
Operational Semantics
CS 6371: Advanced Programming Languages

Kevin W. Hamlen

January 30, 2024

Advanced Programming Languages

BNF Syntax

Formally Specifing Language Syntax

Let’s create a new language: Simple IMPerative Language (SIMPL)

Backus-Naur Form (BNF)
Invented by John Backus and Peter Naur (inventors of ALGOL-60 and later
FORTRAN)
Notation for expressing context-free grammars (CFGs)

Convention: Teletype font for symbols vs. mathematical font for
mathematical operators

+, -, and * are symbols from your keyboard that have no particular
mathematical meaning
+, −, and ∗ are the mathematical operators for addition, subtraction, and
multiplication
(To make things easier for our OCaml implementation, we will define them to
be 31-bit integer addition, subtraction, and multiplication operators, which is
how OCaml performs those operations natively.)

Syntax of SIMPL
commands c ::= skip | c1;c2 | v := a | if b then c1 else c2 | while b do c

boolean expressions b ::= true | false | a1 <= a2 | b1 && b2 | b1 || b2 | !b
arithmetic expressions a ::= n | v | a1 + a2 | a1 - a2 | a1 * a2

variable names v

integer constants n

Advanced Programming Languages

BNF Syntax

Syntax vs. Semantics

Syntactic definition imparts no meaning (semantics) of programs
Symbol “+” might not mean addition.
(Can you think of a language where it does not?)

Elements of CFGs (e.g., defined by BNF) are abstract syntax trees (ASTs)
Use parentheses to describe AST’s structure
Example: x := (x + 1) * 2;(skip;y := x)

:=

x *

+

x 1

2

;

;

skip :=

xy

Parser transforms symbol stream into AST
Uses various precedence and associativity rules to auto-insert parenths
I’ll assume you know how that works (use a parser generator or take
compilers/automata theory class).
When I write a program, it denotes an already-parsed AST.

Advanced Programming Languages

BNF Syntax

To Infinity (and Beyond)

CFG elements (e.g., programs) are finite but unbounded.
Finite: The number of nodes in the AST equals a natural number (not
infinity).
Unbounded: For every program c there exists a larger program c′.

The set of all programs is countably infinite.
Countably infinite = set has cardinality equal to the set of all natural numbers

But each individual program is finite.
An infinite-sized program is actually a syntax error, because the CFG has no
infinite-sized members.

Advanced Programming Languages

Large-step Operational Semantics

Operational Semantics

Operational semantics - mathematically define the meanings of programs in
terms of the operation of an abstract machine

Stores

A store (machine state) in SIMPL is a partial function from variable names to
integers:

Σ = v ⇀ Z
σ ∈ Σ

(Partial) functions can be written as sets of input-output pairs:
Example: σ = {(x, 8), (y,−10), (z, 0)}
Not every set of input-output pairs is a function though, so be careful.
Non-function: {(x, 8), (x, 10)}

Advanced Programming Languages

Large-step Operational Semantics

Configurations and Judgments

Configurations

A configuration is a command or expression paired with a store:

command configurations 〈c, σ〉
arithmetic configurations 〈a, σ〉
boolean configurations 〈b, σ〉

Judgments

A judgment declares that a configuration converges to a store or value:

command judgments 〈c, σ〉 ⇓ σ′ (σ′ ∈ Σ)

arithmetic judgments 〈a, σ〉 ⇓ n (n ∈ Z)

boolean judgments 〈b, σ〉 ⇓ p (p ∈ {T, F})

“Converges to” (⇓) informally means “terminates and returns a value of ...”

Advanced Programming Languages

Large-step Operational Semantics

Derivations

We now have formalisms for talking about program behaviors (judgments),
but we haven’t defined which judgments are “true”.

Insight: Judgments are like mathematical propositions, but for a new math
(computation).

How do we define “truth” in propositional logic? (Laws or Inference Rules)

Example: Law of Modus Ponens
p p⇒ q

(MP)
q

Each rule written as a “fraction” with zero or more hypotheses on top, and a
conclusion on the bottom
Free variables in rules are universally quantified
Rules can be nested to form tree-shaped derivations (proofs) of truth:

p p⇒ q
(MP)

q q ⇒ r
(MP)

r

Solution: We need logical axioms that define computations in SIMPL!

Advanced Programming Languages

Large-step Operational Semantics

Rule #1: Skip

Inference Rule (Axiom) for skip

(1)
〈skip, σ〉 ⇓ σ

no hypotheses = axiom

True for every σ (i.e., σ is universally quantified)

Advanced Programming Languages

Large-step Operational Semantics

Warning: Misnamed Variables

The following rule is completely different!

A different (wrong) rule for skip

(1)
〈skip, σ〉 ⇓ σ′

What’s the difference?

What does this rule effectively say skip does?

Advanced Programming Languages

Large-step Operational Semantics

Rule #2: Sequence

Inference Rule for ;

?
(2)

〈c1;c2, σ〉 ⇓ σ′

Advanced Programming Languages

Large-step Operational Semantics

Rule #2: Sequence

Inference Rule for ;

〈c1, σ〉 ⇓ σ2
(2)

〈c1;c2, σ〉 ⇓ σ′

Advanced Programming Languages

Large-step Operational Semantics

Rule #2: Sequence

Inference Rule for ;

〈c1, σ〉 ⇓ σ2 〈c2, σ2〉 ⇓ σ′
(2)

〈c1;c2, σ〉 ⇓ σ′

Advanced Programming Languages

Large-step Operational Semantics

Example Derivation

〈skip;(skip;skip), σ〉 ⇓ ?

Advanced Programming Languages

Large-step Operational Semantics

Example Derivation

〈skip, σ〉 ⇓ ?? 〈skip;skip, ??〉 ⇓ ?
(2)

〈skip;(skip;skip), σ〉 ⇓ ?

Advanced Programming Languages

Large-step Operational Semantics

Example Derivation

(1)
〈skip, σ〉 ⇓ σ 〈skip;skip, σ〉 ⇓ ?

(2)
〈skip;(skip;skip), σ〉 ⇓ ?

Advanced Programming Languages

Large-step Operational Semantics

Example Derivation

(1)
〈skip, σ〉 ⇓ σ

〈skip, σ〉 ⇓ ?? 〈skip, ??〉 ⇓ ?
(2)

〈skip;skip, σ〉 ⇓ ?
(2)

〈skip;(skip;skip), σ〉 ⇓ ?

Advanced Programming Languages

Large-step Operational Semantics

Example Derivation

(1)
〈skip, σ〉 ⇓ σ

(1)
〈skip, σ〉 ⇓ σ 〈skip, σ〉 ⇓ ?

(2)
〈skip;skip, σ〉 ⇓ ?

(2)
〈skip;(skip;skip), σ〉 ⇓ ?

Advanced Programming Languages

Large-step Operational Semantics

Example Derivation

(1)
〈skip, σ〉 ⇓ σ

(1)
〈skip, σ〉 ⇓ σ

(1)
〈skip, σ〉 ⇓ σ

(2)
〈skip;skip, σ〉 ⇓ σ

(2)
〈skip;(skip;skip), σ〉 ⇓ σ

Advanced Programming Languages

Large-step Operational Semantics

Building Derivations

(1)
〈skip, σ〉 ⇓ σ

(1)
〈skip, σ〉 ⇓ σ

(1)
〈skip, σ〉 ⇓ σ

(2)
〈skip;skip, σ〉 ⇓ σ

(2)
〈skip;(skip;skip), σ〉 ⇓ σ

Work bottom-up, left-to-right (usually).

Identify (by number) which rule you’re using to the right of the bar.

Instantiate rule variables consistently and uniformly at each rule use.
If σ = σ1 in this rule instance, then every σ appearing in the rule must be
replaced with σ1.
Treat rule literally, not what you expect/want it to say!

Derivations and infinity
No infinite-sized derivations! (Each derivation must have strictly finite
height.)
The set of all derivations is countably infinite.

Advanced Programming Languages

Large-step Operational Semantics

Rule #3: Assignment

Inference Rule for :=

(3)
〈v := a, σ〉 ⇓ ?

Advanced Programming Languages

Large-step Operational Semantics

Warning: Type-inconsistent Rules

First attempt at assignment rule:

Malformed (wrong) Rule for :=

(3)
〈v := a, σ〉 ⇓ σ[v 7→ a]

Notation (functional update):

f [x 7→ y] = (f − {(x, z) | (x, z) ∈ f}) ∪ {(x, y)}

But the rule above is not a mathematically sensible definition. Why?

Advanced Programming Languages

Large-step Operational Semantics

Rule #3: Assignment

Correct formulation of assignment rule:

Inference Rule for :=

〈a, σ〉 ⇓ n
(3)

〈v := a, σ〉 ⇓ σ[v 7→ n]

Notation (functional update):

f [x 7→ y] = (f − {(x, z) | (x, z) ∈ f}) ∪ {(x, y)}

Advanced Programming Languages

Large-step Operational Semantics

Rule #4: Conditional

Inference Rule for if-then-else

(4)
〈if b then c1 else c2, σ〉 ⇓ ?

Advanced Programming Languages

Large-step Operational Semantics

Rules #4–5: Conditional

Solution: Multiple rules per syntactic form are perfectly valid and often useful.

Inference Rules for if-then-else

〈b, σ〉 ⇓ T 〈c1, σ〉 ⇓ σ′
(4)

〈if b then c1 else c2, σ〉 ⇓ σ′

〈b, σ〉 ⇓ F 〈c2, σ〉 ⇓ σ′
(5)

〈if b then c1 else c2, σ〉 ⇓ σ′

Advanced Programming Languages

Large-step Operational Semantics

Rule #6: While-loop

Inference Rule for while-loop

〈while b do c, σ〉 ⇓ ?

This is a tough one.

Advanced Programming Languages

Large-step Operational Semantics

Rule #6: While-loop

The false part is easy, but what about the true part?

Inference Rules for while-loop

〈b, σ〉 ⇓ F
〈while b do c, σ〉 ⇓ σ
〈b, σ〉 ⇓ T ?

〈while b do c, σ〉 ⇓ ?

Advanced Programming Languages

Large-step Operational Semantics

Rule #6: While-loop

The false part is easy, but what about the true part?

Inference Rules for while-loop

〈b, σ〉 ⇓ F
〈while b do c, σ〉 ⇓ σ
〈b, σ〉 ⇓ T 〈c, σ〉 ⇓ σ2

〈while b do c, σ〉 ⇓ ?

Advanced Programming Languages

Large-step Operational Semantics

Rule #6: While-loop

Idea: What about using the entire while-loop recursively?

Inference Rules for while-loop

〈b, σ〉 ⇓ F
〈while b do c, σ〉 ⇓ σ

〈b, σ〉 ⇓ T 〈c, σ〉 ⇓ σ2 〈while b do c, σ2〉 ⇓ σ′

〈while b do c, σ〉 ⇓ σ′

Danger: Is this rule circular?

Advanced Programming Languages

Large-step Operational Semantics

Warning: Circular Rules

Warning: It is easy to create valid yet pointless rules using recursion.

Example of a valid yet pointless inference rule

〈while b do c, σ〉 ⇓ σ′

〈while b do c, σ〉 ⇓ σ′

This inference rule is valid and sound.

But it isn’t useful. (Recall that derivations are finite.)

Advanced Programming Languages

Large-step Operational Semantics

Rule #6: While-loop

Is this rule pointless?

Inference Rules for while-loop

〈b, σ〉 ⇓ F
〈while b do c, σ〉 ⇓ σ

〈b, σ〉 ⇓ T 〈c, σ〉 ⇓ σ2 〈while b do c, σ2〉 ⇓ σ′

〈while b do c, σ〉 ⇓ σ′

Advanced Programming Languages

Large-step Operational Semantics

Rule #6: While-loop

Is this rule pointless? No, this works! But let’s compact it into a single rule...

Inference Rules for while-loop

〈b, σ〉 ⇓ F
〈while b do c, σ〉 ⇓ σ

〈b, σ〉 ⇓ T 〈c, σ〉 ⇓ σ2 〈while b do c, σ2〉 ⇓ σ′

〈while b do c, σ〉 ⇓ σ′

Advanced Programming Languages

Large-step Operational Semantics

Rule #6: While-loop

Inference Rule for while-loop

〈if b then (c;while b do c) else skip, σ〉 ⇓ σ′
(6)

〈while b do c, σ〉 ⇓ σ′

Advanced Programming Languages

Large-step Operational Semantics

Rule #6: While-loop

This single rule suffices because with it we can derive:

〈b, σ〉 ⇓ F
(1)

〈skip, σ〉 ⇓ σ
(4)

〈if b then (c;while b do c) else skip, σ〉 ⇓ σ
(6)

〈while b do c, σ〉 ⇓ σ′

and

〈b, σ〉 ⇓ T
〈c, σ〉 ⇓ σ2 〈while b do c, σ2〉 ⇓ σ′

(2)
〈c;while b do c, σ〉 ⇓ σ′

(5)
〈if b then (c;while b do c) else skip, σ〉 ⇓ σ′

(6)
〈while b do c, σ〉 ⇓ σ′

Advanced Programming Languages

Large-step Operational Semantics

Other Rules

Also need inference rules for arithmetic and boolean judgments

See reference section of Assignment #2 for full list

Mostly “obvious” but I’ll mention a few

Advanced Programming Languages

Large-step Operational Semantics

Symbols vs. Mathematical Operators

Inference Rule for addition

〈a1, σ〉 ⇓ n1 〈a2, σ〉 ⇓ n2
(15)

〈a1 + a2, σ〉 ⇓ n1 + n2

Recall: “ + ” is a symbol from the input stream (no mathematical significance),
whereas “+” is the mathematical operator for 31-bit modular integer addition.

Advanced Programming Languages

Large-step Operational Semantics

Reading the Store

To get variable values, we simply use σ as a function.

Inference Rule for variable-read

(14)
〈v, σ〉 ⇓ σ(v)

Rules with no premises are called axioms.

When writing axioms, feel free to omit the fraction line.

Advanced Programming Languages

Large-step Operational Semantics

Comprehending Inference Rules

Inference Rule for ;

〈c1, σ〉 ⇓ σ2 〈c2, σ2〉 ⇓ σ′
(2)

〈c1;c2, σ〉 ⇓ σ′

Two ways to understand each inference rule:
1 Implementation recipe: “To compute c1;c2 on σ, first (recursively) compute
c1 on σ to get σ2, then (recursively) compute c2 on σ2 to get σ′.”

2 Logical specification: “To prove that c1;c2 on σ converges to σ′, it suffices
to prove c1 on σ converges to some σ2, and c2 on σ2 converges to σ′.”

Big hint: Reading each rule as an implementation recipe essentially solves
Assignment #2 for you. Your solution should be a nearly verbatim
translation from the rules to code.

Spanning the semantic gap
Rules are definitions, not theorems. So if you get them “wrong”, there’s no
proof of wrongness. You’ve merely defined a really strange language.
Functional languages minimize the chance for error when mapping the math
to code.

	BNF Syntax
	Large-step Operational Semantics

