
1

Lecture 2: OCaml Functions

CS 4301/6371: Advanced Programming Languages
January 23, 2024

#let solve w x y z =
 let prod a b = a*b in
 (prod w x)+(prod y z);;
solve : int -> int -> int -> int -> int =
<fun>
#prod;;
Toplevel input:
>prod;;
>^^^^
The value identifier prod is unbound.

Top-level and nested “let” operations are
different: A top-level “let” defines a global
variable (usually a function). It must be
followed by “;;”. An inner “let” declares a local
variable that can be used only within a
subexpression. It must be followed by “in”.
When variable names conflict, the innermost
declaration “shadows” the others.

#type foo = int;;
#type foo = bool;;
#type foo = string;;
#type foo = int list;;
#type foo = int * string;;
#type btree = BNil
 | BNode of (int*btree*btree);;
#type ntree = NNil
 | NNode of ((int*ntree) list);;

User-defined types can be primitive types (int,
bool, string, etc.), or they can be lists, tuples, or
variants that include any of the above.

#let identity x = x;;
identity : 'a -> 'a = <fun>
#identity 3;;
- : int = 3
#identity "foo";;
- : string = "foo"

When possible, OCaml gives functions a
polymorphic type. Polymorphic functions can
be applied to arguments of any type.

#let apply f x = (f x);;
apply : ('a -> 'b) -> 'a -> 'b = <fun>
#let add (x,y) = x+y;;
add : int * int -> int = <fun>
#apply add (1,2);;
- : int = 3
#apply add "foo";;
Toplevel input:
>apply add "foo";;
> ^^^^^
This expression has type string,
but is used with type int * int.

However, there must be some consistent way
to instantiate each type variable. Here we see
an example where no such instantiation exists
and the compiler therefore rejects the code.

#let rec map f l =
 (match l with
 [] -> []
 | x::t -> (f x)::(map f t));;
map:('a -> 'b) -> 'a list -> 'b list = <fun>
#let addone n = n+1;;
addone : int -> int = <fun>
#map addone [23;42;64];;
- : int list = [24; 43; 65]

Lists can also have polymorphic type.

#map (fun n -> n+1) [23;42;64];;
- : int list = [24; 43; 65]
#(fun n -> n+1);;
- : int -> int = <fun>
#(fun n -> n+1) 2;;
- : int = 3

Use “fun” to create anonymous (i.e., unnamed)
functions. “fun … -> …” is the same as if you
typed “let foo … = …;;” and then used “foo”.

2

#let compose f g = (fun x -> f (g x));;
compose : ('a->'b)->('c->'a)->'c->'b = <fun>
#let cool = (compose (fun n -> n+1)
 (fun n -> n*2));;
cool : int -> int = <fun>
#cool 1;;
- : int = 3

Using anonymous functions, you can build and
return functions as values at runtime.

#let addx x = (fun y -> x+y);;
addx : int -> int -> int = <fun>
#addx 1;;
- : int -> int = <fun>
#(addx 1) 2;;
- : int = 3
#addx 1 2;;
- : int = 3

An anonymous function may refer to variables
declared in outer scopes.

#let add = (fun x -> (fun y -> x+y));;
add : int -> int -> int = <fun>
#add 1 2;;
- : int = 3
#add 1;;
- : int -> int = <fun>
#let add x y = x+y;;
add : int -> int -> int = <fun>
#map (add 3) [1;2;3];;
- : int list = [4; 5; 6]

Actually “let foo x y = …” is just an abbreviation
for “let foo = (fun x -> (fun y -> …))”. If you give
such a function fewer arguments than it
expects, it yields a function from the remaining
arguments to the original value. Functions
written this way are called “curried functions”.
Applying fewer arguments is called “partial
evaluation”.

#let rec map2 f l1 l2 =
 (match (l1,l2) with
 ([],x) -> x
 | (x,[]) -> x
 | (h1::t1, h2::t2) ->
 (f h1 h2)::(map2 f t1 t2));;
map2 : ('a -> 'a -> 'a) -> 'a list -> 'a
list -> 'a list = <fun>
#map2 add [1;2;3] [10;20;30];;
- : int list = [11; 22; 33]
#map2 (+) [1;2;3] [10;20;30];;
- : int list = [11; 22; 33]

Binary operators can be used in prefix rather
than infix syntax by enclosing the operator in
parentheses. This allows you to pass a binary
operator as a function argument.

#let rec addpairs l =
 (match l with
 x::y::t -> (add x)::(addpairs t)
 | [] -> []
 | [x] -> [x]);;
Toplevel input:
> | [x] -> [x]);;
> ^^^
This expression has type int list,
but is used with type (int -> int) list.

let rec addpairs (l:int list) : int list =
 (match l with
 x::y::t ->
 (add x)::(addpairs t)
 | [] -> []
 | [x] -> [x]);;
Toplevel input:
> x::y::t -> (add x)::(addpairs t)
> ^^^^^^^^^^^^
This expression has type int list but is
here used with type
 (int -> int) list

Typing annotations are almost never necessary,
but they can help you debug.

3

#let intident (x:int) = x;;
intident : int -> int = <fun>

You can also use a typing annotation to restrict
the type of a function that would otherwise be
polymorphic.

#let apply (f:'inp->'out) (x:'inp) = (f x);;
apply : ('a -> 'b) -> 'a -> 'b = <fun>

Typing annotations may contain type variables.

#let main () = (print_string "hello\n";
print_int 3; print_newline (); 12);;
main : unit -> int = <fun>
#main ();;
hello
3
- : int = 12

A ;-separated sequence of expressions is
evaluated in order. The last expression is
returned as the result of the sequence
expression. Use sequence expressions with
print statements to debug.

#"foo" = "foo";;
- : bool = true
#(3,"foo") = (3,"foo");;
- : bool = true
#[1;2;3] = [1;2;3];;
- : bool = true
#Dark (Dark Red) = Dark (Dark Red);;
- : bool = true

OCaml’s equality operator (=) tests structural
equality. This means that you can use it with
ints, bools, strings, tuples, lists, and variants.

