Formally Specifying Language Syntax

- Let’s create a new language: Simple IMPerative Language (SIMPL)
- Backus-Naur Form (BNF)
 - Invented by John Backus and Peter Naur (inventors of ALGOL-60 and later FORTRAN)
 - Notation for expressing context-free grammars (CFGs)
- Convention: Teletype font for symbols vs. mathematical font for mathematical operators
 - +, −, and * are symbols from your keyboard that have no particular mathematical meaning
 - +, −, and * are the mathematical operators for addition, subtraction, and multiplication
 - (To make things easier for our OCaml implementation, we will define them to be 31-bit integer addition, subtraction, and multiplication operators, which is how OCaml performs those operations natively.)

Syntax of SIMPL

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>commands</td>
<td>`c ::= skip</td>
</tr>
<tr>
<td>boolean expressions</td>
<td>`b ::= true</td>
</tr>
<tr>
<td>arithmetic expressions</td>
<td>`a ::= n</td>
</tr>
<tr>
<td>variable names</td>
<td><code>v</code></td>
</tr>
<tr>
<td>integer constants</td>
<td><code>n</code></td>
</tr>
</tbody>
</table>
Syntax vs. Semantics

- Syntactic definition imparts **no meaning** (semantics) of programs
 - Symbol “+” might not mean addition.
 - (Can you think of a language where it does not?)
- Elements of CFGs (e.g., defined by BNF) are **abstract syntax trees** (ASTs)
 - Use parentheses to describe AST’s structure
 - Example: \(x := (x + 1) * 2; (\text{skip}; y := x) \)

![Abstract Syntax Tree Example](image)

- Parser transforms symbol stream into AST
 - Uses various precedence and associativity rules to auto-insert parenthys
 - I’ll assume you know how that works (use a parser generator or take compilers/automata theory class).
 - When I write a program, it denotes an already-parsed AST.
CFG elements (e.g., programs) are *finite* but *unbounded*.

- **Finite:** The number of nodes in the AST equals a natural number (not infinity).
- **Unbounded:** For every program c there exists a larger program c'.

The *set of all programs* is countably infinite.

- Countably infinite $=$ set has cardinality equal to the set of all natural numbers

But each individual program is finite.

- An infinite-sized program is actually a syntax error, because the CFG has no infinite-sized members.
Operational Semantics

- Operational semantics - mathematically define the meanings of programs in terms of the operation of an abstract machine

Stores

A store (machine state) in SIMPL is a partial function from variable names to integers:

\[\Sigma = v \mapsto \mathbb{Z} \]
\[\sigma \in \Sigma \]

- (Partial) functions can be written as sets of input-output pairs:
 - Example: \(\sigma = \{(x, 8), (y, -10), (z, 0)\} \)
 - Not every set of input-output pairs is a function though, so be careful.
 - Non-function: \(\{(x, 8), (x, 10)\} \)
Configurations and Judgments

Configurations

A **configuration** is a command or expression paired with a store:

- command configurations: $\langle c, \sigma \rangle$
- arithmetic configurations: $\langle a, \sigma \rangle$
- boolean configurations: $\langle b, \sigma \rangle$

Judgments

A **judgment** declares that a configuration **converges to** a store or value:

- command judgments: $\langle c, \sigma \rangle \downarrow \sigma'$ ($\sigma' \in \Sigma$)
- arithmetic judgments: $\langle a, \sigma \rangle \downarrow n$ ($n \in \mathbb{Z}$)
- boolean judgments: $\langle b, \sigma \rangle \downarrow p$ ($p \in \{T, F\}$)

“Converges to” (\downarrow) informally means “terminates and returns a value of ...”
Derivations

We now have formalisms for talking about program behaviors (judgments), but we haven’t defined which judgments are “true”.

Insight: Judgments are like mathematical propositions, but for a new math (computation).

How do we define “truth” in propositional logic? (Laws or Inference Rules)

Example: Law of Modus Ponens

\[
\frac{p \quad p \Rightarrow q}{q} \quad \text{(MP)}
\]

- Each rule written as a “fraction” with zero or more hypotheses on top, and a conclusion on the bottom
- Free variables in rules are universally quantified
- Rules can be nested to form tree-shaped derivations (proofs) of truth:

\[
\frac{p \quad p \Rightarrow q \quad q \Rightarrow r}{r} \quad \text{(MP)}
\]

Solution: We need logical axioms that define computations in SIMPL!
Rule #1: Skip

Inference Rule (Axiom) for skip

\[
\langle \text{skip}, \sigma \rangle \Downarrow \sigma^{(1)}
\]

- no hypotheses = axiom
- True for every \(\sigma \) (i.e., \(\sigma \) is universally quantified)
Warning: Misnamed Variables

The following rule is *completely different*!

A different (wrong) rule for skip

\[
\langle \text{skip}, \sigma \rangle \Downarrow \sigma'^{(1)}
\]

- What’s the difference?
- What does this rule effectively say skip does?
Rule #2: Sequence

Inference Rule for ;

\[
\frac{?}{\langle c_1 ; c_2 , \sigma \rangle \Downarrow \sigma' (2)}
\]
Rule #2: Sequence

Inference Rule for ;

\[
\frac{\langle c_1, \sigma \rangle \downarrow \sigma_2}{\langle c_1 ; c_2, \sigma \rangle \downarrow \sigma'}
\]
Rule #2: Sequence

Inference Rule for $\;$

\[
\frac{\langle c_1, \sigma \rangle \downarrow \sigma_2 \quad \langle c_2, \sigma_2 \rangle \downarrow \sigma'}{\langle c_1 ; c_2, \sigma \rangle \downarrow \sigma'} \tag{2}
\]
Example Derivation

\[\langle \text{skip}; (\text{skip}; \text{skip}), \sigma \rangle \Downarrow ? \]
Example Derivation

\[
\langle \text{skip}, \sigma \rangle \downarrow \? \quad \langle \text{skip}; \text{skip}, \sigma \rangle \downarrow \?
\]

\[
\overbrace{\langle \text{skip}; (\text{skip}; \text{skip}), \sigma \rangle}^{(2)} \downarrow \?
\]
Example Derivation

\[
\begin{align*}
\langle \text{skip}, \sigma \rangle \Downarrow \sigma & \quad (1) \\
\langle \text{skip};\text{skip}, \sigma \rangle \Downarrow ? & \quad (2)
\end{align*}
\]

\[
\begin{align*}
\langle \text{skip};(\text{skip};\text{skip}), \sigma \rangle \Downarrow ? & \quad (2)
\end{align*}
\]
Example Derivation

\[
\begin{align*}
\langle \text{skip}, \sigma \rangle & \Downarrow \sigma \tag{1} \\
\langle \text{skip}, ?? \rangle & \Downarrow \tag{2} \\
\langle \text{skip}; \text{skip}, \sigma \rangle & \Downarrow \tag{2} \\
\langle \text{skip};(\text{skip};\text{skip}), \sigma \rangle & \Downarrow \tag{2}
\end{align*}
\]
Example Derivation

\[
\begin{align*}
\langle \text{skip}, \sigma \rangle \Downarrow \sigma & \quad \text{(1)} \\
\langle \text{skip}, \sigma \rangle \Downarrow ? & \quad \text{(2)} \\
\langle \text{skip}; \text{skip}, \sigma \rangle \Downarrow ? & \quad \text{(2)} \\
\langle \text{skip}; (\text{skip}; \text{skip}), \sigma \rangle \Downarrow ? & \quad \text{(2)}
\end{align*}
\]
Example Derivation

\[
\begin{align*}
\langle \text{skip}, \sigma \rangle & \Downarrow \sigma^{(1)} \\
\langle \text{skip;skip}, \sigma \rangle & \Downarrow \sigma^{(2)} \\
\langle \text{skip;(skip;skip)}, \sigma \rangle & \Downarrow \sigma^{(2)} \\
\end{align*}
\]
Building Derivations

- Work bottom-up, left-to-right (usually).
- Identify (by number) which rule you’re using to the right of the bar.
- Instantiate rule variables consistently and uniformly at each rule use.
 - If $\sigma = \sigma_1$ in this rule instance, then every σ appearing in the rule must be replaced with σ_1.
 - Treat rule literally, not what you expect/want it to say!
- Derivations and infinity
 - No infinite-sized derivations! (Each derivation must have strictly finite height.)
 - The set of all derivations is countably infinite.
Rule #3: Assignment

Inference Rule for :=

\[\langle v := a, \sigma \rangle \Downarrow?^{(3)} \]
Warning: Type-inconsistent Rules

First attempt at assignment rule:

Malformed (wrong) Rule for $\mathbf{:=}$

\[
\langle v := a, \sigma \rangle \Downarrow \sigma[v \mapsto a]^{(3)}
\]

Notation (functional update):

\[
f[x \mapsto y] = (f - \{(x, z) \mid (x, z) \in f\}) \cup \{(x, y)\}
\]

But the above is not a mathematically sensible definition. Why?
Rule #3: Assignment

Correct formulation of assignment rule:

Inference Rule for \(:= \)

\[
\frac{\langle a, \sigma \rangle \Downarrow n}{\langle v := a, \sigma \rangle \Downarrow \sigma[v \mapsto n]} \tag{3}
\]

Notation (functional update):

\[
f[x \mapsto y] = (f - \{(x, z) \mid (x, z) \in f\}) \cup \{(x, y)\}
\]
Rule #4: Conditional

Inference Rule for if-then-else

\[\langle \text{if } b \text{ then } c_1 \text{ else } c_2, \sigma \rangle \downarrow^{(4)} \]
Solution: Multiple rules per syntactic form are perfectly valid and often useful.

Inference Rules for if-then-else

\[
\frac{\langle b, \sigma \rangle \Downarrow T \quad \langle c_1, \sigma \rangle \Downarrow \sigma'}{\langle \text{if } b \text{ then } c_1 \text{ else } c_2, \sigma \rangle \Downarrow \sigma'}^{(4)}
\]

\[
\frac{\langle b, \sigma \rangle \Downarrow F \quad \langle c_2, \sigma \rangle \Downarrow \sigma'}{\langle \text{if } b \text{ then } c_1 \text{ else } c_2, \sigma \rangle \Downarrow \sigma'}^{(5)}
\]
Rule #6: While-loop

Inference Rule for while-loop

\[
\langle \text{while } b \text{ do } c, \sigma \rangle \Downarrow \text{?}
\]

This is a tough one.
Rule #6: While-loop

The false part is easy, but what about the true part?

Inference Rules for while-loop

\[
\frac{\langle b, \sigma \rangle \downarrow F}{\langle \text{while } b \text{ do } c, \sigma \rangle \downarrow \sigma}
\]

\[
\frac{\langle b, \sigma \rangle \downarrow T \quad ?}{\langle \text{while } b \text{ do } c, \sigma \rangle \downarrow ?}
\]
Rule #6: While-loop

The false part is easy, but what about the true part?

Inference Rules for while-loop

\[
\begin{align*}
\langle b, \sigma \rangle \Downarrow F \\
\hline
\langle \text{while } b \text{ do } c, \sigma \rangle \Downarrow \sigma
\end{align*}
\]

\[
\begin{align*}
\langle b, \sigma \rangle \Downarrow T & \quad \langle c, \sigma \rangle \Downarrow \sigma_2 \\
\hline
\langle \text{while } b \text{ do } c, \sigma \rangle \Downarrow ?
\end{align*}
\]
Rule #6: While-loop

Idea: What about using the entire while-loop recursively?

Inference Rules for while-loop

\[
\begin{align*}
\langle b, \sigma \rangle & \downarrow F \\
\frac{\langle \text{while } b \text{ do } c, \sigma \rangle \downarrow \sigma}{\langle \text{while } b \text{ do } c, \sigma \rangle \downarrow \sigma}
\end{align*}
\]

\[
\begin{align*}
\langle b, \sigma \rangle & \downarrow T \\
\langle c, \sigma \rangle & \downarrow \sigma_2 \\
\langle \text{while } b \text{ do } c, \sigma_2 \rangle & \downarrow \sigma'
\end{align*}
\]

\[
\frac{\langle \text{while } b \text{ do } c, \sigma \rangle \downarrow \sigma'}{}
\]

Danger: Is this rule circular?
Warning: Circular Rules

Warning: It is easy to create valid yet pointless rules using recursion.

Example of a valid yet pointless inference rule

\[
\frac{\langle \text{while } b \text{ do } c, \sigma \rangle \Downarrow \sigma'}{\langle \text{while } b \text{ do } c, \sigma \rangle \Downarrow \sigma'}
\]

- This inference rule is valid and sound.
- But it isn’t useful. (Recall that derivations are finite.)
Rule #6: While-loop

Is this rule pointless?

Inference Rules for while-loop

\[
\begin{align*}
\langle b, \sigma \rangle & \downarrow F \\
\hline
\langle \text{while } b \text{ do } c, \sigma \rangle & \downarrow \sigma \\
\langle b, \sigma \rangle & \downarrow T \\
\langle c, \sigma \rangle & \downarrow \sigma_2 \\
\langle \text{while } b \text{ do } c, \sigma_2 \rangle & \downarrow \sigma' \\
\hline
\langle \text{while } b \text{ do } c, \sigma \rangle & \downarrow \sigma'
\end{align*}
\]
Rule #6: While-loop

Is this rule pointless? No, this works! But let’s compact it into a single rule...

Inference Rules for while-loop

\[
\begin{align*}
\langle b, \sigma \rangle \Downarrow F & \\
\hline
\langle \text{while } b \text{ do } c, \sigma \rangle \Downarrow \sigma
\end{align*}
\]

\[
\begin{align*}
\langle b, \sigma \rangle \Downarrow T & \\
\hline
\langle c, \sigma \rangle \Downarrow \sigma_2
\end{align*}
\]

\[
\begin{align*}
\langle \text{while } b \text{ do } c, \sigma_2 \rangle \Downarrow \sigma' & \\
\hline
\langle \text{while } b \text{ do } c, \sigma \rangle \Downarrow \sigma'
\end{align*}
\]
Rule #6: While-loop

Inference Rule for while-loop

\[
\frac{\langle \text{if } b \text{ then } (c; \text{while } b \text{ do } c) \text{ else skip}, \sigma \rangle \Downarrow \sigma'}{\langle \text{while } b \text{ do } c, \sigma \rangle \Downarrow \sigma'} \tag{6}
\]
Rule #6: While-loop

This single rule suffices because with it we can derive:

\[
\begin{align*}
\langle b, \sigma \rangle \Downarrow F & \quad \langle \text{skip}, \sigma \rangle \Downarrow \sigma \\
\langle \text{if } b \text{ then } (c; \text{while } b \text{ do } c) \text{ else skip}, \sigma \rangle & \Downarrow \sigma
\end{align*}
\]

and

\[
\begin{align*}
\langle b, \sigma \rangle \Downarrow T & \quad \langle c; \text{while } b \text{ do } c, \sigma \rangle \Downarrow \sigma' \\
\langle \text{if } b \text{ then } (c; \text{while } b \text{ do } c) \text{ else skip}, \sigma \rangle & \Downarrow \sigma'
\end{align*}
\]
Other Rules

- Also need inference rules for arithmetic and boolean judgments
- See reference section of Assignment #2 for full list
- Mostly “obvious” but I’ll mention a few
Symbols vs. Mathematical Operators

Inference Rule for addition

\[
\frac{\langle a_1, \sigma \rangle \downarrow n_1 \quad \langle a_2, \sigma \rangle \downarrow n_2}{\langle a_1 + a_2, \sigma \rangle \downarrow n_1 + n_2} \quad (15)
\]

Recall: “+” is a symbol from the input stream (no mathematical significance), whereas “+” is the mathematical operator for 31-bit modular integer addition.
Reading the Store

To get variable values, we simply use σ as a function.

Inference Rule for variable-read

$$\langle v, \sigma \rangle \Downarrow \sigma(v) \quad ^{(14)}$$

- Rules with no premises are called **axioms**.
- When writing axioms, feel free to omit the fraction line.
Comprehending Inference Rules

Inference Rule for \(c_1 ; c_2 \)

\[
\begin{align*}
\langle c_1, \sigma \rangle \downarrow \sigma_2 & \quad \langle c_2, \sigma_2 \rangle \downarrow \sigma' \\
\hline
\langle c_1 ; c_2, \sigma \rangle \downarrow \sigma' \quad (2)
\end{align*}
\]

- Two ways to understand each inference rule:
 1. Implementation recipe: "To compute \(c_1 ; c_2 \) on \(\sigma \), first (recursively) compute \(c_1 \) on \(\sigma \) to get \(\sigma_2 \), then (recursively) compute \(c_2 \) on \(\sigma_2 \) to get \(\sigma' \)."
 2. Logical specification: "To prove that \(c_1 ; c_2 \) on \(\sigma \) converges to \(\sigma' \), it suffices to prove \(c_1 \) on \(\sigma \) converges to some \(\sigma_2 \), and \(c_2 \) on \(\sigma_2 \) converges to \(\sigma' \)."

- Big hint: Reading each rule as an implementation recipe essentially solves Assignment #2 for you. Your solution should be a nearly verbatim translation from the rules to code.

- Spanning the semantic gap
 - Rules are definitions, not theorems. So if you get them "wrong", there’s no proof of wrongness. You’ve merely defined a really strange language.
 - Functional languages minimize the chance for error when mapping the math to code.