that the new operational semantics (with
braces) is equivalent to the old operational semantics (without braces). This is because the
braces have no effect upon a program’s runtime behavior. (2) It is also trivial to prove that if
a program in the old language (no braces) is well-typed according to the old static semantics,
then it is also well-typed according to the new static semantics. This is because the new static
semantics only differ from the old with regard to braces, and the old language has no braces.
Thus, if we prove that the new semantics is type-safe (in the sense that the static semantics
eliminate all stuck states) then we’ve proved that the old semantics are also type-safe.

We prove type-safety by proving two lemmas: progress and subject reduction. The
progress lemma basically says that if a program is well-typed and is not in a final state, then
it can take a step. The subject reduction lemma basically says that if a program takes a step,
then the new program it steps to is also well-typed. Together these two lemmas imply that
well-typed programs either step forever or eventually enter final states; they never enter stuck
states.

Lemma 1 (Progress of expressions). If Γ ` e : τ and Γ |= σ both hold, then either e = n,
e = true, e = false, or there exists e′ and σ′ such that 〈e, σ〉 →1 〈e′, σ′〉 holds.

Lemma 2 (Progress of commands). If
−⇀
Γ ` c : Γ′ and

−⇀
Γ |= σ both hold, then either c = skip

or there exists c′ and σ′ such that 〈c, σ〉 →1 〈c′, σ′〉 holds.

Lemma 3 (Subject reduction of expressions). If Γ ` e1 : τ and Γ |= σ1 and 〈e1, σ1〉 →1 〈e2, σ2〉
all hold, then Γ ` e2 : τ and Γ |= σ2 both hold.

Lemma 4 (Subject reduction of commands). If
−⇀
Γ1 ` c1 : Γ′ and

−⇀
Γ1 |= σ1 and 〈c1, σ1〉 →1

〈c2, σ2〉 all hold, then there exists a stack
−⇀
Γ2 such that

−⇀
Γ2 ` c2 : Γ′ and

−⇀
Γ2 |= σ2 and Γ2 � Γ1

all hold.

2

1 Static Semantics of Typed-SIMPL

1.1 Commands

Γ ` skip : Γ (1)

v 6∈ Γ←

Γ ` int v : Γ[v 7→ (int , F)]
(2)

v 6∈ Γ←

Γ ` bool v : Γ[v 7→ (bool , F)]
(3)

−⇀
Γ ` c1 : Γ2 Γ2 ` c2 : Γ′

−⇀
Γ ` c1; c2 : Γ′

(4)

Γ ` e : τ Γ(v) = (τ, p)

Γ ` v:=e : Γ[v 7→ (τ, T)]
(5)

Γ ` e : bool
−⇀
Γ ` c1 : Γ1 Γ ` c2 : Γ2

−⇀
Γ ` if e then c1 else c2 : Γ

(6)

Γ ` e : bool Γ ` c : Γ1

Γ ` while e do c : Γ
(7)

1.2 Expressions

Γ ` n : int (8)

Γ ` true : bool (9)

Γ ` false : bool (10)

Γ(v) = (τ, T)

Γ ` v : τ
(11)

Γ ` e1 : int Γ ` e2 : int

Γ ` e1 aop e2 : int
(12)

Γ ` e1 : bool Γ ` e2 : bool

Γ ` e1 bop e2 : bool
(13)

Γ ` e1 : int Γ ` e2 : int

Γ ` e1<=e2 : bool
(14)

Γ ` e : bool

Γ ` !e : bool
(15)

−⇀
Γ ` c : Γ′

Γ1,
−⇀
Γ ` {c} : Γ1

(Scoping)

3

2 Small-step Operational Semantics of Typed-SIMPL
2.1 Commands

〈int v, σ〉 →1 〈skip, σ〉 (16)

〈bool v, σ〉 →1 〈skip, σ〉 (17)

〈c1, σ〉 →1 〈c′1, σ′〉
〈c1; c2, σ〉 →1 〈c′1; c2, σ′〉

(18)

〈skip; c, σ〉 →1 〈c, σ〉 (19)

〈e, σ〉 →1 〈e′, σ′〉
〈v:=e, σ〉 →1 〈v:=e′, σ′〉

(20)

〈v:=n, σ〉 →1 〈skip, σ[v 7→ n]〉 (21)

〈v:=true, σ〉 →1 〈skip, σ[v 7→ T]〉 (22)

〈v:=false, σ〉 →1 〈skip, σ[v 7→ F]〉 (23)

〈e, σ〉 →1 〈e′, σ〉
〈if e then c1 else c2, σ〉 →1 〈if e′ then c1 else c2, σ′〉

(24)

〈if true then c1 else c2, σ〉 →1 〈{c1}, σ〉 (25)

〈if false then c1 else c2, σ〉 →1 〈{c2}, σ〉 (26)

〈while e do c, σ〉 →1 〈if e then ({c}; while e do c) else skip, σ〉 (27)

〈c, σ〉 →1 〈c′, σ′〉
〈{c}, σ〉 →1 〈{c′}, σ′〉

(S1)

〈{skip}, σ〉 →1 〈skip, σ〉 (S2)

2.2 Expressions
σ(v) = n

〈v, σ〉 →1 〈n, σ〉
(28)

σ(v) = T

〈v, σ〉 →1 〈true, σ〉
(29)

σ(v) = F

〈v, σ〉 →1 〈false, σ〉
(30)

〈e1, σ〉 →1 〈e′1, σ′〉 op ∈ aop ∪ bop ∪ {<=}
〈e1 op e2, σ〉 →1 〈e′1 op e2, σ

′〉
(31)

〈e2, σ〉 →1 〈e′2, σ′〉 op ∈ aop ∪ {<=}
〈n op e2, σ〉 →1 〈n op e′2, σ

′〉
(32)

〈n1 +n2, σ〉 →1 〈n1 + n2, σ〉 (33)

〈n1 -n2, σ〉 →1 〈n1 − n2, σ〉 (34)

〈n1 *n2, σ〉 →1 〈n1n2, σ〉 (35)

n1 ≤ n2

〈n1<=n2, σ〉 →1 〈true, σ〉
(36)

n1 > n2

〈n1<=n2, σ〉 →1 〈false, σ〉
(37)

〈true && e2, σ〉 →1 〈e2, σ〉 (38)

〈false && e2, σ〉 →1 〈false, σ〉 (39)

〈true || e2, σ〉 →1 〈true, σ〉 (40)

〈false || e2, σ〉 →1 〈e2, σ〉 (41)

〈e, σ〉 →1 〈e′, σ〉
〈!e, σ〉 →1 〈!e′, σ′〉

(42)

〈!true, σ〉 →1 〈false, σ〉 (43)

〈!false, σ〉 →1 〈true, σ〉 (44)

4

