Motivation

- Goals of any axiomatic semantics:
 - **Soundness**: If a Hoare triple \(\{A\} c \{B\} \) is derivable, it is “true”.
 - **Completeness**: If a Hoare triple \(\{A\} c \{B\} \) is “true”, it is derivable.

- Are our 6 axiomatic semantic rules sound and complete?
 - Must first formally define what is meant by “true” in the above
 - Typically we define this using... *denotational semantics!*
(1) Extend expression denotations \mathcal{E} to include meta-variables \bar{v}:

stores \hspace{1cm} \Sigma : v \rightarrow \mathbb{Z}
interpretations \hspace{1cm} \bar{\Sigma} : \bar{v} \rightarrow \mathbb{Z}
exp denotations \hspace{1cm} \mathcal{E} : e \rightarrow \bar{\Sigma} \rightarrow \Sigma \rightarrow \mathbb{Z}

\[
\begin{align*}
\mathcal{E}[n]\bar{\sigma}\sigma &= n \\
\mathcal{E}[v]\bar{\sigma}\sigma &= \sigma(v) \\
\mathcal{E}[\bar{v}]\bar{\sigma}\sigma &= \bar{\sigma}(\bar{v}) \\
\mathcal{E}[e_1 + e_2]\bar{\sigma}\sigma &= \mathcal{E}[e_1]\bar{\sigma}\sigma + \mathcal{E}[e_2]\bar{\sigma}\sigma \\
\mathcal{E}[e_1 - e_2]\bar{\sigma}\sigma &= \mathcal{E}[e_1]\bar{\sigma}\sigma - \mathcal{E}[e_2]\bar{\sigma}\sigma \\
\mathcal{E}[e_1 \cdot e_2]\bar{\sigma}\sigma &= \mathcal{E}[e_1]\bar{\sigma}\sigma \cdot \mathcal{E}[e_2]\bar{\sigma}\sigma
\end{align*}
\]
(2) Define denotations \mathcal{A} of assertions A:

assertion denotations $\mathcal{A}: A \rightarrow \Sigma \rightarrow \Sigma \rightarrow \{T, F\}$

$$\mathcal{A}[T] \bar{\sigma} \sigma = T$$
$$\mathcal{A}[F] \bar{\sigma} \sigma = F$$
$$\mathcal{A}[e_1 \leq e_2] \bar{\sigma} \sigma = \mathcal{E}[e_1] \bar{\sigma} \sigma \leq \mathcal{E}[e_2] \bar{\sigma} \sigma$$
$$\mathcal{A}[A_1 \Rightarrow A_2] \bar{\sigma} \sigma = \mathcal{A}[A_1] \bar{\sigma} \sigma \Rightarrow \mathcal{A}[A_2] \bar{\sigma} \sigma$$
$$\mathcal{A}[\forall \bar{v}. A] \bar{\sigma} \sigma = \forall i \in \mathbb{Z}, \mathcal{A}[A](\bar{\sigma}[\bar{v} \mapsto i]) \sigma$$

\[\vdots\]
(3) Notations:

\[\bar{\sigma}, \sigma \models A \text{ asserts } A[\bar{A}]\bar{\sigma}\sigma\]
\[\sigma \models A \text{ asserts } \forall \bar{\sigma} \in \bar{\Sigma}, (\bar{\sigma}, \sigma \models A)\]
\[\models A \text{ asserts } \forall \sigma \in \Sigma, (\sigma \models A)\]

Note: \(\models A\) is our notation from the Rule of Consequence.

(4) Hoare Triple Denotations: \(\models \{A\}c\{B\}\) asserts:

\[\forall \bar{\sigma} \in \bar{\Sigma}, \forall \sigma, \sigma' \in \Sigma, (\bar{\sigma}, \sigma \models A) \land ((\sigma, \sigma') \in C[\bar{c}]) \Rightarrow (\bar{\sigma}, \sigma' \models B)\]

Note: \(C[\bar{c}]\) is the denotational semantics of the target programming language.
Theorem (Soundness)

If $\{A\} c \{B\}$ is derivable then $\models \{A\} c \{B\}$ holds.

Proof

Let $\bar{\sigma} \in \bar{\Sigma}$ and $\sigma, \sigma' \in \Sigma$ be given such that $\bar{\sigma}, \sigma \models A$ and $(\sigma, \sigma') \in C[c]$.

(Goal: Prove $\bar{\sigma}, \sigma' \models B$.)
Theorem (Soundness)
If \(\{A\}c\{B\} \) is derivable then \(\models \{A\}c\{B\} \) holds.

Proof
Let \(\bar{\sigma} \in \bar{\Sigma} \) and \(\sigma, \sigma' \in \Sigma \) be given such that \(\bar{\sigma}, \sigma \models A \) and \((\sigma, \sigma') \in C[c] \).
Let \(D \) be a derivation of \(\{A\}c\{B\} \). Proof is by structural induction over \(D \).

IH: If \(\{A_0\}c_0\{B_0\} \) has a derivation \(D_0 < D \), then \(\models \{A_0\}c_0\{B_0\} \) holds.

Case 1: Suppose \(D \) ends in Rule 1:
\[
D = \frac{\{A\}\text{skip}\{A\}}{(1)}
\]
Thus \(c = \text{skip} \) and \(B = A \).

(Goal: Prove \(\bar{\sigma}, \sigma' \models B \).)
Proving Soundness

Theorem (Soundness)
If \{A\}c\{B\} is derivable then $\models \{A\}c\{B\}$ holds.

Proof
Let $\bar{\sigma} \in \bar{\Sigma}$ and $\sigma, \sigma' \in \Sigma$ be given such that $\bar{\sigma}, \sigma \models A$ and $(\sigma, \sigma') \in C[c]$.
Let D be a derivation of $\{A\}c\{B\}$. Proof is by structural induction over D.

IH: If $\{A_0\}c_0\{B_0\}$ has a derivation $D_0 < D$, then $\models \{A_0\}c_0\{B_0\}$ holds.

Case 1: Suppose D ends in Rule 1:

$$D = \frac{\{A\}\text{skip}\{A\}}{(1)}$$

Thus $c = \text{skip}$ and $B = A$. Since $\sigma' = C[\text{skip}]\sigma = \sigma$ and $B = A$, assumption $\bar{\sigma}, \sigma \models A$ implies $\bar{\sigma}, \sigma' \models B$.

\[\text{...}\]

(Goal: Prove $\bar{\sigma}, \sigma' \models B$.)

Recall: $\models \{A\}c\{B\}$ asserts

$$\forall \bar{\sigma} \in \bar{\Sigma}, \forall \sigma, \sigma' \in \Sigma, (\bar{\sigma}, \sigma \models A) \land ((\sigma, \sigma') \in \mathcal{C}[c]) \Rightarrow (\bar{\sigma}, \sigma' \models B)$$

Theorem (Completeness)

If $\models \{A\}c\{B\}$ then $\{A\}c\{B\}$ is derivable.

Proof

Assume $\models \{A\}c\{B\}$.
Completeness

Recall: $\models \{A\}c\{B\}$ asserts

$$\forall \bar{\sigma} \in \bar{\Sigma}, \forall \sigma, \sigma' \in \Sigma, (\bar{\sigma}, \sigma \models A) \land ((\sigma, \sigma') \in C[c]) \Rightarrow (\bar{\sigma}, \sigma' \models B)$$

Theorem (Completeness)

If $\models \{A\}c\{B\}$ then $\{A\}c\{B\}$ is derivable.

- Impossible! Recall our friend Kurt G"odel:

 No finite collection of axioms is both sound and complete.

- **BUT...** Stephen Cook (of P v. NP fame) comes to our rescue:

 Relative Completeness: Given an oracle that (magically) derives the $\models A$ premises in the Rule of Consequence (whenever they are true), Hoare logic is complete.

 In essence, Hoare Logic is “as complete as possible” given the inherent incompleteness of mathematics in general.
Edsger Dijkstra’s idea: The strongest correctness assertions are those in which

- the precondition is “weakest” (fewest assumptions)
- the postcondition is “strongest” (most conclusions)

Formally:

- We say “D is weaker than C” and “C is stronger than D” if $C \Rightarrow D$ and $D \not\Rightarrow C$.
- A is a **weakest precondition** of program c for postcondition B iff every precondition A_0 satisfying $\{A_0\}c\{B\}$ implies A.
- B is a **strongest postcondition** of program c for precondition A iff B implies every postcondition B_0 satisfying $\{A\}c\{B_0\}$.
Can Weakest Preconditions be Computed?

Idea

\(wp(c, B) \) should return a weakest precondition \(A \) for command \(c \) with postcondition \(B \).

\[
wp(\text{skip}, B) = ?
\]
Can Weakest Preconditions be Computed?

<table>
<thead>
<tr>
<th>Idea</th>
</tr>
</thead>
<tbody>
<tr>
<td>(wp(c, B)) should return a weakest precondition (A) for command (c) with postcondition (B).</td>
</tr>
</tbody>
</table>

\[
wp(\text{skip}, B) = B
\]
Can Weakest Preconditions be Computed?

<table>
<thead>
<tr>
<th>Idea</th>
</tr>
</thead>
<tbody>
<tr>
<td>$wp(c, B)$ should return a weakest precondition A for command c with postcondition B.</td>
</tr>
</tbody>
</table>

\[
wp(\text{skip}, B) = B \\
wp(c_1 ; c_2, B) = \]

Not supported by our assertion language (but turns out one can encode them):
- quantification over non-integers ($\forall \sigma \in \Sigma ...$)
- all of denotational semantics (!) ($C[\llbracket c \rrbracket] \bar{\sigma} | = b \lor B$)
- function n-composition (f^n)
- axiomatic denotations ($\mid = \sigma$)
Can Weakest Preconditions be Computed?

Idea

\(\text{wp}(c, B) \) should return a weakest precondition \(A \) for command \(c \) with postcondition \(B \).

\[
\begin{align*}
\text{wp}(\text{skip}, B) &= B \\
\text{wp}(c_1 ; c_2, B) &= \text{wp}(c_1, \text{wp}(c_2, B))
\end{align*}
\]
Can Weakest Preconditions be Computed?

Idea

$\text{wp}(c, B)$ should return a weakest precondition A for command c with postcondition B.

\[
\text{wp}(\text{skip}, B) = B
\]
\[
\text{wp}(c_1; c_2, B) = \text{wp}(c_1, \text{wp}(c_2, B))
\]
\[
\text{wp}(\text{if } b \text{ then } c_1 \text{ else } c_2, B) =
\]
Can Weakest Preconditions be Computed?

<table>
<thead>
<tr>
<th>Idea</th>
</tr>
</thead>
<tbody>
<tr>
<td>$wp(c, B)$ should return a weakest precondition A for command c with postcondition B.</td>
</tr>
</tbody>
</table>

$$
wp(\text{skip}, B) = B
$$
$$
wp(c_1; c_2, B) = wp(c_1, wp(c_2, B))
$$
$$
wp(\text{if } b \text{ then } c_1 \text{ else } c_2, B) = (b \Rightarrow wp(c_1, B)) \land (\neg b \Rightarrow wp(c_2, B))
$$
Can Weakest Preconditions be Computed?

Idea

\(wp(c, B) \) should return a weakest precondition \(A \) for command \(c \) with postcondition \(B \).

\[
wp(\text{skip}, B) = B
\]
\[
wp(c_1 ; c_2, B) = wp(c_1, wp(c_2, B))
\]
\[
wp(\text{if } b \text{ then } c_1 \text{ else } c_2, B) = (b \Rightarrow wp(c_1, B)) \land (\neg b \Rightarrow wp(c_2, B))
\]
\[
wp(\text{while } b \text{ do } c, B) =
\]
Can Weakest Preconditions be Computed?

Idea

$wp(c, B)$ should return a weakest precondition A for command c with postcondition B.

\[
\begin{align*}
wp(\text{skip}, B) &= B \\
wp(c_1 ; c_2, B) &= wp(c_1, wp(c_2, B)) \\
wp(\text{if } b \text{ then } c_1 \text{ else } c_2, B) &= (b \Rightarrow wp(c_1, B)) \land (\neg b \Rightarrow wp(c_2, B)) \\
wp(\text{while } b \text{ do } c, B) &= \text{undecidable?}
\end{align*}
\]
Can Weakest Preconditions be Computed?

Idea

\(wp(c, B) \) should return a weakest precondition \(A \) for command \(c \) with postcondition \(B \).

\[
\begin{align*}
wp(\text{skip}, B) &= B \\
wp(c_1 ; c_2, B) &= wp(c_1, wp(c_2, B)) \\
wpt(\text{if } b \text{ then } c_1 \text{ else } c_2, B) &= (b \Rightarrow wp(c_1, B)) \land (\neg b \Rightarrow wp(c_2, B)) \\
wpt(\text{while } b \text{ do } c, B) &= \forall \sigma \in \Sigma, \forall k, (\forall i, (0 \leq i < k) \Rightarrow C[c]^i \sigma \models b) \\
&\quad \Rightarrow (C[c]^k \sigma \models b \lor B)
\end{align*}
\]
Can Weakest Preconditions be Computed?

Idea

$wp(c, B)$ should return a weakest precondition A for command c with postcondition B.

$\begin{align*}
wp(\text{skip}, B) &= B \\
wp(c_1 ; c_2, B) &= wp(c_1, wp(c_2, B)) \\
wp(\text{if } b \text{ then } c_1 \text{ else } c_2, B) &= (b \Rightarrow wp(c_1, B)) \land (\neg b \Rightarrow wp(c_2, B)) \\
wp(\text{while } b \text{ do } c, B) &= \forall \sigma \in \Sigma, \forall \bar{k}, (\forall \bar{i}, (0 \leq \bar{i} < \bar{k}) \Rightarrow C[c]^{\bar{i}} \sigma \models b) \\
&\quad \Rightarrow (C[c]^{\bar{k}} \sigma \models b \lor B)
\end{align*}$

Not supported by our assertion language (but turns out one can encode them):

- quantification over non-integers ($\forall \sigma \in \Sigma \ldots$)
- all of denotational semantics(!) ($C[c]$)
- function n-composition (f^n)
- axiomatic denotations (\models)
Exercise: Define an algorithm $sp(A, c)$ that computes the strongest postcondition B for program c with precondition A.

- Don’t worry about while-loops (hard!)
- Mostly similar to wp algorithm but assignment rule is messy

More (optional) topics:

- Read about Dijkstra guarded commands.
- Read “The Science of Programming” by David Gries (classic text).
- Read about verification condition generators.