Axiomatic Semantics

CS 4301/6371: Advanced Programming Languages

Kevin W. Hamlen

April 18, 2024

Advanced Programming Languages

L Motivation

Roadmap

m Operational Semantics

m large-step and small-step varieties
m formally defines the operation of a machine that executes the program

m Denotational Semantics

m defines the mathematical object (i.e., function) that a program denotes
m Static Semantics (Type Theory)

m a static analysis that prevents certain runtime errors (“stuck states”)

Today: Axiomatic Semantics

Advanced Programming Languages

L Motivation

Axiomatic Semantics

m Goal: We wish to prove complete correctness of mission-critical code.

m Type-theory too weak* (just proves soundness)

m Operational semantics requires us to step outside the derivation system to
prove things about derivations. Non-derivation parts cannot be
machine-checked.

m Denotational semantics creates a massive mathematical object that encodes
all memory states (too hard to reason about).

m Solution: Axiomatic Semantics

m inference rules that encapsulate the entire correctness proof into a derivation
m Derivation is fully machine-checkable, so no reliance on (error-prone) humans
writing perfect proofs or perfectly checking proofs.

* Actually, advanced type systems like A encode an entire axiomatic semantics into the type system, but let's
classify that as type theory + axiomatic semantics.

Advanced Programming Languages

L Motivation

Two Kinds of Correctness

m Partial Correctness
m Notation: {A}c{B} (called a Hoare triple)
m If A is true before executing ¢, and if ¢ terminates, then B is true after
executing c.
m A is precondition, and B is postcondition
m Total Correctness
m Notation: [A]c[B]
m If A is true before executing ¢, then c¢ eventually terminates and B is true
once it does.

Advanced Programming Languages

L Motivation

Examples

{z < 10}while x<=10 do x:=x+1{?}

Advanced Programming Languages

L Motivation

Examples

{z < 10}while x<=10 do x:=x+1{zx =11}

Advanced Programming Languages

L Motivation

Examples

{z < 10}while x<=10 do x:=x+1{zx =11}
[z < 10]while x<=10 do x:=x+1[7]

Advanced Programming Languages

L Motivation

Examples

{z < 10}while x<=10 do x:=x+1{zx =11}
[z < 10]while x<=10 do x:=x+1[z = 11]

Advanced Programming Languages

L Motivation

Examples

{z < 10}while x<=10 do x:=x+1{zx =11}
[z < 10]while x<=10 do x:=x+1[z = 11]
[T]while x<=10 do x:=x+1[?]

Advanced Programming Languages

L Motivation

Examples

{z < 10}while x<=10 do x:=x+1{zx =11}
[z < 10]while x<=10 do x:=x+1[z = 11]
[T]while x<=10 do x:=x+1[z > 11]

Advanced Programming Languages

L Motivation

Examples

{z < 10}while x<=10 do x:=x+1{zx =11}
[z < 10]while x<=10 do x:=x+1[z = 11]
[T]while x<=10 do x:=x+1[z > 11]

[x = i]while x<=10 do x:=x+1[?]

Advanced Programming Languages

L Motivation

Examples

{z < 10}while x<=10 do x:=x+1{zx =11}

[z < 10]while x<=10 do x:=x+1[z = 11]
[T]while x<=10 do x:=x+1[z > 11]

[x = i]while x<=10 do x:=x+1[z = max(11,7)]

Advanced Programming Languages

L Motivation

Examples

{z < 10}while x<=10 do x:=x+1{zx =11}

[z < 10]while x<=10 do x:=x+1[z = 11]
[T]while x<=10 do x:=x+1[z > 11]

[x = i]while x<=10 do x:=x+1[z = max(11,7)]
{T'}while true do skip{F'}

Advanced Programming Languages

L Motivation

Examples

{z < 10}while x<=10 do x:=x+1{zx =11}

[z < 10]while x<=10 do x:=x+1[z = 11]
[T]while x<=10 do x:=x+1[z > 11]

[x = i]while x<=10 do x:=x+1[z = max(11,7)]
{T'}while true do skip{F'}

m {any A}any non-terminating program{any B}

Advanced Programming Languages

L Motivation

Examples

{z < 10}while x<=10 do x:=x+1{z = 11}
[z < 10]while x<=10 do x:=x+1[x = 11]
[T]while x<=10 do x:=x+1[z > 11]
B [z = i]while x<=10 do x:=x+ 1[z = max(11,7)]
{T}while true do skip{F'}

m {any A}any non-terminating program{any B}
@ {F}any program{any B}

Advanced Programming Languages

L Formalization

Language of Assertions

m First-order logic with arithmetic:

arithmetic exps az=n|v|0]ar+az]|a—a|a*az
assertions Az=T|Flai=a2|a1<az | A1 NAs
| A1V Ay | ~A| A= Ay |Vo.A | 0.4

m Meta-variables (U) are mathematical variables (not program variables) that
have fixed (arbitrary) integer values across all assertions.

m From these one can construct all functions and logical operators, so we will
freely use extensions to the above.
m But if you write something extremely exotic, | reserve the right to challenge
you on whether it can actually be expressed using the above.

Advanced Programming Languages

L Formalization

Hoare Logic

m First published by Tony Hoare [1969]

m First and most famous axiomatic semantics

m “An axiomatic basis for computer programming”

m Often cited as one of the greatest CS papers of all time (only 6 pages long!)
m Optional: read the original paper (linked from course web site)

m Adaption to SIMPL consists of...

m six axioms (rules) describing SIMPL programs
m inference rules of first-order logic
m axioms of arithmetic (e.g., Peano arithmetic)

Advanced Programming Languages

L Formalization

Skip Rule

{(Aysip{7} ")

Advanced Programming Languages

L Formalization

Skip Rule

W
{A}skip{A}

Advanced Programming Languages

L Formalization

Sequence Rule

Wm0

Advanced Programming Languages

L Formalization

Sequence Rule

{A}er {C} {C}c2{B} ,
{A}er;e2{B}

Advanced Programming Languages

L Formalization

Conditional Rule

{A}if b then ¢ else c2{B}

Advanced Programming Languages

L Formalization

Conditional Rule

{A}e{B}

{A}if b then ¢ else c2{B}
{A}e2{B}

{A}if b then c; else c2{B}

3a)

(3b)

Advanced Programming Languages

L Formalization

Conditional Rule

{A}e{B} 32)
{A}if b then ¢ else c2{B}
(ealB)

{A}if b then c; else c2{B}

Problem: These rules can derive false assertions (unsound)!

{T}x:=0{z =0} 3
a
{T}if x <=0 then x:=0 else skip{z = 0}

)

Advanced Programming Languages

L Formalization

Conditional Rule

{Ata{B} {A}e2{B}
{A}if b then ¢ else c2{ B}

3

Advanced Programming Languages

L Formalization

Conditional Rule

{Ata{B} {A}e2{B}
{A}if b then ¢ else c2{ B}

3

Problem: This rule cannot derive some true assertions (incomplete)!

: ?
{T}x:=0{z > 0} {T}skip{z > 0}
{T}if x <=0 then x:=0 else skip{z > 0}

3

Advanced Programming Languages

L Formalization

Conditional Rule

{A Nb}er{B} {A N —b}e{B})
{A}if b then ¢y else c2{ B}

Solves completeness problem without sacrificing soundness:

{T' ANz <0}x:=0{z > 0} {T A —(z < 0)}skip{z > 0}

3
{T'}if x<=0 then x:=0 else skip{z > 0} ®

Advanced Programming Languages

L Formalization

Assignment Rule

(Afvima{7})

Advanced Programming Languages

L Formalization

Assignment Rule

(Afvima{7})

Usage example:

{z > 10}x:=x+1{z > 11}

Advanced Programming Languages

L Formalization

Assignment Rule

(Atvi=aiB}

where B = A with all a's replaced with v?

Usage example:

{z > 10}x:=x+1{z > 11}

Advanced Programming Languages

L Formalization

Assignment Rule

(Atvi=aiB}

where B = A with all a's replaced with v?

Usage example:

{z > 10}x:=x+1{z > 11}

equivalentﬂ

{z+1>11}x:=x+1{z > 11}

Advanced Programming Languages

L Formalization

Assignment Rule

(4
{ ? }v:=a{B}

Usage example:

{z > 10}x:=x+1{z > 11}

equivalentﬂ

{z+1>11}x:=x+1{z > 11}

Advanced Programming Languages

L Formalization

Assignment Rule

*)
{Bla/v]}v:=a{B}

Usage example:

{z > 10}x:=x+1{z > 11}

equivalentﬂ

{z+1>11}x:=x+1{z > 11}

Advanced Programming Languages

L Formalization

While Rule

{A}while b do ¢{B}

Advanced Programming Languages

L Formalization

While Rule

{A}if b then (c;while b do ¢) else skip{B}
{A}while b do ¢{B}

(5)

Advanced Programming Languages

L Formalization

While Rule

{A Ab}c;while b do c{B} {A A —b}skip{B}
{A}if b then (c;while b do ¢) else skip{B}
{A}while b do ¢{B}

(3)

(5)

Advanced Programming Languages

L Formalization

While Rule

{ANb}c{C} {C}while b do c¢{B})
{A Ab}c;while b do c{B} {A A —b}skip{B}
{A}if b then (c;while b do ¢) else skip{B}
{A}while b do ¢{B}

(3)

(5)

Advanced Programming Languages

L Formalization

While Rule

{AAB}e{C} {C}while b do c{B}(z)
{A Ab}c;while b do c{B} {A A —b}skip{B}
{A}if b then (c;while b do ¢) else skip{B}
{A}while b do ¢{B}

(3)

(5)

Advanced Programming Languages

L Formalization

While Rule

{A}whilebdoc{ ? }

Advanced Programming Languages

L Formalization

While Rule

{ANb}c{A}
{A}whilebdoc{ ? }

(©)

Advanced Programming Languages

L Formalization

While Rule

{ANb}e{A}
{A}while b do ¢{ A}

(©)

Advanced Programming Languages

L Formalization

While Rule

{ANb}e{A}
{A}while b do c{-bA A}

(©)

Advanced Programming Languages

L Formalization

While Rule

{I Nb}e{I}
{I}while b do ¢{-bA I}

(©)

I is called a loop invariant

Advanced Programming Languages

L Formalization

Rule of Consequence

Recall that we earlier needed a way to prove (derive) equivalence of assertions:

{z > 10}x:=x+1{z > 11}

equivalentﬂ

{z+1>11}x:=x+1{z > 11}

Advanced Programming Languages

L Formalization

Rule of Consequence

Recall that we earlier needed a way to prove (derive) equivalence of assertions:

{z > 10}x:=x+1{z > 11}

equivalentﬂ

{z+1>11}x:=x+1{z > 11}

Rule of Consequence:

{A'}e{B'}
{A}e{B}

Advanced Programming Languages

L Formalization

Rule of Consequence

Recall that we earlier needed a way to prove (derive) equivalence of assertions:

{z > 10}x:=x+1{z > 11}

equivalentﬂ

{z+1>11}x:=x+1{z > 11}

Rule of Consequence:
EA= A {A"}e{B'}
{A}e{B}

I= with nothing to the left means implication is universally true (i.e., not
merely true in this program or loop)

(6)

m=A= A" <+—Assumptions may be safely weakened

Advanced Programming Languages

L Formalization

Rule of Consequence

Recall that we earlier needed a way to prove (derive) equivalence of assertions:

{z > 10}x:=x+1{z > 11}

equivalentﬂ

{z+1>11}x:=x+1{z > 11}

Rule of Consequence:
EA= A {A"}e{B'} EB =B
{A}e{B}

I= with nothing to the left means implication is universally true (i.e., not
merely true in this program or loop)

(6)

m=A= A" <+—Assumptions may be safely weakened
m =B = B <«+—Conclusions (goals) may be safely strengthened

Advanced Programming Languages

L Formalization

Rule of Consequence Example

{z > 10}x:=x+1{z > 11}

Advanced Programming Languages

L Formalization

Rule of Consequence Example

: . :
EFz>10=>z+1>11 {x+1>11}x:=x+1{x>11}() \=x>11=>x>11(6)
{z > 10}x:=x+1{z > 11}

Advanced Programming Languages

L Formalization

Rule of Consequence Example

: . .
FEz>10=2z+1>11 {x+1>11}x:=x+1{x>11}() EFz>11=2>11
{z > 10}x:=x+1{z > 11}

When you write axiomatic derivations in this class:

= You are not required to write out the derivations of consequence premises
(= A).

m | assume those are derivable using the laws of propositional logic and
integer arithmetic.

m But make sure your implications X = Y are universally true!

L Formalization

Axiomatic Semantics of SIMPL

ara®
{A}skip{A}

{A}er{C} {Clea{B}
{A}yer;e2{B}

{AAb}er{B} {AA-b}c2{B}

4
{Bla/v]}v:=a{B}

{I ANb}eAI}
{I}while b do ¢{-bA I}

)

EA= A {A)e{B} EB =B

{A}if b then c; else c2{B}

(6)
{A}e{B}

	Motivation
	Formalization

