Lecture 2: OCaml Functions

CS 4301/6371: Advanced Programming Languages
January 23, 2024

#let solve w x y z =
let prod a b = a*b in
(prod w x)+(prod y z);;

solve int -> int -> int -> int -> int =
<fun>

#prod; ;

Toplevel input:

>prod; ;

SAAAA

The value identifier prod is unbound.

Top-level and nested “let” operations are
different: A top-level “let” defines a global
variable (usually a function). It must be
followed by “;;”. Aninner “let” declares a local
variable that can be used only within a
subexpression. It must be followed by “in”.
When variable names conflict, the innermost

declaration “shadows” the others.

#type foo = int;;

#type foo = bool;;

#type foo = string;;

#type foo = int list;;
#type foo = int * string;;

User-defined types can be primitive types (int,
bool, string, etc.), or they can be lists, tuples, or
variants that include any of the above.

#type btree = BNil

| BNode of (int*btree*btree);;
#type ntree = NNil

| NNode of ((int*ntree) list);;
#let identity x = x;; When possible, OCaml gives functions a
identity : 'a -> 'a = <fun> . . .
#identity 3;; polymorphic type. Polymorphic functions can
- : int = 3 be applied to arguments of any type.
#identity "foo";;
- : string = "foo"
#let apply £ x = (£ x)/; However, there must be some consistent way
apply ('a -=> 'b) -> 'a -> 'b = <fun> . . .
#let add (x,y) = xty;; to instantiate each type variable. Here we see
add : int * int -> int = <fun> an example where no such instantiation exists
#app}ytaddg) (1,2):7 and the compiler therefore rejects the code.
- ¢ 1n =

#apply add "foo";;

Toplevel input:

>apply add "foo";;

> AANAANAAN

This expression has type string,
but is used with type int * int.

#let rec map £ 1 =

(match 1 with

[1 > [1

| x::t => (f x)::
map: ('a -> 'b) -> 'a list ->
#let addone n = n+l;;
addone int -> int = <fun>
#map addone [23;42;641;;
- : int list = [24; 43; 65]

(map £ t));;
'b list = <fun>

Lists can also have polymorphic type.

#map (fun n -> n+l) [23;42;64];;
- : int list = [24; 43; 65]
#(fun n -> n+l);;

- : int -> int = <fun>

#(fun n -> n+l) 2;;

- : int = 3

Use “fun” to create anonymous (i.e., unnamed)
functions. “fun ... ->..."” is the same as if you
typed “let foo ... = ...;;” and then used “foo”.

#let compose f g = (fun x -> f (g x));;

Using anonymous functions, you can build and

compose ('a=>'b)->('c->'a)->'c->'b = <fun> . .
#let cool = (compose (fun n -> n+l) return functions as values at runtime.
(fun n -> n*2));;
cool int -> int = <fun>
#cool 1;;
- : int = 3
#let addx x = (fun y -> x+y);; An anonymous function may refer to variables
addx int -> int -> int = <fun>

#addx 1;;
- : int -> int = <fun>
#(addx 1) 2;;

declared in outer scopes.

- : int = 3

#addx 1 2;;

- : int = 3

#let add = (fun x —> (fun y => x+y));; Actually “let foo x y = ...” is just an abbreviation
add : int -> int -> int = <fun> “ ” .
$add 1 2:: for “let foo = (fun x -> (funy ->...))". If you give
- : int = 3 such a function fewer arguments than it

#add 1;; expects, it yields a function from the remaining

- : int -> int = <fun>

#let add x y = x+y;;

add : int -> int -> int = <fun>
#map (add 3) [1;2:;31;:

- : int list = [4; 5; 6]

arguments to the original value. Functions
written this way are called “curried functions”.
Applying fewer arguments is called “partial
evaluation”.

#let rec map2 £ 11 12 =

(match (11,12) with

([1,x) => x

I (x,[]) > x

| (hl::tl, h2::t2) ->
(f hl h2):: (map2 £ tl t2));;
('a -=> 'a -> 'a) -> 'a list -> 'a
list -> 'a list = <fun>
#map2 add [1;2;3] [10;20;30];;
- : int 1list = [11; 22; 33]
#map2 (+) [1;2;3] [10;20;30];;
- : int list = [11; 22; 33]

map2

Binary operators can be used in prefix rather
than infix syntax by enclosing the operator in
parentheses. This allows you to pass a binary
operator as a function argument.

#let rec addpairs 1 =
(match 1 with

X::y::t -> (add x)::(addpairs t)
I [1 > 1]
| [x] => [x]):;
Toplevel input:
> [[x] => [x]):7

> AANA

This expression has type int list,
but is used with type (int -> int) list.
let rec addpairs int list =
(match 1 with
Xiiy:s:it —>
(add x) ::
[1 => 1]
[Ix] => [x]);;
Toplevel input:
> X::y::t -> (add x)::(addpairs t)

> AAAAAAAAAAAN

(l:int 1list)

(addpairs t)

This expression has type int list but is
here used with type
(int -> int) 1list

Typing annotations are almost never necessary,
but they can help you debug.

#let intident (x:int) = x;i; You can also use a typing annotation to restrict
intident : int -> int = <fun> . .

the type of a function that would otherwise be

polymorphic.
#let apply (f:'inp->'out) (x:'inp) = (f x)/; | Typing annotations may contain type variables.
apply : ('a -> 'b) -> 'a -> 'b = <fun>
#let main () = (print_string "hello\n"; A ;-separated sequence of expressions is
print_int 3; print newline (); 12);; luated i d The last .
main T unit -> int = <fun> evaluated in order. The last expression is
#main () ;; returned as the result of the sequence
hello expression. Use sequence expressions with
3 print statements to debug
- : int = 12 :
#"foo™ = "foo";; OCaml’s equality operator (=) tests structural
- : bool = true litv. Thi that it with
#(3,"Fo0") = (3,"foo"):; fequa ity. |s‘means a You can use |' wi
- : bool = true ints, bools, strings, tuples, lists, and variants.
#11:;2;3]1 = [1;2;31;;
- : bool = true
#Dark (Dark Red) = Dark (Dark Red);;
- : bool = true

