Typed λ-calculus
CS 6371: Advanced Programming Languages

Kevin W. Hamlen

March 29, 2022
Syntax additions

Let’s add simple types to \(\lambda\)-calculus...

Two syntactic changes from untyped \(\lambda\)-calculus:

- Require function arguments to be explicitly typed.
- Add a primitive type and value (e.g., unit).

\[
e ::= () \mid v \mid \lambda v : \tau . e \mid e_1 e_2
\]

\[
\tau ::= \text{unit} \mid \tau_1 \to \tau_2
\]

Now we need a static semantics:

\[
\Gamma : v \to \tau \quad \text{(typing contexts)}
\]

\[
\Gamma \vdash e : \tau \quad \text{(typing judgments)}
\]
Typing Rules

\[\Gamma \vdash () : \text{unit} \]

\[\Gamma \vdash v : \Gamma(v) \]

\[\Gamma \vdash \lambda v : \tau_1 . e : \tau_1 \rightarrow \tau_2 \]

\[\Gamma \vdash e_1 : \tau_1 \rightarrow \tau_2 \quad \Gamma \vdash e_2 : \tau_1 \quad \Gamma \vdash e_1 e_2 : \tau_2 \]
Operational semantics are unchanged:

\[
\frac{e_1 \rightarrow_1 e'_1}{e_1 e_2 \rightarrow_1 e'_1 e_2}
\]

\[
(\lambda v:\tau.e_1)e_2 \rightarrow_1 e_1[e_2/v]^{(\beta\text{-reduction})}
\]

Called \textit{simply-typed }\lambda\text{-calculus} \ (\lambda\rightarrow)
More simply-typed λ-calculus

More simple types and operations commonly included in $\lambda \rightarrow$:

$$e ::= () \mid v \mid \lambda v : \tau. e \mid e_1 e_2 \quad \text{(as before)}$$

$$\mid n \mid e_1 \ aop \ e_2 \quad \text{integers}$$

$$\mid \text{true} \mid \text{false} \mid e_1 \ bop \ e_2 \quad \text{booleans}$$

$$\mid e_1 \ cmp \ e_2 \quad \text{int comparisons}$$

$$\mid (e_1, e_2) \mid \pi_1 e \mid \pi_2 e \quad \text{pairs}$$

$$\mid \text{in}^{\tau_1 + \tau_2} e \mid \text{in}^{\tau_1 \times \tau_2} e \quad \text{injections}$$

$$\mid (\text{case } e \text{ of } \text{in}_1(v_1) \rightarrow e_1 \mid \text{in}_2(v_2) \rightarrow e_2) \quad \text{case distinction}$$

$$\tau ::= \text{unit} \mid \text{int} \mid \text{bool} \mid \tau_1 \rightarrow \tau_2 \mid \tau_1 \times \tau_2 \mid \tau_1 + \tau_2 \mid \text{void} \quad \text{types}$$
Pairs are like in OCaml:

- \((e_1, e_2)\) constructs a pair of values (any types)
- \(\pi_1\) extracts ("projects") the first value of a pair (like \texttt{fst} in OCaml)
- \(\pi_2\) projects second value (like \texttt{snd})
- Pairs have type \(\tau_1 \times \tau_2\) (like \(\tau_1 \ast \tau_2\) in OCaml)

Statics:

\[
\Gamma \vdash e_1 : \tau_1 \quad \Gamma \vdash e_2 : \tau_2 \\
\frac{}{\Gamma \vdash (e_1, e_2) : \tau_1 \times \tau_2}
\]

\[
\Gamma \vdash e : \tau_1 \times \tau_2 \quad i \in \{1, 2\} \\
\frac{}{\Gamma \vdash \pi_i e : \tau_i}
\]

Large-step:

\[
e_1 \Downarrow u_1 \quad e_2 \Downarrow u_2 \\
\frac{}{(e_1, e_2) \Downarrow (u_1, u_2)}
\]

\[
e \Downarrow (u_1, u_2) \quad i \in \{1, 2\} \\
\frac{}{\pi_i e \Downarrow u_i}
\]
Injections

Injections are like OCaml variant types:

- \(\text{in}_{1}^{\tau_{1} + \tau_{2}}(e) \) and \(\text{in}_{2}^{\tau_{1} + \tau_{2}}(e) \) are like writing \(\text{Constructor1}(e) \) and \(\text{Constructor2}(e) \) in OCaml, with the following type definition:

 \[
 \text{type t1_plus_t2 = Constructor1 of } \tau_{1} \mid \text{Constructor2 of } \tau_{2}
 \]

- Destruct injections with \(\text{(case } e \text{ of } \text{in}_{1}(v_{1}) \rightarrow e_{1} \mid \text{in}_{2}(v_{2}) \rightarrow e_{2}) \)
 - Works like \(\text{match } - \text{with in OCaml} \)

- Injections have type \(\tau_{1} + \tau_{2} \)

- Restriction to only two variants is not really a limitation; just nest them (e.g., \(\tau_{1} + (\tau_{2} + (\tau_{3} + \cdots)) \)).

Statics:

\[
\begin{align*}
\Gamma \vdash e : \tau_{i} & \quad i \in \{1, 2\} & \Gamma \vdash e : \tau_{1} + \tau_{2} & \quad \Gamma[v_{1} \mapsto \tau_{1}] \vdash e_{1} : \tau & \quad \Gamma[v_{2} \mapsto \tau_{2}] \vdash e_{2} : \tau \\
\Gamma \vdash \text{in}_{i}^{\tau_{1} + \tau_{2}} e : \tau_{1} + \tau_{2} & \quad \Gamma \vdash (\text{case } e \text{ of } \text{in}_{1}(v_{1}) \rightarrow e_{1} \mid \text{in}_{2}(v_{2}) \rightarrow e_{2}) : \tau
\end{align*}
\]

Large-step:

\[
\begin{align*}
\frac{e \Downarrow u \quad i \in \{1, 2\}}{\text{in}_{i}^{\tau_{1} + \tau_{2}} e \Downarrow \text{in}_{i} u} & \quad \frac{e \Downarrow \text{in}_{i} u \quad e_{i}[u/v_{i}] \Downarrow u' \quad i \in \{1, 2\}}{(\text{case } e \text{ of } \text{in}_{1}(v_{1}) \rightarrow e_{1} \mid \text{in}_{2}(v_{2}) \rightarrow e_{2}) \Downarrow u'}
\end{align*}
\]
Void type

$$\tau ::= \text{unit} | \text{int} | \text{bool} | \tau_1 \rightarrow \tau_2 | \tau_1 \times \tau_2 | \tau_1 + \tau_2 | \text{void}$$

Catalog of simple types:
- () is the only value of type unit
- integers have type int
- booleans have type bool
- functions have type $$\tau_1 \rightarrow \tau_2$$
- pairs have type $$\tau_1 \times \tau_2$$
- injections have type $$\tau_1 + \tau_2$$
- nothing has type void

Why would we want a valueless type like void?

One reason: Create opaque (uncallable) functions for encoding purposes.

Example: $$\lambda x:\text{void}.x$$ is uncallable
Can encode Church numerals without risking expansion (e.g., $$\lambda x:\text{void}.x = 0_N$$, (false, 0_N) = 1_N, etc.)
Challenge: Can you write an infinite loop in $\lambda \rightarrow$?

First attempt: $(\lambda x:?.xx)(\lambda x:?.xx)$

But we need to fill in the types in order to have a legal term for $\lambda \rightarrow$. (And the term must be well-typed according to the static semantics!) So we need types τ and τ' for which we can complete the following derivation:

$$\bot \vdash \lambda x:\tau.xx: \tau \rightarrow \tau'$$
Challenge: Can you write an infinite loop in $\lambda \rightarrow$?

First attempt: $(\lambda x:?.xx)(\lambda x:?.xx)$

But we need to fill in the types in order to have a legal term for $\lambda \rightarrow$. (And the term must be well-typed according to the static semantics!)

So we need types τ and τ' for which we can complete the following derivation:

\[
\frac{(x, \tau) \vdash xx : \tau'}{\bot \vdash \lambda x:\tau.xx : \tau \rightarrow \tau'}
\]
Challenge: Can you write an infinite loop in $\lambda \rightarrow$?

First attempt: $(\lambda x:?.xx)(\lambda x:?.xx)$

But we need to fill in the types in order to have a legal term for $\lambda \rightarrow$. (And the term must be well-typed according to the static semantics!)

So we need types τ and τ' for which we can complete the following derivation:

$$\begin{align*}
\{ (x, \tau) \} \vdash x : \tau \rightarrow \tau' \\
\{ (x, \tau) \} \vdash x : \tau \\
\{ (x, \tau) \} \vdash xx : \tau' \\
\bot \vdash \lambda x:\tau.xx : \tau \rightarrow \tau'
\end{align*}$$

Conclusion: $\tau = \tau \rightarrow \tau'$ for some τ'. Impossible! (τ can't be bigger than itself!)
Advanced Programming Languages

\[\lambda \rightarrow \] with Fixpoints

Strong Normalization

Challenge: Can you write an infinite loop in \(\lambda \rightarrow \)?

First attempt: \((\lambda x:?.xx)(\lambda x:?.xx)\)

But we need to fill in the types in order to have a legal term for \(\lambda \rightarrow \).
(And the term must be well-typed according to the static semantics!)

So we need types \(\tau \) and \(\tau' \) for which we can complete the following derivation:

\[
\{ (x, \tau) \} \vdash x : \tau \rightarrow \tau' \quad \{ (x, \tau) \} \vdash x : \tau
\]

\[
\begin{array}{c}
\{ (x, \tau) \} \vdash xx : \tau' \\
\downarrow \vdash \lambda x : \tau. xx : \tau \rightarrow \tau'
\end{array}
\]

Conclusion: \(\tau = \tau \rightarrow \tau' \) for some \(\tau' \).
Challenge: Can you write an infinite loop in $\lambda \rightarrow$?

First attempt: $(\lambda x:?.xx)(\lambda x:?.xx)$

But we need to fill in the types in order to have a legal term for $\lambda \rightarrow$. (And the term must be well-typed according to the static semantics!)

So we need types τ and τ' for which we can complete the following derivation:

$$\begin{align*}
\{(x, \tau)\} & \vdash x : \tau \rightarrow \tau' \\
\{(x, \tau)\} & \vdash x : \tau \\
\{(x, \tau)\} & \vdash xx : \tau' \\
\bot & \vdash \lambda x:\tau.xx : \tau \rightarrow \tau'
\end{align*}$$

Conclusion: $\tau = \tau \rightarrow \tau'$ for some τ'.
Impossible! (τ can’t be bigger than itself!)
Weird facts:

- It’s impossible to write a non-terminating loop in $\lambda \to$.
 - Full proof involves finding a normal form to which every term (eventually) reduces.
 - Languages with this property are called strongly normalizing.
- $\lambda \to$ is not Turing-complete.
 - How did merely adding some types lose so much power...?

How to fix?

One solution: Add a primitive fix operator...
Fixpoint Operator

Fixpoint operator \(\text{fix} \) acts like the Y-combinator:

\[
\begin{align*}
\text{Statics:} & & \quad \Gamma \vdash e : (\tau \to \tau') \to (\tau \to \tau') \\
& & \quad \Gamma \vdash \text{fix}(e) : \tau \to \tau'
\end{align*}
\]

\[
\begin{align*}
\text{Large-step:} & & \quad e \Downarrow \lambda v : \tau. e_0 \\
& & \quad e_0[\text{fix}(e)/v] \Downarrow u \\
& & \quad \text{fix}(e) \Downarrow u
\end{align*}
\]

(Basis for \texttt{let rec} in OCaml)

Convention: From now on when we refer to “simply-typed \(\lambda \)-calculus (\(\lambda \to \))”, we will assume it includes all of the aforementioned operators \textbf{but not } \text{fix}. To add \text{fix}, we will say “simply-typed \(\lambda \)-calculus with fixpoints.”
Extensions to $\lambda \rightarrow$

Non-simple types

Extending $\lambda \rightarrow$ to non-simple types:

1. parametric polymorphism (λ_2, also called System F)
 - OCaml includes parametric polymorphism but not full System F.
 - Supported by Haskell and OCaml with recursive types extension

2. parametrically polymorphic datatypes (λ_∞)
 - OCaml example: type 'a tree = Empty | Node of ('a * 'a tree * 'a tree)

3. dependent types (λ_Π)
 - not available in OCaml or Haskell
 - Recommended language: Gallina (Coq)

In this class we will only study formalisms for System F.
The λ-cube
Polymorphic abstractions are functions from types to terms:

\[(\Lambda \alpha.e)[\tau] \rightarrow_1 e[\tau/\alpha]\]
Polymorphic Function Examples

Example #1: Polymorphic identity function $\Lambda \alpha. \lambda x: \alpha. x$

$$(\Lambda \alpha. \lambda x: \alpha. x)[int](3) \rightarrow_1 (\lambda x: int. x)(3) \rightarrow_1 3$$

$$(\Lambda \alpha. \lambda x: \alpha. x)[bool](false) \rightarrow_1 (\lambda x: bool. x)(false) \rightarrow_1 false$$

Example #2: Polymorphic application function $\Lambda \alpha. \Lambda \beta. \lambda f: \alpha \rightarrow \beta. \lambda x: \alpha. fx$

$$(\Lambda \alpha. \Lambda \beta. \lambda f: \alpha \rightarrow \beta. \lambda x: \alpha. fx)[int][bool]((>)1)(3)$$
$$\rightarrow_1 (\Lambda \beta. \lambda f: int \rightarrow \beta. \lambda x: int. fx)[bool]((>)1)(3)$$
$$\rightarrow_1 (\lambda f: int \rightarrow bool. \lambda x: int. fx)((>)1)(3)$$
$$\rightarrow_1 (\lambda x: int.((>)1x))(3)$$
$$\rightarrow_1 (>)13$$
$$\rightarrow_1 false$$
Static Semantics of System F

\[
\Gamma \vdash e : \tau \quad \Gamma \vdash e : \forall \alpha.\tau' \\
\Gamma \vdash \Lambda \alpha.e : \forall \alpha.\tau \\
\Gamma \vdash e[\tau] : \tau'[\tau/\alpha]
\]

Example #1: Polymorphic identity function

\((\Lambda \alpha.\lambda x:\alpha.x) : \forall \alpha.(\alpha \to \alpha)\)
\((\Lambda \alpha.\lambda x:\alpha.x)[\text{int}] : \text{int} \to \text{int}\)
\((\Lambda \alpha.\lambda x:\alpha.x)[\text{int}]3 : \text{int}\)

Example #2: Polymorphic application function

\((\Lambda \alpha.\Lambda \beta.\lambda f:\alpha\to\beta.\lambda x:\alpha.fx) : \forall \alpha.\forall \beta.((\alpha \to \beta) \to \alpha \to \beta)\)
\((\Lambda \alpha.\Lambda \beta.\lambda f:\alpha\to\beta.\lambda x:\alpha.fx)[\text{int}] : \forall \beta.((\text{int} \to \beta) \to \text{int} \to \beta)\)
\((\Lambda \alpha.\Lambda \beta.\lambda f:\alpha\to\beta.\lambda x:\alpha.fx)[\text{int}][\text{bool}] : (\text{int} \to \text{bool}) \to \text{int} \to \text{bool}\)
\((\Lambda \alpha.\Lambda \beta.\lambda f:\alpha\to\beta.\lambda x:\alpha.fx)[\text{int}][\text{bool}]((>)1) : \text{int} \to \text{bool}\)
\((\Lambda \alpha.\Lambda \beta.\lambda f:\alpha\to\beta.\lambda x:\alpha.fx)[\text{int}][\text{bool}]((>)1)(3) : \text{bool}\)
Definition (type inhabitation): A type τ is said to be *inhabited* if there exists a term e having type τ.

Q: Which System F types are not inhabited?
Definition (type inhabitation): A type τ is said to be *inhabited* if there exists a term e having type τ.

Q: Which System F types are not inhabited?

Are there any besides void?
Definition (type inhabitation): A type τ is said to be *inhabited* if there exists a term e having type τ.

Q: Which System F types are not inhabited?

Are there any besides *void*?

Are there any that don’t have *void* in them at all?
Convention: Since we don’t need \textit{void} in System F to get an uninhabited type, from now on in System F, \textit{void} is just an alias for $\forall \alpha. \alpha$:

$$\text{void} = \forall \alpha. \alpha$$
Exercise: Define an algorithm $\mathcal{I} : \tau \rightarrow \{T, F\}$ that decides whether any System F type τ is inhabited.

\[
\begin{align*}
\mathcal{I}(int) & = T \\
\mathcal{I}(bool) & = T \\
\mathcal{I}(unit) & = ? \\
\mathcal{I}(\tau_1 \times \tau_2) & = ? \\
\mathcal{I}(\tau_1 + \tau_2) & = ? \\
\mathcal{I}(\tau_1 \rightarrow \tau_2) & = ? \\
\mathcal{I}(\forall \alpha.\tau) & = ?
\end{align*}
\]
Exercise: Define an algorithm $\mathcal{I} : \tau \rightarrow \{T, F\}$ that decides whether any System F type τ is inhabited.

\[
\begin{align*}
\mathcal{I}(\text{int}) &= T \\
\mathcal{I}(\text{bool}) &= T \\
\mathcal{I}(\text{unit}) &= T \\
\mathcal{I}(\tau_1 \times \tau_2) &= \mathcal{I}(\tau_1) \land \mathcal{I}(\tau_2) \\
\mathcal{I}(\tau_1 + \tau_2) &= \mathcal{I}(\tau_1) \lor \mathcal{I}(\tau_2) \\
\mathcal{I}(\tau_1 \rightarrow \tau_2) &= \mathcal{I}(\tau_1) \Rightarrow \mathcal{I}(\tau_2) \\
\mathcal{I}(\forall \alpha. \tau) &= \forall \alpha: \text{bool}, \mathcal{I}(\tau)
\end{align*}
\]

Implication \Rightarrow here refers to intuitionistic implication, not classical implication from classical propositional logic. But in this class I will not give any problems for which the difference matters.
Curry-Howard Isomorphism: The observation that there is a direct correspondence between the logic of computation (programs, types, etc.) and the logic of mathematics (proofs, propositions, etc.).

- Discovered by William Howard (U. Chicago, 1969) building upon work by Haskell Curry (Penn State, 1934)

- propositions-as-types: The operators of intuitionistic propositional logic correspond to the operators of typed λ-calculus.

- proofs-as-programs: A program is actually a proof of the theorem described by its type signature.

- Became the foundation for modern program-proof co-development and formal methods-based verification of computer programs
Exercise: Is the following type inhabited? If so, write a System F term having that type.
\[\tau = \text{bool} \rightarrow (\text{int} \rightarrow \text{void}) \rightarrow \forall \alpha. (\alpha \times \alpha) \]

1. Turn \(\tau \) into a proposition using \(I \).

\[I(\tau) = ? \]

2. If \(I(\tau) = F \) then \(\tau \) is uninhabited, so we’re done; otherwise we must construct a term having type \(\tau \)…
Exercise: Is the following type inhabited? If so, write a System F term having that type.

\[\tau = \text{bool} \rightarrow (\text{int} \rightarrow \text{void}) \rightarrow \forall \alpha. (\alpha \times \alpha) \]

1. Turn \(\tau\) into a proposition using \(I\).

\[I(\tau) = T \Rightarrow (T \Rightarrow F) \Rightarrow \forall \alpha : \text{bool}. (\alpha \land \alpha) \]
\[= T \Rightarrow (F \Rightarrow \forall \alpha. (\alpha \land \alpha)) \]
\[= T \Rightarrow T \]
\[= T \text{ (so it's inhabited)} \]

2. If \(I(\tau) = F\) then \(\tau\) is uninhabited, so we’re done; otherwise we must construct a term having type \(\tau\)...
Type-inhabitation Problem Walkthrough

\[\tau = \text{bool} \rightarrow (\text{int} \rightarrow \text{void}) \rightarrow \forall \alpha. (\alpha \times \alpha) \]

Strategy for finding a System F term having type \(\tau \):

Each inhabited primitive type and each type operator has a primitive term or term operator that constructs it:

<table>
<thead>
<tr>
<th>Type</th>
<th>Term Constructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>unit</td>
<td>()</td>
</tr>
<tr>
<td>int</td>
<td>\ldots, (-1, 0, 1, 2, 3, \ldots)</td>
</tr>
<tr>
<td>bool</td>
<td>true, false</td>
</tr>
<tr>
<td>\times</td>
<td>(e_1, e_2)</td>
</tr>
<tr>
<td>+</td>
<td>in_{\tau_1 + \tau_2}^1 (e) or in_{\tau_1 + \tau_2}^2 (e)</td>
</tr>
<tr>
<td>\rightarrow</td>
<td>\lambda v: \tau . e</td>
</tr>
<tr>
<td>\forall</td>
<td>\Lambda \alpha . e</td>
</tr>
</tbody>
</table>

Using this approach for this \(\tau \) yields:
Type-inhabitation Problem Walkthrough

\[\tau = bool \rightarrow (int \rightarrow void) \rightarrow \forall \alpha.(\alpha \times \alpha) \]

Strategy for finding a System F term having type \(\tau \):

Each inhabited primitive type and each type operator has a primitive term or term operator that constructs it:

<table>
<thead>
<tr>
<th>Type</th>
<th>Term Constructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>unit</td>
<td>()</td>
</tr>
<tr>
<td>int</td>
<td>\ldots, -1, 0, 1, 2, 3, \ldots</td>
</tr>
<tr>
<td>bool</td>
<td>true, false</td>
</tr>
<tr>
<td>\times</td>
<td>(e_1, e_2)</td>
</tr>
<tr>
<td>+</td>
<td>in_{\tau_1+\tau_2} (e) or in_{\tau_1+\tau_2} (e)</td>
</tr>
<tr>
<td>\rightarrow</td>
<td>\lambda v: \tau.e</td>
</tr>
<tr>
<td>\forall</td>
<td>\Lambda \alpha.e</td>
</tr>
</tbody>
</table>

Using this approach for this \(\tau \) yields:

\[\lambda x: bool. \lambda y: (int \rightarrow void). \Lambda \alpha.(\alpha, \alpha) \]

Why is this not a valid System F term?
Type-inhabitation Problem Walkthrough

\[\tau = \text{bool} \rightarrow (\text{int} \rightarrow \text{void}) \rightarrow \forall \alpha.(\alpha \times \alpha) \]

Strategy for finding a System F term having type \(\tau \):

Each inhabited primitive type and each type operator has a primitive term or term operator that constructs it:

<table>
<thead>
<tr>
<th>Type</th>
<th>Term Constructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>unit</td>
<td>()</td>
</tr>
<tr>
<td>int</td>
<td>\ldots, -1, 0, 1, 2, 3, \ldots</td>
</tr>
<tr>
<td>bool</td>
<td>true, false</td>
</tr>
<tr>
<td>\times</td>
<td>((e_1, e_2))</td>
</tr>
<tr>
<td>+</td>
<td>(\text{in}{\tau_1 + \tau_2}^1(e)) or (\text{in}{\tau_1 + \tau_2}^2(e))</td>
</tr>
<tr>
<td>\rightarrow</td>
<td>(\lambda v : \tau. e)</td>
</tr>
<tr>
<td>\forall</td>
<td>(\Lambda \alpha. e)</td>
</tr>
</tbody>
</table>

Using this approach for this \(\tau \) yields:

\[\lambda x : \text{bool}. \lambda y : (\text{int} \rightarrow \text{void}). \Lambda \alpha. (,) \]

How to fix?
Type-inhabitation Problem Walkthrough

\[\tau = \text{bool} \rightarrow (\text{int} \rightarrow \text{void}) \rightarrow \forall \alpha. (\alpha \times \alpha) \]

Strategy for finding a System F term having type \(\tau \):

Each inhabited primitive type and each type operator has a primitive term or term operator that constructs it, and each type operator has a term operator to destruct it:

<table>
<thead>
<tr>
<th>Type</th>
<th>Term Constructor</th>
<th>Term Destructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>unit</td>
<td>()</td>
<td>N/A</td>
</tr>
<tr>
<td>int</td>
<td>\ldots, -1, 0, 1, 2, 3, \ldots</td>
<td>N/A</td>
</tr>
<tr>
<td>bool</td>
<td>\text{true}, \text{false}</td>
<td>N/A</td>
</tr>
<tr>
<td>\times</td>
<td>(e_1, e_2)</td>
<td>\pi_1 e or \pi_2 e</td>
</tr>
<tr>
<td>+</td>
<td>\text{in}{\tau_1+\tau_2}(e) or \text{in}{\tau_1+\tau_2}(e)</td>
<td>\text{case } e \text{ of } \ldots</td>
</tr>
<tr>
<td>\rightarrow</td>
<td>\lambda v: \tau. e</td>
<td>\text{e_1 e_2 (application)}</td>
</tr>
<tr>
<td>\forall</td>
<td>\Lambda \alpha. e</td>
<td>\text{e}[\tau] (instantiation)</td>
</tr>
</tbody>
</table>

Using this approach for this \(\tau \) yields:

\[\lambda x: \text{bool}. \lambda y: (\text{int} \rightarrow \text{void}). \Lambda \alpha. (y3[\alpha], y3[\alpha]) \]

Sanity check: Variable instances (\(y \) and \(\alpha \) in this case) nowhere appear free.
Type-inhabitation Problem Walkthrough

\[\tau = \text{bool} \rightarrow (\text{int} \rightarrow \text{void}) \rightarrow \forall \alpha. (\alpha \times \alpha) \]

Each inhabited primitive type and each type operator has a primitive term or term operator that constructs it, and each type operator has a term operator to destruct it:

<table>
<thead>
<tr>
<th>Type</th>
<th>Term Constructor</th>
<th>Term Destructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>unit</td>
<td>()</td>
<td>N/A</td>
</tr>
<tr>
<td>int</td>
<td>\ldots, –1, 0, 1, 2, 3, \ldots</td>
<td>N/A</td>
</tr>
<tr>
<td>bool</td>
<td>true, false</td>
<td>N/A</td>
</tr>
<tr>
<td>×</td>
<td>(e₁, e₂)</td>
<td>\pi₁e or \pi₂e</td>
</tr>
<tr>
<td>+</td>
<td>in^{τ₁+τ₂}(e) or in^{τ₁+τ₂}(e)</td>
<td>case e of \ldots</td>
</tr>
<tr>
<td>→</td>
<td>λv:\tau.e</td>
<td>e₁e₂ (application)</td>
</tr>
<tr>
<td>∀</td>
<td>Λα.\tau.e</td>
<td>e[\tau] (instantiation)</td>
</tr>
</tbody>
</table>

A shorter solution:

\[\lambda x: \text{bool}. \lambda y: (\text{int} \rightarrow \text{void}). y3[\forall \alpha. (\alpha \times \alpha)] \]

Take-away: Once you have an argument of uninhabited type, you have something very powerful that can create other uninhabited terms. (Curry-Howard: This corresponds to implicative explosion \(F \Rightarrow F \).)
Exercise: Is the following type inhabited? If so, write a System F term having that type.

\[\tau = \forall \alpha. \forall \beta. ((\alpha + \beta) \rightarrow (\beta + \alpha)) \]

Step 1: Decide whether \(I(\tau) \) is tautological:
Exercise: Is the following type inhabited? If so, write a System F term having that type.

\[\tau = \forall \alpha. \forall \beta. ((\alpha + \beta) \to (\beta + \alpha)) \]

Step 1: Decide whether \(I(\tau) \) is tautological:

\[I(\tau) = \forall \alpha. \forall \beta. ((\alpha \lor \beta) \Rightarrow (\beta \lor \alpha)) \]
Exercise: Is the following type inhabited? If so, write a System F term having that type.

\[\tau = \forall \alpha. \forall \beta. ((\alpha + \beta) \rightarrow (\beta + \alpha)) \]

Step 1: Decide whether \(I(\tau) \) is tautological:

\[I(\tau) = \forall \alpha. \forall \beta. ((\alpha \lor \beta) \Rightarrow (\beta \lor \alpha)) \]

Step 2: If \(I(\tau) \) is tautological, build a term of type \(\tau \) using constructors and destructors.
Exercise: Is the following type inhabited? If so, write a System F term having that type.

\[\tau = \forall \alpha. \forall \beta. ((\alpha + \beta) \to (\beta + \alpha)) \]

Step 1: Decide whether \(\mathcal{I}(\tau) \) is tautological:

\[\mathcal{I}(\tau) = \forall \alpha. \forall \beta. ((\alpha \lor \beta) \Rightarrow (\beta \lor \alpha)) \]

Step 2: If \(\mathcal{I}(\tau) \) is tautological, build a term of type \(\tau \) using constructors and destructors.

\[\Lambda \alpha. \Lambda \beta. \lambda x: \alpha + \beta. ? \]
Sample Type-inhabitation Problem

Exercise: Is the following type inhabited? If so, write a System F term having that type.

\[\tau = \forall \alpha. \forall \beta.((\alpha + \beta) \rightarrow (\beta + \alpha)) \]

Step 1: Decide whether \(\mathcal{I}(\tau) \) is tautological:

\[\mathcal{I}(\tau) = \forall \alpha. \forall \beta.((\alpha \lor \beta) \Rightarrow (\beta \lor \alpha)) \]

Step 2: If \(\mathcal{I}(\tau) \) is tautological, build a term of type \(\tau \) using constructors and destructors.

\[\Lambda \alpha. \Lambda \beta. \lambda x: \alpha + \beta. \text{case } x \text{ of } \text{in}_1(y) \rightarrow ? \quad | \quad \text{in}_2(z) \rightarrow ? \]
Exercise: Is the following type inhabited? If so, write a System F term having that type.

\[\tau = \forall \alpha. \forall \beta. ((\alpha + \beta) \rightarrow (\beta + \alpha)) \]

Step 1: Decide whether \(I(\tau) \) is tautological:

\[I(\tau) = \forall \alpha. \forall \beta. ((\alpha \lor \beta) \Rightarrow (\beta \lor \alpha)) \]

Step 2: If \(I(\tau) \) is tautological, build a term of type \(\tau \) using constructors and destructors.

\[\Lambda \alpha. \Lambda \beta. \lambda x : \alpha + \beta. \text{case } x \text{ of } \text{in}_1(y) \rightarrow \text{in}_2^{\beta + \alpha} y \mid \text{in}_2(z) \rightarrow \text{in}_1^{\beta + \alpha} z \]
Tautologicality and Operation Order

Exercise: Are the following types inhabited? If so, write terms having these types.

\[\tau_1 = \forall \alpha. (\alpha \to \text{void}) \]
\[\mathcal{I}(\tau_1) = \forall \alpha. (\alpha \Rightarrow F) \]
\[= ? \]

\[\tau_2 = (\forall \alpha. \alpha) \to \text{void} \]
\[\mathcal{I}(\tau_2) = (\forall \alpha. \alpha) \Rightarrow F \]
\[= ? \]
Tautologicality and Operation Order

Exercise: Are the following types inhabited? If so, write terms having these types.

\[\tau_1 = \forall \alpha. (\alpha \rightarrow \text{void}) \quad \tau_2 = (\forall \alpha. \alpha) \rightarrow \text{void} \]

\[\mathcal{I}(\tau_1) = \forall \alpha. (\alpha \Rightarrow F) \quad \mathcal{I}(\tau_2) = (\forall \alpha. \alpha) \Rightarrow F \]

\[= F \text{ (because } T \not\Rightarrow F \text{)} \quad = F \Rightarrow F \]

\[= T \]
Exercise: Are the following types inhabited? If so, write terms having these types.

\[\tau_1 = \forall \alpha. (\alpha \rightarrow \text{void}) \]
\[\mathcal{I}(\tau_1) = \forall \alpha. (\alpha \Rightarrow F) \]
\[= F \text{ (because } T \nRightarrow F \text{)} \]

\[\tau_2 = (\forall \alpha. \alpha) \rightarrow \text{void} \]
\[\mathcal{I}(\tau_2) = (\forall \alpha. \alpha) \Rightarrow F \]
\[= F \Rightarrow F \]
\[= T \]

\[(\lambda x : \text{void}. x) : (\forall \alpha. \alpha) \rightarrow \text{void} \]
Brokenness of fix

The fix operator must not be added lest the isomorphism break down.

Recall the typing rule for fix:

\[
\Gamma \vdash e : (\tau \rightarrow \tau') \rightarrow (\tau \rightarrow \tau') \\
\Gamma \vdash \text{fix}(e) : \tau \rightarrow \tau'
\]

With it we can derive:

\[
\{(x, \text{unit} \rightarrow \text{void})\} \vdash x : \text{unit} \rightarrow \text{void} \\
\bot \vdash \lambda x: \text{unit} \rightarrow \text{void}.x : (\text{unit} \rightarrow \text{void}) \rightarrow (\text{unit} \rightarrow \text{void}) \\
\bot \vdash \text{fix}(\lambda x: \text{unit} \rightarrow \text{void}.x) : \text{unit} \rightarrow \text{void} \\
\bot \vdash () : \text{unit} \\
\bot \vdash \text{fix}(\lambda x: \text{unit} \rightarrow \text{void}.x)(()) : \text{void}
\]
C-H Isomorphism and Derivation Rule Soundness

Two ways to understand the problem:

- \(e : \tau \) is like saying “\(e \) promises to return a \(\tau \).” But \(e \) breaks its promise if \(e \) is an infinite loop.

- \(e : \tau \) is like saying \(e \) is a **proof** of proposition \(\tau \). But the typing rule for \(\text{fix} \) is unsound, so not a valid proof:

\[
\begin{align*}
\Gamma \vdash e : (\tau \to \tau') \to (\tau \to \tau') \\
\Gamma \vdash \text{fix}(e) : \tau \to \tau'
\end{align*}
\]

\[
I \left(\frac{\Gamma \vdash e : (\tau \to \tau') \to (\tau \to \tau')} {
\Gamma \vdash \text{fix}(e) : \tau \to \tau'} \right) =
\frac{(\tau \Rightarrow \tau') \Rightarrow (\tau \Rightarrow \tau')}{\tau \Rightarrow \tau'}
\]

Big idea: Typing rules are actually the rules of deductive propositional logic.

See Coq and Calculus of Inductive Constructions for much more on this.
Type Annotations

Definition (type annotations): In the syntax of System F, all mentions of types τ (e.g., $\lambda v : \tau . e$), type variable binders (e.g., $\Lambda \alpha . e$), and type instantiations (e.g., $e[\tau]$) are called *type annotations*.

Type-inference: Given a System F term \hat{e} without any annotations, infer an annotated term e that is well-typed (if one exists).

Type-checking: Given a System F term e, decide whether there exists a type τ such that $\bot \vdash e : \tau$ is derivable.

Good news and bad news:
- Type-checking is decidable for both $\lambda \rightarrow$ and System F.
- Type-inference is decidable for $\lambda \rightarrow$.
- Type-inference is undecidable for System F. 😞
Shallow Types

Definition (shallow type): A type \(\tau \) is *shallow* if no quantifiers are children of non-quantifiers in \(\tau \)'s AST.

Examples:

- \(\text{int} \rightarrow \text{unit} \) is shallow (no quantifiers).
- \(\forall \alpha. \forall \beta.(\beta \rightarrow \alpha) \) is shallow (both quantifiers at top of AST).
- \(\forall \alpha.((\forall \beta. \beta) \rightarrow \alpha) \) is not shallow (\(\forall \beta \) is a child of \(\rightarrow \)).
- \((\forall \alpha. \alpha) \times (\forall \beta. \beta) \) is not shallow (\(\forall \alpha \) and \(\forall \beta \) are both children of \(\times \)).

If we limit System F to shallow types only, type-inference becomes decidable. 😊

Example:

```plaintext
let apply f x = f x;;
apply = \( \lambda \alpha. \lambda \beta. \lambda f:\alpha \rightarrow \beta. \lambda x:\alpha.(fx) \)

let y = apply ((>)1) 5;;
y = apply[int][bool](>)15
```
Hindley-Milner Type-inference

A representative core fragment of unannotated System F:

\[\hat{e} ::= () \mid v \mid \lambda v.\hat{e} \mid \hat{e} \hat{e} \]

Four steps:

1. Change unannotated term \(\hat{e} \) into an annotated but non-closed System F term \(e \) by adding unique, free type variables:

 \[\lambda v.\hat{e} \rightarrow \lambda v:\alpha.e \]
 \[v \rightarrow v[\alpha_1] \cdots [\alpha_n] \text{ when } \Gamma(v) = \forall \alpha_1 \ldots \forall \alpha_n.\tau \]

2. Infer a mapping \(\theta : \alpha \rightarrow \tau \) from the free type variables to their types (details next slides).

3. Substitute any type variables \(\alpha \in \theta^{-1} \) appearing free in \(e \) with their types \(\theta(\alpha) \).

4. There may still be some free type variables \(\alpha \) in \(e \). If so, add \(\Lambda \alpha. \) to the start of \(e \) for each one to bind them (yielding a term of shallow type).
Hindley-Milner Type-inference

The main algorithm (step 2) can be expressed as a derivation of a judgment:

\[\theta, \Gamma \vdash e : \tau, \theta' \]

- \(\theta : \alpha \rightarrow \tau \) maps type vars \(\alpha \) whose types we've already inferred to their types \(\tau \).
- \(\Gamma : v \rightarrow \tau \) maps program variables \(v \) to their types \(\tau \).
- \(e \) is the expression on which we are performing type-inference.
- \(\tau \) is the type inferred for \(e \).
- \(\theta' : \alpha \rightarrow \tau \) records any new types \(\tau \) we've inferred for free type variables \(\alpha \) appearing in \(e \).

Notations:
- \(\tau[\theta] \) is capture-avoiding substitution of type vars \(\alpha \) in \(\tau \) with their types \(\theta(\alpha) \).
- \(\Gamma[\theta] = \{(v, \tau[\theta]) \mid \Gamma(v) = \tau\} \) is the same substitution in the image of \(\Gamma \).
Hindley-Milner Type-inference

\[
\begin{align*}
\theta, \Gamma \vdash () : \text{unit}, \theta & \quad (1) \\
\Gamma(v) = \forall \beta_1 \ldots \forall \beta_n. \tau & \quad (2) \\
\theta, \Gamma \vdash v[\alpha_1] \cdots [\alpha_n] : \tau[\alpha_1/\beta_1] \cdots [\alpha_n/\beta_n], \theta \\
\theta, \Gamma[v \mapsto \alpha] \vdash e : \tau, \theta' & \quad (3) \\
\theta, \Gamma \vdash e_1 : \tau_1, \theta_1 \quad \theta_1, \Gamma[\theta_1] \vdash e_2 : \tau_2, \theta_2 \quad \theta_3 = \mathcal{U}(\tau_1[\theta_2], \tau_2 \rightarrow \alpha) \quad \theta' = \theta_2 \sqcup \theta_3 \quad (4) \\
\theta, \Gamma \vdash e_1 e_2 : \theta'(\alpha), \theta' &
\end{align*}
\]
Type-inference for Function Application

\[
\begin{align*}
\theta, \Gamma &\vdash e_1 : \tau_1, \theta_1 & \theta_1, \Gamma[\theta_1] &\vdash e_2 : \tau_2, \theta_2 & \theta_3 = \mathcal{U}(\tau_1[\theta_2], \tau_2 \to \alpha) & \theta' = \theta_2 \sqcup \theta_3 \\
\theta, \Gamma &\vdash e_1 e_2 : \theta'(\alpha), \theta'
\end{align*}
\]

1. Infer a type \(\tau_1 \) for \(e_1 \).
2. Infer a type \(\tau_2 \) for \(e_2 \).
3. Types \(\tau_1 \) and \(\tau_2 \to \alpha \) must be identical (for some \(\alpha \)). **Unify** them:

Definition (type unification): The *unification* of types \(\tau_1 \) and \(\tau_2 \) is an instantiation \(\theta : \alpha \to \tau \) of their type variables that causes them to be identical:

\[
\begin{align*}
\mathcal{U}(\alpha, \alpha) &= \bot \\
\mathcal{U}(\text{unit}, \text{unit}) &= \bot \\
\mathcal{U}(\alpha, \tau) &= \mathcal{U}(\tau, \alpha) = \{ (\alpha, \tau) \} \text{ if } \alpha \text{ is not free in } \tau \\
\mathcal{U}(\tau_1 \to \tau_2, \tau_1' \to \tau_2') &= \mathcal{U}(\tau_1, \tau_1') \sqcup \mathcal{U}(\tau_2, \tau_2') \\
\mathcal{U} \text{ is undefined otherwise (type-inference rejects)}
\end{align*}
\]
Non-shallow Types

H-M type-inference only works on shallow-typed terms.

Optional Exercise: Come up with an OCaml program whose type is non-shallow, and try compiling it. What error does OCaml report?

Follow-up Optional Exercise: Use OCaml’s (experimental) --rectypes option to add non-shallow typing support (sacrifices full type-inference) and fix your program above.
Summary of λ-cube

- \rightarrow: simply-typed λ-calculus (no type quantifiers)
- λ_2 (System F): parametric polymorphism
- λ_ω: parametrically polymorphic datatypes
 - OCaml is essentially $(\lambda_\omega \cap \text{shallow types}) \cup \text{fix}$
 - Haskell is essentially $\lambda_\omega \cup \text{fix}$
- λ_Π: dependent types (correspond to \exists in propositional logic)
- λ_C: Calculus of Constructions (combines all)
 - Coq/Gallina is essentially λ_C