Axiomatic Semantics
 CS 4301/6371: Advanced Programming Languages

Kevin W. Hamlen

April 18, 2024

Roadmap

- Operational Semantics
- large-step and small-step varieties
- formally defines the operation of a machine that executes the program
- Denotational Semantics
- defines the mathematical object (i.e., function) that a program denotes
- Static Semantics (Type Theory)
- a static analysis that prevents certain runtime errors ("stuck states")
- Today: Axiomatic Semantics

Axiomatic Semantics

- Goal: We wish to prove complete correctness of mission-critical code.
- Type-theory too weak* (just proves soundness)
- Operational semantics requires us to step outside the derivation system to prove things about derivations. Non-derivation parts cannot be machine-checked.
- Denotational semantics creates a massive mathematical object that encodes all memory states (too hard to reason about).
- Solution: Axiomatic Semantics
- inference rules that encapsulate the entire correctness proof into a derivation
- Derivation is fully machine-checkable, so no reliance on (error-prone) humans writing perfect proofs or perfectly checking proofs.

[^0]
Two Kinds of Correctness

- Partial Correctness
- Notation: $\{A\} c\{B\}$ (called a Hoare triple)
- If A is true before executing c, and if c terminates, then B is true after executing c.
- A is precondition, and B is postcondition

■ Total Correctness

- Notation: $[A] c[B]$
- If A is true before executing c, then c eventually terminates and B is true once it does.

Examples

11 $\{x \leq 10\}$ while $\mathrm{x}<=10$ do $\mathrm{x}:=\mathrm{x}+1\{?\}$

Examples

■ $\{x \leq 10\}$ while $\mathrm{x}<=10$ do $\mathrm{x}:=\mathrm{x}+1\{x=11\}$

Examples

I $\{x \leq 10\}$ while $\mathrm{x}<=10$ do $\mathrm{x}:=\mathrm{x}+1\{x=11\}$
2 $[x \leq 10]$ while $\mathrm{x}<=10$ do $\mathrm{x}:=\mathrm{x}+1[?]$

Examples

\| $\{x \leq 10\}$ while $\mathrm{x}<=10$ do $\mathrm{x}:=\mathrm{x}+1\{x=11\}$
2 $[x \leq 10]$ while $\mathrm{x}<=10$ do $\mathrm{x}:=\mathrm{x}+1[x=11]$

Examples

I $\{x \leq 10\}$ while $\mathrm{x}<=10$ do $\mathrm{x}:=\mathrm{x}+1\{x=11\}$
2 [$x \leq 10]$ while $\mathrm{x}<=10$ do $\mathrm{x}:=\mathrm{x}+1[x=11]$
3 $[T]$ while $\mathrm{x}<=10$ do $\mathrm{x}:=\mathrm{x}+1[?]$

Examples

- $\{x \leq 10\}$ while $\mathrm{x}<=10$ do $\mathrm{x}:=\mathrm{x}+1\{x=11\}$
[2 $[x \leq 10]$ while $\mathrm{x}<=10$ do $\mathrm{x}:=\mathrm{x}+1[x=11]$
B $[T]$ while $\mathrm{x}<=10$ do $\mathrm{x}:=\mathrm{x}+1[x \geq 11]$

Examples

I $\{x \leq 10\}$ while $\mathrm{x}<=10$ do $\mathrm{x}:=\mathrm{x}+1\{x=11\}$
2 $[x \leq 10]$ while $\mathrm{x}<=10$ do $\mathrm{x}:=\mathrm{x}+1[x=11]$
$3[T]$ while $\mathrm{x}<=10$ do $\mathrm{x}:=\mathrm{x}+1[x \geq 11]$
$4[x=\bar{i}]$ while $\mathrm{x}<=10$ do $\mathrm{x}:=\mathrm{x}+1[?]$

Examples

I $\{x \leq 10\}$ while $\mathrm{x}<=10$ do $\mathrm{x}:=\mathrm{x}+1\{x=11\}$
2 $[x \leq 10]$ while $\mathrm{x}<=10$ do $\mathrm{x}:=\mathrm{x}+1[x=11]$
$3[T]$ while $\mathrm{x}<=10$ do $\mathrm{x}:=\mathrm{x}+1[x \geq 11]$
$4[x=\bar{i}]$ while $\mathrm{x}<=10$ do $\mathrm{x}:=\mathrm{x}+1[x=\max (11, \bar{i})]$

Examples

[1 $\{x \leq 10\}$ while $\mathrm{x}<=10$ do $\mathrm{x}:=\mathrm{x}+1\{x=11\}$
2 [$x \leq 10]$ while $\mathrm{x}<=10$ do $\mathrm{x}:=\mathrm{x}+1[x=11]$
$3[T]$ while $\mathrm{x}<=10$ do $\mathrm{x}:=\mathrm{x}+1[x \geq 11]$
$4[x=\bar{i}]$ while $\mathrm{x}<=10$ do $\mathrm{x}:=\mathrm{x}+1[x=\max (11, \bar{i})]$
$5\{T\}$ while true do skip $\{F\}$

Examples

[1 $\{x \leq 10\}$ while $\mathrm{x}<=10$ do $\mathrm{x}:=\mathrm{x}+1\{x=11\}$
$2[x \leq 10]$ while $\mathrm{x}<=10$ do $\mathrm{x}:=\mathrm{x}+1[x=11]$
$3[T]$ while $\mathrm{x}<=10$ do $\mathrm{x}:=\mathrm{x}+1[x \geq 11]$
$4[x=\bar{i}]$ while $\mathrm{x}<=10$ do $\mathrm{x}:=\mathrm{x}+1[x=\max (11, \bar{i})]$
$5\{T\}$ while true do $\operatorname{skip}\{F\}$

- $\{$ any $A\}$ any non-terminating program $\{$ any $B\}$

Examples

1. $\{x \leq 10\}$ while $\mathrm{x}<=10$ do $\mathrm{x}:=\mathrm{x}+1\{x=11\}$

2 [$x \leq 10]$ while $\mathrm{x}<=10$ do $\mathrm{x}:=\mathrm{x}+1[x=11]$
$3[T]$ while $\mathrm{x}<=10$ do $\mathrm{x}:=\mathrm{x}+1[x \geq 11]$
$4[x=\bar{i}]$ while $\mathrm{x}<=10$ do $\mathrm{x}:=\mathrm{x}+1[x=\max (11, \bar{i})]$
$5\{T\}$ while true do skip $\{F\}$

- $\{$ any $A\}$ any non-terminating program $\{$ any $B\}$

б $\{F\}$ any program $\{$ any $B\}$

Language of Assertions

- First-order logic with arithmetic:
arithmetic exps
assertions

$$
\begin{aligned}
& a::=n|v| \bar{v}\left|a_{1}+a_{2}\right| a_{1}-a_{2} \mid a_{1} * a_{2} \\
& A:=T|F| a_{1}=a_{2}\left|a_{1} \leq a_{2}\right| A_{1} \wedge A_{2} \\
&\left|A_{1} \vee A_{2}\right| \neg A\left|A \Rightarrow A_{2}\right| \forall \bar{v} . A \mid \exists \bar{v} . A
\end{aligned}
$$

- Meta-variables (\bar{v}) are mathematical variables (not program variables) that have fixed (arbitrary) integer values across all assertions.
- From these one can construct all functions and logical operators, so we will freely use extensions to the above.
- But if you write something extremely exotic, I reserve the right to challenge you on whether it can actually be expressed using the above.

Hoare Logic

■ First published by Tony Hoare [1969]

- First and most famous axiomatic semantics
- "An axiomatic basis for computer programming"
- Often cited as one of the greatest CS papers of all time (only 6 pages long!)
- Optional: read the original paper (linked from course web site)
- Adaption to SIMPL consists of...
- six axioms (rules) describing SIMPL programs
- inference rules of first-order logic
- axioms of arithmetic (e.g., Peano arithmetic)

Skip Rule
$\overline{\{A\} s k i p\{?\}}^{(1)}$

Skip Rule
$\overline{\{A\} \operatorname{skip}\{A\}}^{(1)}$

Sequence Rule

$$
\{A\} c_{1} ; c_{2}\{B\}
$$

Sequence Rule

$$
\frac{\{A\} c_{1}\{C\} \quad\{C\} c_{2}\{B\}}{\{A\} c_{1} ; c_{2}\{B\}}(2)
$$

Conditional Rule

$\overline{\{A\} \text { if } b \text { then } c_{1} \text { else } c_{2}\{B\}}$

Conditional Rule

$$
\begin{aligned}
& {\frac{\{A\} c_{1}\{B\}}{\{A\} \text { if } b \text { then } c_{1} \text { else } c_{2}\{B\}}}^{(3 \mathrm{a})} \\
& {\frac{\{A\} c_{2}\{B\}}{\{A\} \text { if } b \text { then } c_{1} \text { else } c_{2}\{B\}}}^{(3 \mathrm{~b})}
\end{aligned}
$$

Conditional Rule

$$
\begin{aligned}
& {\frac{\{A\} c_{1}\{B\}}{\{A\} \text { if } b \text { then } c_{1} \text { else } c_{2}\{B\}}}^{(3 \mathrm{a})} \\
& {\frac{\{A\} c_{2}\{B\}}{\{A\} \text { if } b \text { then } c_{1} \text { else } c_{2}\{B\}}}^{(3 \mathrm{~b})}
\end{aligned}
$$

Problem: These rules can derive false assertions (unsound)!

$$
\frac{\{T\} \mathrm{x}:=0\{x=0\}}{\{T\} \text { if } \mathrm{x}<=0 \text { then } \mathrm{x}:=0 \text { else skip }\{x=0\}}{ }^{\text {(3a) }}
$$

Conditional Rule

$$
\frac{\{A\} c_{1}\{B\} \quad\{A\} c_{2}\{B\}}{\{A\} \text { if } b \text { then } c_{1} \text { else } c_{2}\{B\}}(3)
$$

Conditional Rule

$$
\frac{\{A\} c_{1}\{B\} \quad\{A\} c_{2}\{B\}}{\{A\} \text { if } b \text { then } c_{1} \text { else } c_{2}\{B\}}(3)
$$

Problem: This rule cannot derive some true assertions (incomplete)!

$$
\frac{\vdots}{\{T\} \mathrm{x}:=0\{x \geq 0\}} \frac{?}{\{T\} \text { if } \mathrm{x}<=0 \text { then } \mathrm{x}:=0 \text { else skip }\{x \geq 0\}}(3)
$$

Conditional Rule

$$
\begin{equation*}
\frac{\{A \wedge b\} c_{1}\{B\} \quad\{A \wedge \neg b\} c_{2}\{B\}}{\{A\} \text { if } b \text { then } c_{1} \text { else } c_{2}\{B\}} \tag{3}
\end{equation*}
$$

Solves completeness problem without sacrificing soundness:

$$
\frac{\{T \wedge x \leq 0\} \mathrm{x}:=0\{x \geq 0\} \quad\{T \wedge \neg(x \leq 0)\} \operatorname{skip}\{x \geq 0\}}{\{T\} \text { if } \mathrm{x}<=0 \text { then } \mathrm{x}:=0 \text { else skip }\{x \geq 0\}}
$$

Assignment Rule

$$
\overline{\{A\} v:=a\{?\}}^{(4)}
$$

Assignment Rule

$$
\overline{\{A\} v:=a\{?\}}^{(4)}
$$

Usage example:

$$
\{x>10\} \mathrm{x}:=\mathrm{x}+1\{x>11\}
$$

Assignment Rule

$$
\begin{gathered}
\overline{\{A\} v:=a\{B\}}^{(4)} \\
\text { where } B=A \text { with all } a \text { 's replaced with } v ?
\end{gathered}
$$

Usage example:

$$
\{x>10\} \mathrm{x}:=\mathrm{x}+1\{x>11\}
$$

Assignment Rule

$$
\overline{\{A\} v:=a\{B\}}^{(4)}
$$

where $B=A$ with all a 's replaced with v ?

Usage example:

$$
\begin{aligned}
& \quad\{x>10\} \mathrm{x}:=\mathrm{x}+1\{x>11\} \\
& \text { equivalent } \rrbracket^{2} \\
& \{x+1>11\} \mathrm{x}:=\mathrm{x}+1\{x>11\}
\end{aligned}
$$

Assignment Rule

$$
\overline{\{\quad ? ~}\} v:=a\{B\}^{(4)}
$$

Usage example:

$$
\begin{aligned}
& \quad\{x>10\} \mathrm{x}:=\mathrm{x}+1\{x>11\} \\
& \text { equivalent } \downarrow \\
& \{x+1>11\} \mathrm{x}:=\mathrm{x}+1\{x>11\}
\end{aligned}
$$

Assignment Rule

$$
\overline{\{B[a / v]\} v:=a\{B\}}^{(4)}
$$

Usage example:

$$
\begin{aligned}
& \quad\{x>10\} \mathrm{x}:=\mathrm{x}+1\{x>11\} \\
& \text { equivalent } \downarrow \\
& \{x+1>11\} \mathrm{x}:=\mathrm{x}+1\{x>11\}
\end{aligned}
$$

While Rule

$\{A\}$ while b do $c\{B\}$

While Rule

$$
\begin{equation*}
\frac{\{A\} \text { if } b \text { then }(c ; \text { while } b \text { do } c) \text { else } \operatorname{skip}\{B\}}{\{A\} \text { while } b \text { do } c\{B\}} \tag{5}
\end{equation*}
$$

While Rule

$$
\frac{\{A \wedge b\} c \text {; while } b \text { do } c\{B\} \quad\{A \wedge \neg b\} \operatorname{skip}\{B\}}{\frac{\{A\} \text { if } b \text { then }(c ; \text { while } b \text { do } c) \text { else skip }\{B\}}{\{A\} \text { while } b \text { do } c\{B\}}(5)}
$$

While Rule

$$
\frac{\{A \wedge b\} c\{C\} \quad\{C\} \text { while } b \text { do } c\{B\}}{\frac{\{A \wedge b\} c ; \text { while } b \text { do } c\{B\}}{}(2) \quad\{A \wedge \neg b\} \operatorname{skip}\{B\}}(
$$

While Rule

While Rule

$\{A\}$ while b do $c\{\quad$? $\}$

While Rule

$$
\frac{\{A \wedge b\} c\{A\}}{\{A\} \text { while } b \text { do } c\{\quad\}^{(5)}}
$$

While Rule

$$
\left.\frac{\{A \wedge b\} c\{A\}}{\{A\} \text { while } b \text { do } c\{ } \quad A\right\}^{(5)}
$$

While Rule

$$
\frac{\{A \wedge b\} c\{A\}}{\{A\} \text { while } b \text { do } c\{\neg b \wedge A\}}{ }^{(5)}
$$

While Rule

$\frac{\{I \wedge b\} c\{I\}}{\{I\} \text { while } b \text { do } c\{\neg b \wedge I\}}(5)$
I is called a loop invariant

Rule of Consequence

Recall that we earlier needed a way to prove (derive) equivalence of assertions:

$$
\begin{aligned}
& \quad\{x>10\} \mathrm{x}:=\mathrm{x}+1\{x>11\} \\
& \text { equivalent } \\
& \{x+1>11\} \mathrm{x}:=\mathrm{x}+1\{x>11\}
\end{aligned}
$$

Rule of Consequence

Recall that we earlier needed a way to prove (derive) equivalence of assertions:

$$
\begin{aligned}
& \qquad\{x>10\} \mathrm{x}:=\mathrm{x}+1\{x>11\} \\
& \text { equivalent } \Uparrow \\
& \{x+1>11\} \mathrm{x}:=\mathrm{x}+1\{x>11\}
\end{aligned}
$$

Rule of Consequence:

$$
\frac{\left\{A^{\prime}\right\} c\left\{B^{\prime}\right\}}{\{A\} c\{B\}}
$$

Rule of Consequence

Recall that we earlier needed a way to prove (derive) equivalence of assertions:

$$
\begin{aligned}
& \qquad\{x>10\} \mathrm{x}:=\mathrm{x}+1\{x>11\} \\
& \text { equivalent } \Uparrow \\
& \{x+1>11\} \mathrm{x}:=\mathrm{x}+1\{x>11\}
\end{aligned}
$$

Rule of Consequence:

$$
\begin{array}{ll}
\equiv A \Rightarrow A^{\prime} \quad\left\{A^{\prime}\right\} c\left\{B^{\prime}\right\} \tag{6}\\
\hline A\} c\{B\}
\end{array}
$$

\vDash with nothing to the left means implication is universally true (i.e., not merely true in this program or loop)

■ $\models A \Rightarrow A^{\prime} \quad \longleftarrow$ Assumptions may be safely weakened

Rule of Consequence

Recall that we earlier needed a way to prove (derive) equivalence of assertions:

$$
\begin{aligned}
& \qquad\{x>10\} \mathrm{x}:=\mathrm{x}+1\{x>11\} \\
& \text { equivalent } \Uparrow \\
& \{x+1>11\} \mathrm{x}:=\mathrm{x}+1\{x>11\}
\end{aligned}
$$

Rule of Consequence:

$$
\frac{\models A \Rightarrow A^{\prime} \quad\left\{A^{\prime}\right\} c\left\{B^{\prime}\right\} \quad \models B^{\prime} \Rightarrow B}{\{A\} c\{B\}}(6)
$$

\vDash with nothing to the left means implication is universally true (i.e., not merely true in this program or loop)

■ $\vDash A \Rightarrow A^{\prime} \quad \longleftarrow$ Assumptions may be safely weakened

- $\models B^{\prime} \Rightarrow B \quad \longleftarrow$ Conclusions (goals) may be safely strengthened

Rule of Consequence Example

$$
\{x>10\} \mathrm{x}:=\mathrm{x}+1\{x>11\}
$$

Rule of Consequence Example

$$
\begin{equation*}
\frac{\frac{\vdots}{\models x>10 \Rightarrow x+1>11} \frac{\vdots}{\{x+1>11\} \mathrm{x}:=\mathrm{x}+1\{x>11\}}(4) \quad \frac{\vdots}{\models x>11 \Rightarrow x>11}}{\{x>10\} \mathrm{x}:=\mathrm{x}+1\{x>11\}} \tag{6}
\end{equation*}
$$

Rule of Consequence Example

$$
\frac{\frac{\vdots}{\models x>10 \Rightarrow x+1>11}}{\frac{1 x+1>11\} \mathrm{x}:=\mathrm{x}+1\{x>11\}}{}(4)} \begin{aligned}
& \frac{\vdots}{\models x>10\} \mathrm{x}:=\mathrm{x}+1\{x>11\}}
\end{aligned}
$$

When you write axiomatic derivations in this class:

- You are not required to write out the derivations of consequence premises $(\models A)$.
- I assume those are derivable using the laws of propositional logic and integer arithmetic.
■ But make sure your implications $X \Rightarrow Y$ are universally true!

Axiomatic Semantics of SIMPL

$$
\begin{aligned}
& \overline{\{A\} \text { skip }\{A\}}^{(1)} \\
& \overline{\{B[a / v]\} v:=a\{B\}}^{(4)} \\
& \frac{\{A\} c_{1}\{C\} \quad\{C\} c_{2}\{B\}}{\{A\} c_{1} ; c_{2}\{B\}}(2) \\
& \frac{\{I \wedge b\} c\{I\}}{\{I\} \text { while } b \text { do } c\{\neg b \wedge I\}}{ }^{(5)} \\
& \frac{\{A \wedge b\} c_{1}\{B\} \quad\{A \wedge \neg b\} c_{2}\{B\}}{\{A\} \text { if } b \text { then } c_{1} \text { else } c_{2}\{B\}}(3) \frac{\models A \Rightarrow A^{\prime} \quad\left\{A^{\prime}\right\} c\left\{B^{\prime}\right\} \quad \models B^{\prime} \Rightarrow B}{\{A\} c\{B\}}(6)
\end{aligned}
$$

[^0]: * Actually, advanced type systems like λ_{C} encode an entire axiomatic semantics into the type system, but let's classify that as type theory + axiomatic semantics.

