Operational Semantics

CS 6371: Advanced Programming Languages

Kevin W. Hamlen

January 30, 2024

Advanced Programming Languages
L BNF Syntax

Formally Specifing Language Syntax

m Let's create a new language: Simple IMPerative Language (SIMPL)
m Backus-Naur Form (BNF)
m Invented by John Backus and Peter Naur (inventors of ALGOL-60 and later
FORTRAN)
m Notation for expressing context-free grammars (CFGs)
m Convention: Teletype font for symbols vs. mathematical font for
mathematical operators
m +, -, and * are symbols from your keyboard that have no particular
mathematical meaning
m +, —, and * are the mathematical operators for addition, subtraction, and
multiplication
[] (To make things easier for our OCaml implementation, we will define them to
be 31-bit integer addition, subtraction, and multiplication operators, which is
how OCaml performs those operations natively.)

Syntax of SIMPL

commands c = skip | c1;c2 | v:=a | if b then ¢y else cy | while b do ¢
boolean expressions b = true | false | aj <=ao | by &&bo | by |1 b2 | b

arithmetic expressions ax=n|v|ai+taz|aj-az|al*az

variable names v

integer constants n

Advanced Programming Languages
L BNF Syntax

Syntax vs. Semantics

m Syntactic definition imparts no meaning (semantics) of programs
m Symbol “+" might not mean addition.
m (Can you think of a language where it does not?)
m Elements of CFGs (e.g., defined by BNF) are abstract syntax trees (ASTs)

m Use parentheses to describe AST's structure
m Example: x :=(x+1) *2;(skip;y :=x)

m Parser transforms symbol stream into AST
m Uses various precedence and associativity rules to auto-insert parenths
m I'll assume you know how that works (use a parser generator or take
compilers/automata theory class).
m When | write a program, it denotes an already-parsed AST.

Advanced Programming Languages
L BNF Syntax

To Infinity (and Beyond)

m CFG elements (e.g., programs) are finite but unbounded.
m Finite: The number of nodes in the AST equals a natural number (not
infinity).
= Unbounded: For every program c there exists a larger program c’.
m The set of all programs is countably infinite.
m Countably infinite = set has cardinality equal to the set of all natural numbers
m But each individual program is finite.

m An infinite-sized program is actually a syntax error, because the CFG has no
infinite-sized members.

Advanced Programming Languages

L Large step Operational Semantics

Operational Semantics

m Operational semantics - mathematically define the meanings of programs in
terms of the operation of an abstract machine

A store (machine state) in SIMPL is a partial function from variable names to
integers:

Y=v—~7
ogEN

m (Partial) functions can be written as sets of input-output pairs:
L Example: o= {(X7 8)7 (Y7 _10)7 (27 O)}
m Not every set of input-output pairs is a function though, so be careful.
m Non-function: {(x,8), (x,10)}

Advanced Programming Languages

L Large step Operational Semantics

Configurations and Judgments

Configurations

A configuration is a command or expression paired with a store:

command configurations (c,0)
arithmetic configurations (a,0)
boolean configurations (b,0)

Judgments

A judgment declares that a configuration converges to a store or value:

command judgments (c,o) | o’ (¢’ €x)
arithmetic judgments (a,0) I n (nez)
boolean judgments (b,o) U p (pe{T,F})

“Converges to” ({}) informally means “terminates and returns a value of ..."

Advanced Programming Languages

L Large step Operational Semantics

Derivations

m We now have formalisms for talking about program behaviors (judgments),
but we haven't defined which judgments are “true”.

m Insight: Judgments are like mathematical propositions, but for a new math
(computation).

m How do we define “truth” in propositional logic? (Laws or Inference Rules)

=
Example: Law of Modus Ponens w(MP)

q

m Each rule written as a “fraction” with zero or more hypotheses on top, and a
conclusion on the bottom

m Free variables in rules are universally quantified
m Rules can be nested to form tree-shaped derivations (proofs) of truth:
=
P p q(MP)
q q=rr

(MP)
r

m Solution: We need logical axioms that define computations in SIMPL!

Advanced Programming Languages

L Large step Operational Semantics

Rule #1: Skip

Inference Rule (Axiom) for skip

@
(skip,0) | o

m no hypotheses = axiom

m True for every o (i.e., o is universally quantified)

Advanced Programming Languages

L Large step Operational Semantics

Warning: Misnamed Variables

The following rule is completely different!

A different (wrong) rule for skip

—————®
<Skip, U) Yo

m What's the difference?
m What does this rule effectively say skip does?

Advanced Programming Languages

L Large step Operational Semantics

Rule #2: Sequence

Inference Rule for ;

?
——(2)
(c15¢2,0) § o’

Advanced Programming Languages

L Large step Operational Semantics

Rule #2: Sequence

Inference Rule for ;

<017 U) ‘U’ g2

(c15c2,0) o

- @

Advanced Programming Languages

L Large step Operational Semantics

Rule #2: Sequence

Inference Rule for ;

(cr,0) o2 (ca,02) U o

(c15¢2,0) I o

(2

Advanced Programming Languages

L Large step Operational Semantics

Example Derivation

(skip;(skip;skip),0) | ?

Advanced Programming Languages

L Large step Operational Semantics

Example Derivation

(skip,o) | 77 (skip;skip, ??7) | 7
(skip;(skip;skip),0) | ?

(2

Advanced Programming Languages

L Large step Operational Semantics

Example Derivation

1)
(skip,0) J o (skip;skip,o) | 7
(skip; (skip;skip),o) | 7

Advanced Programming Languages

L Large step Operational Semantics

Example Derivation

(skip,o) | 77 (skip,??) | ?
(skip,0) | o (skip;skip, o) | ?(2)
(skip; (skip;skip),o) | ?

(@)

Advanced Programming Languages

L Large step Operational Semantics

Example Derivation

— @
" (skip,o) | o (skip, o) ?(2)
(skip,0) J o (skip;skip,o) | 7 ,

(2)
(skip; (skip;skip),o) | 7

Advanced Programming Languages

L Large step Operational Semantics

Example Derivation

X) - ®

(skip,o) | o (skip,o) | o ,

(skip,0) | o (skip;skip, o) |} 0(2)
(skip; (skip;skip),o) | o

Advanced Programming Languages

L Large step Operational Semantics

Building Derivations

X @ : @

(skip.o) Yo~ (skip,o) Yo

(skip,o) J o (skip;skip, o) | 0(2)
(skip; (skip;skip),o) | o

Work bottom-up, left-to-right (usually).

Identify (by number) which rule you're using to the right of the bar.
m Instantiate rule variables consistently and uniformly at each rule use.

m If 0 = o1 in this rule instance, then every o appearing in the rule must be
replaced with 0.
m Treat rule literally, not what you expect/want it to say!

m Derivations and infinity

m No infinite-sized derivations! (Each derivation must have strictly finite
height.)
m The set of all derivations is countably infinite.

Advanced Programming Languages

L Large step Operational Semantics

Rule #3: Assignment

Inference Rule for :=

(v:i=a,0) |7

Advanced Programming Languages

L Large step Operational Semantics

Warning: Type-inconsistent Rules

First attempt at assignment rule:

Malformed (wrong) Rule for :=

3)
(v:i=a,0) | olv—]

Notation (functional update):

fle =yl = (f —{(z,2) [(z,2) € [}) U{(z,9)}

But the rule above is not a mathematically sensible definition. Why?

Advanced Programming Languages

L Large step Operational Semantics

Rule #3: Assignment

Correct formulation of assignment rule:

Inference Rule for :=
(a,0) dn

(vi=a,0) | ofv—n]

(3)

Notation (functional update):

fle =yl = (f —{(z,2) [(z,2) € [}) U{(z,9)}

Advanced Programming Languages

L Large step Operational Semantics

Rule #4: Conditional

Inference Rule for if-then-else

(4)

(if b then c¢; else ca,0) | 7

Advanced Programming Languages

L Large step Operational Semantics

Rules #4-5: Conditional

Solution: Multiple rules per syntactic form are perfectly valid and often useful.

Inference Rules for if-then-else

(b,0) 4 T (c1,0) do’
(if b then c; else c2,0) |} o’
(b,o) U F (c2,0) 40’

(if b then c; else c2,0) |} o’

()

Advanced Programming Languages

L Large step Operational Semantics

Rule #6: While-loop

Inference Rule for while-loop

(while b do ¢,0) || 7

This is a tough one.

Advanced Programming Languages

L Large step Operational Semantics

Rule #6: While-loop

The false part is easy, but what about the true part?

Inference Rules for while-loop

(b,0) 4 F
(while b do ¢,0) | o
(b,o) 4 T ?

(while b do ¢,0) | ?

Advanced Programming Languages

L Large step Operational Semantics

Rule #6: While-loop

The false part is easy, but what about the true part?

Inference Rules for while-loop

(b,0) § F
(while b do ¢,0) | o
<b70> 4T <C7U> | o2
(while b do ¢,0) | ?

Advanced Programming Languages

L Large step Operational Semantics

Rule #6: While-loop

Idea: What about using the entire while-loop recursively?

Inference Rules for while-loop

(byo) | F
(while b do ¢,0) | o
(o) 4 T (c,o) | o2 (while b do c,02) || o’
(while b do ¢,0) || o

Danger: Is this rule circular?

Advanced Programming Languages

L Large step Operational Semantics

Warning: Circular Rules

Warning: It is easy to create valid yet pointless rules using recursion.

Example of a valid yet pointless inference rule

(while b do ¢,0) || o’
(while b do ¢,0) |} o’

m This inference rule is valid and sound.

m But it isn't useful. (Recall that derivations are finite.)

Advanced Programming Languages

L Large step Operational Semantics

Rule #6: While-loop

Is this rule pointless?

Inference Rules for while-loop

(byo) F
(while b do ¢,0) | o
(o) 4 T (c,o) | o2 (while b do c,02) |} o’
(while b do ¢,0) |} o

Advanced Programming Languages

L Large step Operational Semantics

Rule #6: While-loop

Is this rule pointless? No, this works! But let's compact it into a single rule...

Inference Rules for while-loop

(byo) F
(while b do ¢,0) | o
(o) 4 T (c,o) | o2 (while b do c,02) || o’
(while b do ¢,0) |} o

Advanced Programming Languages

L Large step Operational Semantics

Rule #6: While-loop

Inference Rule for while-loop

if b then (c;while b do c¢) else skip, o o’
P
{(while b do c,0) || o

(6)

Advanced Programming Languages

L Large step Operational Semantics

Rule #6: While-loop

This single rule suffices because with it we can derive:

—1)
(b,0) I F (skip,0) |} o
(if b then (c;while b do ¢) else skip,0) | o
(while b do ¢,0) || o’

(4)
(6)

and
{(c,o) | o2 (while b do c,02) | &

(b,o) T (c;while bdo c,0) || o’
5
(if b then (c;while b do c¢) else skip,o) | 026)
(while b do ¢,0) | o

(2)

Advanced Programming Languages

L Large step Operational Semantics

Other Rules

m Also need inference rules for arithmetic and boolean judgments
m See reference section of Assignment #2 for full list

m Mostly “obvious” but I'll mention a few

Advanced Programming Languages

L Large step Operational Semantics

Symbols vs. Mathematical Operators

Inference Rule for addition

(a1,0) bn1 (az,0) I na

(a1 +az,0) J n1 + n2

(15)

Recall: “+" is a symbol from the input stream (no mathematical significance),
whereas “+" is the mathematical operator for 31-bit modular integer addition.

Advanced Programming Languages

L Large step Operational Semantics

Reading the Store

To get variable values, we simply use o as a function.
Inference Rule for variable-read

(14)

(v,0) § o(v)

m Rules with no premises are called axioms.

® When writing axioms, feel free to omit the fraction line.

Advanced Programming Languages

L Large step Operational Semantics

Comprehending Inference Rules

Inference Rule for ;

/

(c1,0) o2 (c2,00) | o

(c15¢2,0) I o

(2)

m Two ways to understand each inference rule:
Implementation recipe: “To compute c1;c2 on o, first (recursively) compute
c1 on o to get og, then (recursively) compute c2 on o2 to get o’.”
Logical specification: “To prove that c1;ca on o converges to o', it suffices

to prove c1 on o converges to some o2, and ca on oo converges to o’.”

m Big hint: Reading each rule as an implementation recipe essentially solves
Assignment #2 for you. Your solution should be a nearly verbatim
translation from the rules to code.

m Spanning the semantic gap

m Rules are definitions, not theorems. So if you get them “wrong”, there's no
proof of wrongness. You've merely defined a really strange language.

m Functional languages minimize the chance for error when mapping the math
to code.

	BNF Syntax
	Large-step Operational Semantics

