
Lecture 1: Introduction to OCaml

CS 4301/6371: Advanced Programming Languages
January 18, 2024

#1+1;;
- : int = 2
#1+2*3;;
- : int = 7

OCaml has a built-in type “int” that supports the
usual binary operators.

#let add x y = x+y;;
add : int -> int -> int = <fun>

Use “let” to define a function. OCaml responds by
telling you the “type” of the new function you’ve
created. This one is a function from two integers
to an integer.

#add 3 4;;
- : int = 7

Instead of applying a function with syntax “f(x,y)”,
OCaml uses syntax “(f x y)”.

#let hypotenuse x y =
 let xsquared = x*x in
 let ysquared = y*y in
 (xsquared + ysquared);;
hypotenuse : int -> int -> int = <fun>

“let … in …” can be used within a function
definition to declare variables and assign them
values. Note that a variable’s definition never
changes! It is assigned exactly once.

#if 3<4 then (add 1 2) else (add 5 6);;
- : int = 3

In OCaml, “if…then…else…” is an expression not a
command. It’s like “… ? … : …” in C or Java.

#let test x = if x<4 then "yes" else 0;;
Toplevel input:
>let test x = if x<4 then "yes" else 0;;
> ^
This expression has type int,
but is used with type string.

The two branches of the “if” must return values of
the same type. The example produces an error
because one branch returns a string while the
other returns an int.

#true;;
- : bool = true
#false;;
- : bool = false
#true && false;;
- : bool = false
#false || false;;
- : bool = false

In addition to integers and strings, OCaml also has
booleans. Conjunction is “&&” and disjunction is
“||” just like in C or Java. Unlike C, booleans and
integers are not interchangeable!

#"foo" ^ "bar";;
- : string = "foobar"

The “^” operator performs string concatenation.

#let rec factorial n =
 if n<=1 then 1 else n*(factorial (n-1));;
factorial : int -> int = <fun>

A “recursive function” calls itself. To define a
recursive function, put “rec” after the “let”.

#type color = Red | Blue | Dark of color |
Light of color;;
Type color defined.
#Red;;
- : color = Red
#Dark Blue;;
- : color = Dark Blue
#Light (Dark Blue);;
- : color = Light (Dark Blue)

In OCaml you can define your own types with the
“type” directive. In this type, “Red”, “Blue”,
“Dark”, and “Light” are the “type constructors” for
type “color”.

#Light Dark Blue;;
Toplevel input:
>Light Dark Blue;;
> ^^^^
This expression has type color -> color,
but is used with type color.

Notice that I used parentheses in the last example.
If I hadn’t, an error would have resulted. This is
because type constructors associate left by
default.

#let isred c =
 (match c with Red -> true | x -> false);;
isred : color -> bool = <fun>
#let isdark c =
 (match c with Dark x -> true
 | x -> false);;
#let rec isred c =
 (match c with Red -> true
 | Dark x -> isred x
 | Light x -> isred x
 | x -> false);;
isred : color -> bool = <fun>

The “match … with …” operator allows you to test
whether a value matches a type constructor. The
left side of each -> is called a “pattern”. Patterns
can contain variables. If the pattern matches, the
variables become bound to the respective parts of
the value being tested and may be used with the
right-hand side of the ->.

#let rec isred c =
 (match c with Red -> true
 | Dark x -> isred x
 | Light x -> isred x
 | _ -> false);;
isred : color -> bool = <fun>
#isred (Dark Red);;
- : bool = true

Anywhere you would normally put a variable in a
pattern you can instead put an underscore.
Underscore matches to anything (just like a
variable) except that it doesn’t bind any variable to
the matching sub-expression.

#let mylist = [4; 8; 15; 16; 23];;
mylist : int list = [4; 8; 15; 16; 23]
#0::mylist;;
- : int list = [0; 4; 8; 15; 16; 23]
#0::1::mylist;;
- : int list = [0; 1; 4; 8; 15; 16; 23]

OCaml has a list type. Lists are enclosed in
brackets and elements are separated by
semicolons. The :: operator (called “cons”) inserts
an element onto the head of a list.

>["foo"; 3];;
>^^^^^^^^^^
This expression has type int list,
but is used with type string list.

All elements of a list must have the same type.

#let rec length s =
 (match s with
 [] -> 0
 | x::t -> (length t)+1);;
length : 'a list -> int = <fun>
#let rec addpairs s =
 (match s with
 [] -> []
 | x::[] -> [x]
 | x::y::t -> (x+y)::(addpairs t));;
addpairs : int list -> int list = <fun>

You can use “match” to match lists. The pattern
“[]” matches the empty list. Pattern “a::b”
matches a list with at least one element. Pattern
“a::b::c” matches a list with at least two elements,
etc.

#("foo",3);;
- : string * int = "foo", 3

A “tuple” is a fixed-length collection of values. The
members of the collection need not have the same
type. This is an example of a string-int pair.

#let math x y = (x+y, x-y, x*y);;
math : int -> int -> int * int * int =
<fun>

Tuples are useful when you want to return more
than one value from a function.

#let (sum,diff,prod) = (math 2 3);;
sum : int = 5
diff : int = -1
prod : int = 6
#let add (x,y) = x+y;;
add : int * int -> int = <fun>
#match (math 2 3) with (sum,_,_) -> sum;;
- : int = 5

You can “project” (i.e., pull apart) a tuple using
“let” or “match”.

#();;
- : unit = ()
#let main () = "hello world";;
main : unit -> string = <fun>
#main ();;
- : string = "hello world"

The tuple with zero elements is called “unit”. It is
useful when you don’t want to pass anything to a
function.

