Complete Partial Orders

CS 6371: Advanced Programming Languages

February 15, 2024

The denotational semantics of loops is part of a more general mathematical theory of complete partial orders and continuous functions. Some of the basics of that theory are presented below, culminating in the Knaster-Tarski Fixed-Point Theorem. We use the Fixed-Point Theorem to prove that our denotational definition of while loops is a well-formed mathematical definition and constitutes the least fixed point of the functional Γ. We begin with important definitions.

Definition: A partial order (p.o.) is a set P on which there is a binary relation \sqsubseteq which is
(i) reflexive: $\forall p \in P . p \sqsubseteq p$,
(ii) transitive: $\forall p, q, r \in P .(p \sqsubseteq q) \wedge(q \sqsubseteq r) \Longrightarrow(p \sqsubseteq r)$, and
(iii) antisymmetric: $\forall p, q \in P .(p \sqsubseteq q) \wedge(q \sqsubseteq p) \Longrightarrow(p=q)$.

Definition: A p.o. (P, \sqsubseteq) has a bottom element \perp_{P} iff there exists an element $\perp_{P} \in P$ such that for all $p \in P, \perp_{P} \sqsubseteq p$.

Observe that $(\Sigma \rightharpoonup \Sigma, \subseteq)$ is a partial order because the subset relation \subseteq is reflexive, transitive, and antisymmetric. The empty set $\}$ (i.e., the partial function that is undefined for all inputs) is a bottom element of this partial order because the empty set is a subset of every set.

Definition: We say $p \in P$ is an upper bound of a subset $X \subseteq P$ iff $\forall q \in X . q \sqsubseteq p$.
Note that not every set of partial functions has an upper bound. For example, if $f(\sigma) \neq g(\sigma)$, then the set $\{f, g\}$ has no upper bound because there is no function h such that $f \subseteq h$ and $g \subseteq h$. However, for any two partial functions such that $f \subseteq g, g$ is an upper bound of $\{f, g\}$.

Definition: We say p is a least upper bound of X, written $p=\bigsqcup X$, if p is an upper bound of X and $p \sqsubseteq q$ for all upper bounds q of X. We also denote the least upper bound of two elements $p, q \in P$ as $p \sqcup q$.

In the above example, g is also a least upper bound for $\{f, g\}$ because $g=f \cup g$.
Definition: An ω-chain of a partial order (P, \sqsubseteq) is an infinite sequence $p_{0}, p_{1}, \ldots \in P$ such that $p_{0} \sqsubseteq p_{1} \sqsubseteq \cdots$.

Recall that we proved in class that $\perp \subseteq \Gamma(\perp) \subseteq \Gamma^{2}(\perp) \subseteq \cdots$ is a family of nested subsets. Therefore, $\perp, \Gamma(\perp), \Gamma^{2}(\perp), \ldots$ is an ω-chain for $(\Sigma \rightharpoonup \Sigma, \subseteq)$.

Definition: A partial order (P, \sqsubseteq) is a complete partial order (cpo) iff every ω-chain $p_{0}, p_{1}, \ldots \in P$ has a least upper bound $\bigsqcup_{i \geq 0} p_{i} \in P$.

Observe that $(\Sigma \rightharpoonup \Sigma, \subseteq)$ is a cpo because for every ω-chain, the infinite union of all partial functions in the chain is also a partial function in $\Sigma \rightharpoonup \Sigma$. That infinite union is a least upper bound of the chain. For example, $\bigcup_{i \geq 0} \Gamma^{i}(\perp)$ is a least upper bound for the chain $\perp, \Gamma(\perp), \Gamma^{2}(\perp), \ldots \in \Sigma \rightharpoonup \Sigma$.

Definition: A function $f: P \rightarrow P$ is monotonic iff for all $p, q \in P, p \sqsubseteq q \Longrightarrow f(p) \sqsubseteq f(q)$.
Theorem. Functional Γ is monotonic.
The proof is simple, and is left as an exercise to the reader.
Definition: A function $f: P \rightarrow P$ is continuous iff it is monotonic and for all ω-chains $p_{0}, p_{1}, \ldots \in P$, we have

$$
\bigsqcup_{i \geq 0} f\left(p_{i}\right)=f\left(\bigsqcup_{i \geq 0} p_{i}\right)
$$

Theorem. Functional Γ is continuous.
Proof. Let $p_{0}, p_{1}, p_{2}, \ldots \in \Sigma \rightharpoonup \Sigma$ be an arbitrary ω-chain in cpo $(\Sigma \rightharpoonup \Sigma, \subseteq)$. The proof that Γ is continuous consists of two parts: First we prove that if $\left(\sigma, \sigma^{\prime}\right) \in \bigcup_{i \geq 0} \Gamma\left(p_{i}\right)$ then $\left(\sigma, \sigma^{\prime}\right) \in \Gamma\left(\bigcup_{i \geq 0} p_{i}\right)$. This proves that $\bigcup_{i \geq 0} \Gamma\left(p_{i}\right) \subseteq \Gamma\left(\bigcup_{i \geq 0} p_{i}\right)$. Next we prove that if $\left(\sigma, \sigma^{\prime}\right) \in \Gamma\left(\bigcup_{i \geq 0} p_{i}\right)$ then $\left(\sigma, \sigma^{\prime}\right) \in \bigcup_{i \geq 0} \Gamma\left(p_{i}\right)$. This proves that $\bigcup_{i \geq 0} \Gamma\left(p_{i}\right) \supseteq \Gamma\left(\bigcup_{i \geq 0} p_{i}\right)$. We conclude therefore that $\bigcup_{i \geq 0} \Gamma\left(p_{i}\right)=\Gamma\left(\bigcup_{i \geq 0} p_{i}\right)$.

Proof of \subseteq direction: Let $\left(\sigma, \sigma^{\prime}\right) \in \bigcup_{i \geq 0} \Gamma\left(p_{i}\right)$ be given. Thus, there exists $n \geq 0$ such that $\left(\sigma, \sigma^{\prime}\right) \in \Gamma\left(p_{n}\right)$. Since $p_{n} \subseteq \bigcup_{i \geq 0} p_{i}$, it follows from the monotonicity of Γ that $\Gamma\left(p_{n}\right) \subseteq$ $\Gamma\left(\bigcup_{i \geq 0} p_{i}\right)$. Therefore $\left(\sigma, \sigma^{\prime}\right) \in \Gamma\left(\bigcup_{i \geq 0} p_{i}\right)$.

Proof of \supseteq direction: Now instead let $\left(\sigma, \sigma^{\prime}\right) \in \Gamma\left(\bigcup_{i \geq 0} p_{i}\right)$ be given. From the definition of Γ, we know there are two possible cases:

Case 1: If $\mathcal{B} \llbracket b \rrbracket \sigma=F$ then $\sigma^{\prime}=\sigma$. Since $\{(\sigma, \sigma) \mid \mathcal{B} \llbracket b \rrbracket \sigma=F\}$ is a subset of $\Gamma(x)$ for every set x, it follows that $\left(\sigma, \sigma^{\prime}\right) \in \bigcup_{i \geq 0} \Gamma\left(p_{i}\right)$.
Case 2: If $\mathcal{B} \llbracket b \rrbracket \sigma=T$ then $\sigma^{\prime}=\left(\bigcup_{i \geq 0} p_{i}\right)(\mathcal{C} \llbracket c \rrbracket \sigma)$. Thus, $\left(\mathcal{C} \llbracket c \rrbracket \sigma, \sigma^{\prime}\right) \in \bigcup_{i \geq 0} p_{i}$, so there exists $n \geq 0$ such that $\left(\mathcal{C} \llbracket c \rrbracket \sigma, \sigma^{\prime}\right) \in \bar{p}_{n}$. Since $\mathcal{B} \llbracket b \rrbracket \sigma=T$, it follows from the definition of Γ that $\left(\sigma, \sigma^{\prime}\right) \in \Gamma\left(p_{n}\right)$. We conclude that $\left(\sigma, \sigma^{\prime}\right) \in \bigcup_{i \geq 0} \Gamma\left(p_{i}\right)$.

Definition: Let $f: P \rightarrow P$ be a continuous function on a cpo P. A fixed point of f is an element $p \in P$ such that $f(p)=p$.

Theorem (Knaster-Tarski Fixed-Point Theorem): Let $f: P \rightarrow P$ be a continuous function on a cpo P with bottom \perp. Then $\bigsqcup_{i \geq 0} f^{i}(\perp)$ is a least fixed point of f.

From the fixed-point theorem we conclude that $\bigcup_{i \geq 0} \Gamma^{i}(\perp)$ is a least fixed point of Γ.

