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Advanced Programming Languages

Motivation

Roadmap

Operational Semantics
large-step and small-step varieties
formally defines the operation of a machine that executes the program

Denotational Semantics
defines the mathematical object (i.e., function) that a program denotes

Static Semantics (Type Theory)
a static analysis that prevents certain runtime errors (“stuck states”)

Today: Axiomatic Semantics



Advanced Programming Languages

Motivation

Axiomatic Semantics

Goal: We wish to prove complete correctness of mission-critical code.
Type-theory too weak∗ (just proves soundness)
Operational semantics requires us to step outside the derivation system to
prove things about derivations. Non-derivation parts cannot be
machine-checked.
Denotational semantics creates a massive mathematical object that encodes
all memory states (too hard to reason about).

Solution: Axiomatic Semantics
inference rules that encapsulate the entire correctness proof into a derivation
Derivation is fully machine-checkable, so no reliance on (error-prone) humans
writing perfect proofs or perfectly checking proofs.

∗Actually, advanced type systems like λC encode an entire axiomatic semantics into the type system, but let’s
classify that as type theory + axiomatic semantics.



Advanced Programming Languages

Motivation

Two Kinds of Correctness

Partial Correctness
Notation: {A}c{B} (called a Hoare triple)
If A is true before executing c, and if c terminates, then B is true after
executing c.
A is precondition, and B is postcondition

Total Correctness
Notation: [A]c[B]
If A is true before executing c, then c eventually terminates and B is true
once it does.



Advanced Programming Languages

Motivation

Examples

1 {x ≤ 10}while x <= 10 do x:= x + 1{?}
2 [x ≤ 10]while x <= 10 do x:= x + 1[?]

3 [T ]while x <= 10 do x:= x + 1[?]

4 [x = ī]while x <= 10 do x:= x + 1[?]

5 {T}while true do skip{F}
{any A}any non-terminating program{any B}

6 {F}any program{any B}



Advanced Programming Languages

Motivation

Examples

1 {x ≤ 10}while x <= 10 do x:= x + 1{x = 11}
2 [x ≤ 10]while x <= 10 do x:= x + 1[?]

3 [T ]while x <= 10 do x:= x + 1[?]
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Advanced Programming Languages

Formalization

Language of Assertions

First-order logic with arithmetic:

arithmetic exps a ::= n | v | v̄ | a1 + a2 | a1 − a2 | a1 ∗ a2

assertions A ::= T | F | a1 = a2 | a1 ≤ a2 | A1 ∧A2

| A1 ∨A2 | ¬A | A⇒ A2 | ∀v̄.A | ∃v̄.A

Meta-variables (v̄) are mathematical variables (not program variables) that
have fixed (arbitrary) integer values across all assertions.

From these one can construct all functions and logical operators, so we will
freely use extensions to the above.

But if you write something extremely exotic, I reserve the right to challenge
you on whether it can actually be expressed using the above.
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Formalization

Hoare Logic

First published by Tony Hoare [1969]
First and most famous axiomatic semantics
“An axiomatic basis for computer programming”
Often cited as one of the greatest CS papers of all time (only 6 pages long!)
Optional: read the original paper (linked from course web site)

Adaption to SIMPL consists of...
six axioms (rules) describing SIMPL programs
inference rules of first-order logic
axioms of arithmetic (e.g., Peano arithmetic)
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Formalization

Skip Rule

(1)
{A}skip{?}



Advanced Programming Languages

Formalization

Skip Rule

(1)
{A}skip{A}
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Formalization

Sequence Rule

{A}c1{C} {C}c2{B}
(2)

{A}c1;c2{B}
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Formalization

Conditional Rule

{A}c1{B}
(3a)

{A}if b then c1 else c2{B}
{A}c2{B}

(3b)
{A}if b then c1 else c2{B}

Problem: These rules can derive false assertions (unsound)!

{T}x:= 0{x = 0}
(3a)

{T}if x <= 0 then x:= 0 else skip{x = 0}
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Formalization

Conditional Rule

{A}c1{B} {A}c2{B}
(3)

{A}if b then c1 else c2{B}

Problem: This rule cannot derive some true assertions (incomplete)!

...

{T}x:= 0{x ≥ 0}
?

{T}skip{x ≥ 0}
(3)

{T}if x <= 0 then x:= 0 else skip{x ≥ 0}
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Formalization

Conditional Rule

{A ∧ b}c1{B} {A ∧ ¬b}c2{B}
(3)

{A}if b then c1 else c2{B}

Solves completeness problem without sacrificing soundness:

{T ∧ x ≤ 0}x:= 0{x ≥ 0} {T ∧ ¬(x ≤ 0)}skip{x ≥ 0}
(3)

{T}if x <= 0 then x:= 0 else skip{x ≥ 0}
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Formalization

Assignment Rule

(4)
{A}v:= a{ ? }

where B = A with all a’s replaced with v?

Usage example:

{x > 10}x:= x + 1{x > 11}

equivalent

~ww�
{x + 1 > 11}x:= x + 1{x > 11}
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Formalization

Assignment Rule

(4)
{B[a/v]}v:= a{B}

Usage example:

{x > 10}x:= x + 1{x > 11}

equivalent

~ww�
{x + 1 > 11}x:= x + 1{x > 11}
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Formalization

While Rule

{A ∧ b}c{C}

...
(5)

{C}while b do c{B}
(2)

{A ∧ b}c;while b do c{B} {A ∧ ¬b}skip{B}
(3)

{A}if b then (c;while b do c) else skip{B}
(5)

{A}while b do c{B}
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While Rule

{A ∧ b}c{A}
(5)

{A}while b do c{ ? }
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While Rule

{A ∧ b}c{A}
(5)

{A}while b do c{¬b ∧A}
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Formalization

While Rule

{I ∧ b}c{I}
(5)

{I}while b do c{¬b ∧ I}

I is called a loop invariant
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Formalization

Rule of Consequence

Recall that we earlier needed a way to prove (derive) equivalence of assertions:

{x > 10}x:= x + 1{x > 11}

equivalent

~ww�
{x + 1 > 11}x:= x + 1{x > 11}

Rule of Consequence:

|= A⇒ A′ {A′}c{B′} |= B′ ⇒ B
(6)

{A}c{B}

|= with nothing to the left means implication is universally true (i.e., not
merely true in this program or loop)

|= A⇒ A′ ←−Assumptions may be safely weakened

|= B′ ⇒ B ←−Conclusions (goals) may be safely strengthened
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Formalization

Rule of Consequence Example

.

.

.

|= x > 10 ⇒ x + 1 > 11
(4)

{x + 1 > 11}x:= x + 1{x > 11}

.

.

.

|= x > 11 ⇒ x > 11
(6)

{x > 10}x:= x + 1{x > 11}

When you write axiomatic derivations in this class:

You are not required to write out the derivations of consequence premises
(|= A).

I assume those are derivable using the laws of propositional logic and
integer arithmetic.

But make sure your implications X ⇒ Y are universally true!
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Axiomatic Semantics of SIMPL

(1)
{A}skip{A}

(4)
{B[a/v]}v:= a{B}

{A}c1{C} {C}c2{B}
(2)

{A}c1;c2{B}
{I ∧ b}c{I}

(5)
{I}while b do c{¬b ∧ I}

{A ∧ b}c1{B} {A ∧ ¬b}c2{B}
(3)

{A}if b then c1 else c2{B}
|= A⇒ A′ {A′}c{B′} |= B′ ⇒ B

(6)
{A}c{B}
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