
Lecture #20: Curry-Howard Isomorphism

CS 6371: Advanced Programming Languages

April 9, 2024

There is a deep relationship between computer programs and mathematical proofs often dubbed
the Curry-Howard isomorphism. In the 1950s and 60s, as computer scientists wrestled with
the question of how one might develop provably correct software, mathematicians H. Curry and
W.A. Howard wrote a series of papers observing that type signatures in software are actually
theorems, and computer programs are actually proofs of those theorems. This is has become a very
important observation for modern high assurance software creation because it allows automated
theorem proving systems to specify program correctness properties as types, and check program
correctness by interpreting programs as proofs of those theorems.

The Curry-Howard Isomorphism can be seen in a simple form by studying the type inhabitation
problem for System F, which we define as follows:

Definition (Inhabitation). A System F type τ is said to be inhabited if there exists a System F
expression e such that ⊥ ` e : τ is derivable.

Problem (Type Inhabitation). Given a System F type τ , decide whether τ is inhabited. If it is,
give an example of a System F expression e having type τ .

We will solve this problem for the System F type system presented in class:

τ ::= int | bool | unit | τ1 → τ2 | τ1 × τ2 | τ1 + τ2 | ∀α.τ | α

We will additionally write type void as an alias for ∀α.α.
To decide inhabitation of τ , it suffices to transform τ into a first-order propositional logic

sentence I(τ) using the following algorithm:

I(int) = I(bool) = I(unit) = T (1)

I(τ1 → τ2) = I(τ1)⇒ I(τ2) (2)

I(τ1 × τ2) = I(τ1) ∧ I(τ2) (3)

I(τ1 + τ2) = I(τ1) ∨ I(τ2) (4)

I(∀α.τ) =

A

α . I(τ) (5)

I(α) = α (6)

Equations 5 and 6 change type quantifiers ∀ and type variables α into propositional quantifiers

A

and propositional (boolean-valued) variables α. Type τ is inhabited if and only if I(τ) is a provably
true statement of intuitionistic1 propositional logic.

1The form of logic taught in most discrete math courses is classical propositional logic, which differs from
intuitionistic propositional logic in how implication ⇒ is defined. However, I will not give you any problems in this
course that require you to know the difference between intuitionistic and classical logic, so you can treat these as
classical logic formulae for the purposes of this course.

1

Exercise 1. Solve the type inhabitation problem for the following type:

τ =
(
∀α.(unit → ((α→ int)× (int → α)))

)
→

(
∀β.∀η.(β + η)

)
Solution. Applying algorithm I to τ yields the following propositional sentence:(A

α.(T ⇒ ((α⇒ T) ∧ (T ⇒ α)))
)
⇒

(A

β.

A

η.(β ∨ η)
)

(7)

At a high level, the sentence is an implication, which is true in classical logic if the antecedent
(left-hand side) is false or the consequent (right-hand side) is true. Antecedent

A

α.(T ⇒ ((α ⇒
T) ∧ (T ⇒ α))) is false because there exists a boolean value for α that falsifies it. In particular,
when α = F we have

T ⇒ ((F ⇒ T) ∧ (T ⇒ F))

T ⇒ (T ∧ F)

T ⇒ F

F

The consequent is false too; for example, when β = η = F we have F ∨ F = F . Therefore
proposition 7 has the form F ⇒ F , which is true, so it is inhabited. In general you can decide
the truth of any first-order propositional sentence by carrying out the algorithm you developed for
Assignment 1.

Since τ is inhabited, we must now search for an expression that has type τ . The easiest way to
proceed is to imagine the type as an abstract syntax tree and work from the top down. Type τ
has the form τ1 → τ2 where τ1 = ∀α.(unit → ((α→ int)× (int → α))) and τ2 = ∀β.∀η.(β + η). To
construct an expression having type τ1 → τ2, it suffices to write a function of the form

λx:τ1 . e2

where e2 has type τ2. Note that we never inhabit the type on the left of an arrow; that’s
the function’s parameter type, and it’s given to you for free. Inhabiting a function (arrow) type
requires constructing a function body that inhabits the type τ2 on the right of the arrow. Type τ2
has the form ∀β.τ3 where τ3 = ∀η.(β + η). To construct an expression having type ∀β.τ3, it suffices
to write a polymorphic function of the form Λβ.e3 where e3 has type τ3:

λx :
(
∀α.(unit → ((α→ int)× (int → α)))

)
. Λβ . e3

Repeating this one more time, we have an expression of the form

λx :
(
∀α.(unit → ((α→ int)× (int → α)))

)
. Λβ . Λη . e4 (8)

where e4 needs to have type β + η.
At this point we have two choices: A type of the form τ5 + τ6 can be inhabited by either a

first-injection inτ5+τ6
1 e5 (where e5 has type τ5) or second-injection inτ5+τ6

2 e6 (where e6 has type τ6).
If there is an obvious way to inhabit τ5 or τ6, then use in1 or in2, respectively. But in this case
there’s no obvious way to inhabit either τ5 = β or τ6 = η, which are both type variables that denote
aribtrary (unknown) types. The solution is to leverage argument x. We know from our analysis of
proposition I(τ) that x’s type is uninhabited. This means that x is extremely powerful. It is an

2

argument type that cannot ever really exist, making the function we are constructing uncallable. If
it ever did exist, one could do impossible things with it, such as inhabiting types that we know are
actually uninhabited.

To use x, we must destruct (i.e., “use”) an expression with type of the form ∀α.τ7, where
τ7 = unit → ((α → int) × (int → α)). Destructing a ∀-typed expression entails polymorphic
instantiation: x[τ ′], where τ ′ can be any type we wish. This yields an expression of the form of τ7
but with all α’s replaced with τ ′. Since we’re seeking an expression of the form β + η, let’s choose
τ ′ = β + η:

x[β + η]

This expression has type unit → (((β + η)→ int)× (int → (β + η))). An expression with a type
of the form unit → τ8 is a function that expects a unit-typed argument, so to destruct it we must
apply it to the unit value ():

x[β + η]()

This new expression has type ((β + η)→ int)× (int → (β + η)), which is a pair-type. If we apply
π1 to it, we get an expression with the type on the left of the ×; and if we apply π2 to it, we get an
expression with the type on the right of the ×. The type on the left of the × is useless to us, but
the one on the right is a function that returns something of the type we want; so let’s use π2:

π2(x[β + η]())

This has type int → (β + η), which is a function expecting an integer argument. To destruct it,
apply it to any integer argument:

π2(x[β + η]())3

This has type β + η, which is the type we’ve been seeking. Plugging it into expression 8, we arrive
at our final answer:

λx :
(
∀α.(unit → ((α→ int)× (int → α)))

)
. Λβ . Λη . (π2(x[β + η]())3)

This expression has type τ , proving that τ is inhabited.

It is helpful to generalize the lessons learned from this exercise to build a table of how to
construct and destruct expressions of various types:

Type operator Construct using... Destruct using...

int 3 –
bool true –
unit () –
→ λ e1e2 (application)
× (e1, e2) π1 or π2
+ in1 or in2 case..of
∀ Λ e[τ]

To inhabit a type, start by using the construct column recursively until you start to get stuck.
At any stuck points, look at the set of in-scope variables and their types to see whether you can
destruct any of them to make progress.

3

To help you practice, here are two more sample exercises and their solutions:

Exercise 2. Inhabit the following type if possible: ∀α.∀β.∀η.((α× β)→ η)→ (α→ β → η)

Solution. Applying algorithm I yields the following propositional sentence:

A

α.

A

β.

A

η.((α ∧ β)⇒ η)⇒ (α⇒ β ⇒ η)

Remember that → and ⇒ are always right-associative; so α → β → η is α → (β → η) and
α⇒ β ⇒ η is α⇒ (β ⇒ η). With that in mind, we see that the sentence is true for all α, β, and
η. You can either establish this using a truth table, or you can interpret it as a theorem: It says
that if α and β together imply η, then α implies that β implies η, which is true. (It’s a statement
of currying from functional programming!) Here is an inhabitant of the type:

Λα . Λβ . Λη . λx:(α× β)→ η . λy:α . λz:β . x(y, z)

Exercise 3. Inhabit the following type if possible: ∀α.((∀β.β → (α+ β))→ void).

Solution. Applying algorithm I yields the following propositional sentence:

A

α.((

A

β.β ⇒ (α ∨ β))⇒ (

A

α.α))

This sentence contains two different propositional variables both named α, which I’ll call α1 and
α2 respectively:

A

α1.((

A

β.β ⇒ (α1 ∨ β))⇒ (

A

α2.α2))

This sentence is false because α1 = T falsifies it. In particular, when α1 = T , antecedent

A

β.β ⇒ (T ∨ β) is true yet consequent

A

α2.α2 is false. (It is falsified by α2 = F .) Since the
sentence is false, the type is uninhabited.

Remember, the point to solving these type inhabitation problems is to understand why converting
them to propositional sentences actually works, not to memorize a list of tricks for solving them
(which probably won’t generalize to new problems and won’t help you understand the Curry-Howard
isomorphism). When practicing, you should therefore try to understand why propositional sentence
I(τ) is true, and then leverage that understanding to guide your search for an inhabitant of τ . Such
an approach will make future problems quite easy to solve and gain you an appreciation for the
connection between computer science and abstract logic. Solving type inhabitation exercises in this
way shows your mastery of several skills:

• comprehension of the typing rules for System F,

• ability to write syntactically correct System F expressions,

• understanding of how type operators relate to logical operators, and

• ability to relate propositional logical reasoning to program correctness.

4

