Denotational Semantics

CS 6371: Advanced Programming Languages

Kevin W. Hamlen

February 13, 2024

Advanced Programming Languages

L Varieties of Formal Semantics

Operational Semantics

m Operational Semantics: Two Styles

Large-step: Programs “converge” to answers (otherwise “diverge”)
Small-step: Programs are state transformers (computational steps)

m Philosophy: Either way, programs are defined by the behavior of an abstract
machine.

m Math connection: Operational semantics define an inference logic for
computations (new inference rules and axioms of logic)

Advanced Programming Languages

L Varieties of Formal Semantics

Denotational Semantics

m Denotational Semantics
m Philosophy: Programs denote mathematical objects (functions, numbers,
etc.)
m Goal: Define a function that converts each program into the mathematical
object it denotes
= Advantages:
m No extensions to the foundations of logic
m Excellent for verifying code that performs scientific computations
m Disadvantages:

m Hard to reason about non-termination (like large-step operational)
m Mathematical object is often huge and complex

Advanced Programming Languages

L Denotational Semantics

Semantic Domains

First step: Define the language's semantic domain.

Definition (valuation function): A function that accepts a program (or
expression or any other sub-language in the syntax of programs) and returns the
mathematical object it denotes.

Definition (semantic domain): The type signatures (domains and ranges) of

the valuation functions.

A:a—7?

Advanced Programming Languages

L Denotational Semantics

Semantic Domains

First step: Define the language's semantic domain.

Definition (valuation function): A function that accepts a program (or
expression or any other sub-language in the syntax of programs) and returns the
mathematical object it denotes.

Definition (semantic domain): The type signatures (domains and ranges) of
the valuation functions.

A:a— 7

This is fine for expressions like 3 +2* 10 (denotes 23), but what about
expressions containing variables (e.g., x+1)?

Advanced Programming Languages

L Denotational Semantics

Semantic Domains

First step: Define the language's semantic domain.

Definition (valuation function): A function that accepts a program (or
expression or any other sub-language in the syntax of programs) and returns the
mathematical object it denotes.

Definition (semantic domain): The type signatures (domains and ranges) of
the valuation functions.

Semantic Domain of SIMPL

Y=v—~17Z
Ara— (2—>2)

Idea: Arithmetic expressions in our language denote functions from variable
values (i.e., stores) to integers.

Advanced Programming Languages

L Denotational Semantics

Semantic Domains

First step: Define the language's semantic domain.

Definition (valuation function): A function that accepts a program (or
expression or any other sub-language in the syntax of programs) and returns the
mathematical object it denotes.

Definition (semantic domain): The type signatures (domains and ranges) of
the valuation functions.

Semantic Domain of SIMPL

Y=v—~17Z
Ara— (2—>2)

New problem: What if a contains a variable that is undefined in o € X
(uninitialized variable)?

Advanced Programming Languages

L Denotational Semantics

Semantic Domains

First step: Define the language's semantic domain.

Definition (valuation function): A function that accepts a program (or
expression or any other sub-language in the syntax of programs) and returns the
mathematical object it denotes.

Definition (semantic domain): The type signatures (domains and ranges) of
the valuation functions.

Semantic Domain of SIMPL

Y=v—-7Z
Ara— (X2—172)

Solution: Arithmetic expressions in our language actually denote partial
functions from stores to integers.

Advanced Programming Languages

L Denotational Semantics

Semantic Domains

First step: Define the language's semantic domain.

Definition (valuation function): A function that accepts a program (or
expression or any other sub-language in the syntax of programs) and returns the
mathematical object it denotes.

Definition (semantic domain): The type signatures (domains and ranges) of
the valuation functions.

Semantic Domain of SIMPL

Y=v—-7Z
A:ia— (2—12)

Important: Valuation functions are total in their first arguments. (Every
program must have a denotation, even if its denotation is a partial function.)

Advanced Programming Languages

L Denotational Semantics

Semantic Domains

First step: Define the language's semantic domain.

Definition (valuation function): A function that accepts a program (or
expression or any other sub-language in the syntax of programs) and returns the
mathematical object it denotes.

Definition (semantic domain): The type signatures (domains and ranges) of
the valuation functions.

Semantic Domain of SIMPL

Y=v—-7Z
A:ia— (2—12)
B:b— (X —~A{T,F})

Advanced Programming Languages

L Denotational Semantics

Semantic Domains

First step: Define the language’s semantic domain.

Definition (valuation function): A function that accepts a program (or
expression or any other sub-language in the syntax of programs) and returns the
mathematical object it denotes.

Definition (semantic domain): The type signatures (domains and ranges) of
the valuation functions.

Semantic Domain of SIMPL

YX=v—~7Z

Ara— (2—172)
B:b— (X —~{T,F})
C:c—7

Advanced Programming Languages

L Denotational Semantics

Semantic Domains

First step: Define the language’s semantic domain.

Definition (valuation function): A function that accepts a program (or
expression or any other sub-language in the syntax of programs) and returns the
mathematical object it denotes.

Definition (semantic domain): The type signatures (domains and ranges) of
the valuation functions.

Semantic Domain of SIMPL

Y=v—~1%

Ara— (2—172)
B:b— (S —{T,F})
Cic—>(XE—-X)

Advanced Programming Languages

L Denotational Semantics

Valuation Functions

Notation: Customary to write the code argument to a valuation function
enclosed within semantic brackets rather than parentheses:

Alx+1] = ---
(In BTEX, write “\mathcal{A}[\'[--- J\!1".)
Ala] and o are partial functions, so we can use set notation
Ala] = {(o,n+1) | (x,n) € o}
or we can use function notation
Ala](c) =o(x) +1

Need to be able to read and write both, and convert between them as needed!

Since we are functional programmers, it's customary to drop paretheses around
arguments unless needed for grouping.

Ala]o instead of Afa](0)

Advanced Programming Languages

L Denotational Semantics

Arithmetic Expression Valuation

Aln] = {(o,n) | o € 52}

Advanced Programming Languages

L Denotational Semantics

Arithmetic Expression Valuation

A[n] ={(o,n) | o0 € £}
.A[[U]] = {(Ua TL) | (Uvn) € J}
Alar +az] = {(o,n1 + n2) | (0,m1) € Ala1], (0,n2) € Afaz]}

Advanced Prograr

L Denotational

Arithmetic Expression Valuation

Aln] ={(o,n) | o0 € £}

Aol ={(o,n) | (v,n) € o}
Alay +az2] = {(o,n1 + n2) | (o,n1) € Alai], (o, n2) € Afaz]}
Alar -az] = {(o,n1 —n2) | (0,m1) € Alar], (0,n2) € Alaz]}
Alay * az] = {(o,n1n2) | (o,n1) € Alai], (o,n2) € Afaz]}

Arithmetic Expression Valuation

Aln] = {(o,n) | 0 € 23}

(
Alv] = {(o,n) | (v,n) € g}
Alar +az] = {(0,n1 4+ n2) | (0,1) € Ala1], (0,n2) € Afa=]}
Alar -az] = {(o,n1 — n2) | (0,m1) € Ala1], (0,n2) € Afa=]}
Alar *az] = {(o,m1n2) | (0,m1) € Ala1], (0,n2) € Alaz]}
Or (equivalently),
Aln]o =n
Afv]o =ov

Alar + az]o = Alai]o + Alaz]e
Alar - az]o = Alai]o — Alaz]o
Alar * az]o = (Alai]o)(Alaz]o)

Advanced Programming Languages

L Denotational Semantics

Boolean Expression Valuation

Valuation function B for boolean expressions is similar.
See online notes for its full definition.

Advanced Programming Languages

L Denotational Semantics

Command Valuation

C[skip] = {(o,0) | 0 € X}

Advanced Programming Languages

L Denotational Semantics

Command Valuation

C[skip] = {(0,0) | 0 € £}
C[[C1;Cg]] = ?

Advanced Programming Languages

L Denotational Semantics

Command Valuation

C[skip] =
C[[Cl ;02]] =

(0,0) | 0 € X}

{
{(Uv U,) | (U’ 02) € C[[cl]]’ (0—270/) € C[[CQ]]}

Advanced Programming Languages

L Denotational Semantics

Command Valuation

Clskip] = {(o,0) | 0 € X}
Cleisea] = {(0,0") | (0,02) € Clea], (02,0") € Clle2]}
Clv:i=a] =7

Advanced Programming Languages

L Denotational Semantics

Command Valuation

C[skip] = {(o,0) | c € =}
C[[Cl ;02]] = {(07 U,) ‘ (Uv 02) € CﬂCﬂL (02701) € C[[CQ]]}
Clv:=a] ={(o,0v = n]) | (0,n) € Ala]}

Advanced Programming Languages

L Denotational Semantics

Command Valuation

Clskip] = {(0,0) | 0 € £}
Cleise] = {(0,0") | (0,02) € Cer], (02,0") € Clez]}
Clv:=a] = {(o,0v+—n]) | (o,n) € Ala]}

C[if b then ¢; else 2] =7

Command Valuation

C[skip] = {(o,0) | c € =}
Clersea] = {(0,0") | (0,02) € Clen], (02, 0”) € Cllea]}
Clv:=a] = {(o,0v+—mn]) | (o,n) € Ala]}
C[if b then c¢; else c2] = {(o,0") | (6,T) € B[b], (0,0") € C[c1]}
(0,0

{(o,0") | (0, F) € B[], (0,0") € Clea]}

I

I

L Denotational Semantics

Command Valuation

C[skip] = {(o,0) | 0 € X}
Clersea] = {(0,0") | (0,02) € Clar], (02, 0") € Clea]}
Clv:=a] = {(o,0[v —n]) | (o,n) € Ala]}
C[if b then ¢; else c2] = {(0,0") | (0,T) € B[b], (0,0") € C[c1]}
U{(0,0") | (0, F) € BB, (0,0") € Cleal}

L Denotational Semantics

Command Valuation

C[skip] = {(o,0) | 0 € X}
Clevse2] = {(0,0") | (0,02) € Clar], (02,0") € Clea]}
Clv:=a] = {(o,0[v — n]) | (o,n) € Ala]}
C[if b then c; else c2] = {(0,0") | (o, T) € B[b], (0,0") € C[c1]}
U{(e,0") | (0, F) € B[], (0,0") € Clea]}

Clwhile b do ¢] =7

(o
(0,0

Advanced Programming Languages

L Denotational Semantics

Command Valuation

C[skip] = {(o,0) | 0 € X}
Clexsezl = {(0,0") | (0,03) € Clea, (02,0") € Cle]}
Clv:=a] = {(o,0[v — n]) | (o,n) € Ala]}
C[if b then c; else c2] = {(0,0") | (o, T) € B[b], (0,0") € C[c1]}
U{(e,0") | (0, F) € B[], (0,0") € Clea]}
Clwhile b do ¢] = C[if b then (c;while b do ¢) else skip]

Advanced Programming Languages

L Denotational Semantics

Command Valuation

Clskip] = {(0,0) | 0 € £}
Clersea] = {(0,0") | (0,02) € Cer], (02,0") € Clle2]}
Clv:=a] = {(o,0[v — n]) | (o,n) € Ala]}
C[if b then ¢; else c2] = {(0,0") | (0,T) € B[], (0,0") € Clc1]}
U{(o,d") | (o, F) € B[], (0,0") € Cle2]}
C[while b do ¢] = C[if b then (c;while b do c) else skip]

Problem: This is not a well-founded recursive definition. Why?

Advanced Programming Languages

L Denotational Semantics

Well-founded Relations

Even though in computer programming we may have gotten used to writing
non-terminating functions, such as

let £ O =1 O;;

in mathematics if | ask you to define a function f satisfying some property P, it
is not acceptable to define

flx) = f(=z)
This is not a definition. It is a property of f (trivially satisfied by all functions f),
but it does not define f.

Advanced Programming Languages

L Denotational Semantics

Well-founded Relations

Let's expand our “definition” of C for while-loops:
Clwhile b do (]
= C[if b then (c;while b do c) else skip]
={(0,0") | (0,T) € B[b], (0,0") € C[c;while b do]}
U{(e,0") | (o, F) € B[b], (0,0") € C[skip]}
={(0,0") | (0,T) € B[}], (5,02) € C[c], (62,0") € C[while b do]}
U{(o,0) | (o, F) € B[b]}

Advanced Programming Languages

L Denotational Semantics

Well-founded Relations

Let's expand our “definition” of C for while-loops:
C[while b do]
= C[if b then (c;while b do c) else skip]
={(0,0") | (0,T) € B[b], (0,0") € C[c;while b do]}
U{(e,0") | (o, F) € B[b], (0,0") € C[skip]}
={(0,0") | (0,T) € B[}], (5,02) € C[c], (62,0") € C[while b do]}
U{(o,0) | (o, F) € B[b]}

Advanced Programming Languages

L Denotational Semantics

Well-founded Relations

Let's expand our “definition” of C for while-loops:
Clwhile b do]
= C[if b then (c;while b do ¢) else skip]

={(0,0") | (o,T) € B[b], (0,0") € C[c;while b do]}
U{(e,a") | (o, F) € B[], (0,0") € C[skip]}

={(0,0") | (0,T) € B[}], (0,02) € C[c], (72,0") € C[while b do]}
U{(o,0) | (0, F) € B[o[}

C is defined in terms of itself. Not a valid recursive definition.

Advanced Programming Languages

L Fixed Point Theory

The Problem of Loops

How do we fix this?

Looks like our days of side-stepping the problem through trickery are over. We
actually have to solve the problem of what loops really mean mathematically.
This is going to require some real work. (Bear with me.)

Advanced Programming Languages
L Fixed Point Theory

The Problem of Loops

High-level goal: A while-loop should denote a set of input-output store pairs.
Each output store is the final state of the program when the loop terminates.

If a loop doesn't terminate, the function should have no output state associated
with that input state (i.e., undefined for that input).

(Remember, every program must be a denotation, but its denotation is
permitted to be a partial function that is undefined for some inputs.)

Advanced Programming Languages
L Fixed Point Theory

Iterative Approach

Idea: Maybe we can build this set of input-output pairs iteratively.

Red states o are those in which B[b]o = F.

Clwhile bdo c] = {(01,01), (02,02), (93, 03), (04, 04),(05,05)} U - -

Advanced Programming Languages
L Fixed Point Theory

Iterative Approach

Idea: Maybe we can build this set of input-output pairs iteratively.

@ ®@ © Q
Red states o are those in which B[b]o = F.

Blue states o are those in which B[b]o = T.
Edges (o, 0’) € C[c] show how loop body c changes the state.

C[while b do ¢] = {(01,01), (02,02), (03,03), (04,04), (65,05)} U
{(06,01), (07,02), (08, 02), (09,03),(010,05), (011, 05), (012,05)} U - -~

Advanced Programming Languages

L Fixed Point Theory

Iterative Approach

Idea: Maybe we can build this set of input-output pairs iteratively.

Red states o are those in which B[b]o = F.
Blue states o are those in which B[[b]o = T
Edges (o, 0’) € C[c] show how loop body c changes the state.

C[while bdo c] = {(01,01), (02, 02), (03, 03), (04,04),(05,05)} U
{(¢6,01), (07,02),(08,02), (09,03),(010,05), (011,05), (012,05)} U
{(013,01), (014, 01), (015, 03), (016, 05), (017, 05), (018,05)} U - - -

Advanced Programming Languages

L Fixed Point Theory

Iterative Approach

Idea: Maybe we can build this set of input-output pairs iteratively.

Red states o are those in which B[b]o = F.
Blue states o are those in which B[[b]oc = T.
Edges (o, 0’) € C[c] show how loop body ¢ changes the state.

C[while b do c] = {(01,01), (02,02), (03,03), (04,04), (05,05)} U
{(06,01), (07,02), (08, 02), (09,03),(010,05), (011, 05), (012,05)} U
{(013,01), (915, 093), (016, 05), (017, 05), (018, 05)} U

Advanced Programming Languages

L Fixed Point Theory

Iterative Approach

Idea: Maybe we can build this set of input-output pairs iteratively.

Red states o are those in which B[b]o = F.
Blue states o are those in which B[[b]oc = T.
Edges (o, 0’) € C[c] show how loop body ¢ changes the state.

C[while b do c] = {(o,0) | (¢, F) € B[b]} U
{(06,01), (07,02), (08, 02), (09,03),(010,05), (011, 05), (012,05)} U
{(013,01), (015, 093), (016, 05), (017, 05), (918, 05)} U

Advanced Programming Languages

L Fixed Point Theory

Iterative Approach

Idea: Maybe we can build this set of input-output pairs iteratively.

Red states o are those in which B[b]o = F.
Blue states o are those in which B[b]o = T.
Edges (o, 0’) € C[c] show how loop body c changes the state.

C[while b do ¢] = {(o,0) | (0, F) € B[b]} U
{(o,0") | (0, T), (c", F) € B[b], (0, 0") € Cle]} U
{(c13,01), (015,03), (016, 05), (017, 05), (018, 05)} U

Advanced Programming Languages

L Fixed Point Theory

Iterative Approach

Idea: Maybe we can build this set of input-output pairs iteratively.

Red states o are those in which B[b]o = F.
Blue states o are those in which B[b]o = T.
Edges (o, 0’) € C[c] show how loop body c changes the state.

C[while b do c] = {(o,0) | (o, F) € B[b]} U
{(o,0") | (6,T), (¢, F) € B[b], (o,0") € C[c]} U
{(e,0") | (¢,T), (02, T), (¢', F) € B[b], (0, 02), (02,0") € C[e]} U

Advanced Programming Languages
L Fixed Point Theory

Making it a Recursion

s1={(0,0) | (0, F) € B[b]}

Advanced Programming Languages
L Fixed Point Theory

Making it a Recursion

s1 ={(0,0) | (0, F) € B[b]}
s2 = {(0,0") | (0,T) € B[b], (0,02) € C[c], (02,5") € 51}

Advanced Programming Languages
L Fixed Point Theory

Making it a Recursion

={(o,
So = {
S3 = {

) | (o, F) € B[o]}
/) | (U,) € Bﬂb]L(702) € CIIC]]a (02’0-,) € 81}
) | (UvT) € B[[bﬂ7 (Ua 02) € C[[C]]a (0270,) € 82}

—

o
0,0
o

—

a,

Advanced Programming Languages
L Fixed Point Theory

Making it a Recursion

51 = {(070) | (UaF) € B[[b]]}

s2 = {(0,0") | (0,T) € B[], (0,02) € C[c], (02,0") € 51}

s3 = {(0,0") | (0,T) € B[], (0,02) € C[c], (02,0") € 52}

sn = {(0,0") | (0,T) € B[], (0,02) € C[c], (02,0") € sn—1} (Vn > 1)

L Fixed Point Theory

Making it a Recursion

s1={(o0,0) | (0, F) € B[b]}

s2 = {(0,0") | (6,T) € B[], (0,02) € C[c], (02,0") € s1}

s3 ={(0,0") | (6,T) € B[b], (0,02) € C[c], (02,0") € s2}

sn={(0,0") | (6,T) € B[b], (c,02) € C[c], (02,0") € 8—1} (Vn > 1)

Clwhile b do] = U Sn

n>1

Advanced Programming Languages
L Fixed Point Theory

Making it a Recursion

so={}

s1={(0,0) | (0, F) € B[o[}

s2 = {(o,0") | (0,T) € B[b], (0,02) € C[c], (02,0") € s1}

s3 ={(0,0") | (o,T) € B[], (0,02) € C[c], (02,0") € s2}

sn = {(0,0") | (0,T) € B[], (5,02) € C[c], (02,0") € 5p—1} (Vn>1)

C[while b do] = U Sn

n>0

Advanced Programming Languages
L Fixed Point Theory

Making it a Recursion

so={}
51:{(070) | (o 7F)€B|Ib]]}USO

sg ={(0,0") | (0,T) € B[b], (c,02) € C[], (02,0") € 81} Usy
s3 ={(0,0") | (6,T) € B[b], (o,02) € C[], (02,0") € 52} U s2
sn={(c0,0") | (6,T) € B[b], (o,02) € C[], (02,0") € 8p—1}yUsp_1 (Vn > 1)

Clwhile bdo] = [J sn

n>0

This gives us the useful property that s is now a family of nested subsets
s0 Cs1 Cs2C -

Advanced Programming Languages

L Fixed Point Theory

Making it a Recursion

so={}
s1=A{(0,0) | (0, F) € B[b]} U so
sn={(0,0") | (0,T) € B[b], (0,02) € C[c], (02,0") € sn—1} Uspn_1 (Vn > 1)

C[while b do] = U Sn

n>0
Idea: Is it possible to define a function I' that, when given s; as input returns

the next s;+17

I'(s) =7

Advanced Programming Languages

L Fixed Point Theory

Making it a Recursion

so={}
s1=A{(0,0) | (0, F) € B[b]} U so
sn={(0,0") | (0,T) € B[b], (0,02) € C[c], (02,0") € sn—1} Uspn_1 (Vn > 1)

C[while b do] = U Sn

n>0
Idea: Is it possible to define a function I' that, when given s; as input returns

the next s;+17

I'(s) ={(o,0) | (o, F) € B[b]} U?

Advanced Programming Languages

L Fixed Point Theory

Making it a Recursion

so={}
s1=A{(0,0) | (o, F) € B[b]} U so
sn = {(0,0") | (0,T) € B[b], (0,02) € C[c], (02,0") € sn—1} Uspn_1 (Vn > 1)

Clwhile bdo c] = | J sn

n>0
Idea: Is it possible to define a function I' that, when given s; as input returns

the next s;+17

I'(s) ={(0,0) | (o, F) € B[]} U
{(o,6") | (0,T) € B[b], (o,02) € C[], (02,0") € s}

Advanced Programming Languages
L Fixed Point Theory

Making it a Recursion

Idea: Now we can simplify away all the s sets and just use I'!

so={}
s1=T({})

s2 =T(I'({}))

s3 =T(I(T({}))
sn=T"({})

I'(s) ={(0,0) | (o, F) € B[]} U
{(o,0") | (o, T) € B[b], (0, 02) € C[c], (02,0") € s}

Clwhile bdo c] = | J I"({})

n>0

Advanced Programming Languages
L Fixed Point Theory

Making it a Recursion

Notation: In lattice theory, the partial function that is undefined for all inputs
(i.e., {}) is often written L.

I'(s) ={(0,0) | (0, F) € B[]} U
{(07 U/) | (U,T) € B[[bﬂ7 (Ua 02) € CIIC]]a (02’0-,) € S}

Clwhile b do] = U (L)

n>0

Advanced Programming Languages
L Fixed Point Theory

Deeper Mathematical Connections

C[skip] = {(o,0) | 0 € =}
Cleisee] = {(o,0") | (0,02) € Clen], (02,0”) € Cle2]}
Clv:=a] = {(o,0[v = n]) | (o,n) € Ala]}
C[if b then ¢; else cz] = {(o,0") | (o, T) € B[b], (0,0") € Cle1]}
U{(o,0") | (o, F) € B[b], (0,0") € Clez]}

C[while b do c] = U (L)
n>0

where
(f) ={(s,0) | (o, F) € B[b]} U
{(Uv U/) | (0'7 T) € BlIb]]a (Ua 02) € Cﬂcﬂv (‘727‘7/) € f}

It turns out many of these functions have names you might recognize!

Advanced Programming Languages
L Fixed Point Theory

Deeper Mathematical Connections

C[skip] = ts (identity function)
Cleisee] = {(o,0") | (0,02) € Clen], (02,0") € Cle2]}
Clv:=a] = {(o,0[v — n]) | (o,n) € Ala]}
C[if b then ¢; else 2] = {(o,0") | (o, T) € B[b], (0,0") € Cle1]}
U{(o,0") | (o, F) € B[b], (0,0") € Clez]}

C[while b do c] = U (L)
n>0

where
(f) ={(s,0) | (o, F) € B[b]} U
{(Uv U/) | (0'7 T) € BlIb]]a (Ua 02) € Cﬂcﬂv (‘727‘7/) € f}

It turns out many of these functions have names you might recognize!

Advanced Programming Languages
L Fixed Point Theory

Deeper Mathematical Connections

C[skip] = ¢s (identity function)
Cleisea] = Clez] o Cler] (function composition)
Clv:=a] = {(o,0[v = n]) | (o,n) € Afa]}
C[if b then ¢ else cz] = {(0,0") | (0,T) € B[b], (0,0") € Clea]}
U{(e,0") | (o, F) € BIbl, (0,0") € Cle2]}

C[while b do c] = U (L)
n>0

where
r'(f) ={(o,0) | (o, F) € B[b]} U
{(o,0") | (o, T) € Bb], (0, 02) € C[cl, (52,0") € f}

It turns out many of these functions have names you might recognize!

Advanced Programming Languages
L Fixed Point Theory

Deeper Mathematical Connections

C[skip] = ¢s (identity function)
Cleisea] = Clez] o Cler] (function composition)
Clv:=a] = [v+] o Afa] (functional update)
C[if b then ¢ else cz] = {(0,0") | (0,T) € B[b], (0,0") € Cle1]}
U {(o,0") | (0, F) € B[t], (0,0") € Cle2]}

C[while b do c] = U (L)
n>0

where
r'(f) ={(o,0) | (o, F) € B[b]} U
{(o,0") | (o, T) € Bb], (0, 02) € C[cl, (52,0") € f}

It turns out many of these functions have names you might recognize!

Advanced Programming Languages
L Fixed Point Theory

Deeper Mathematical Connections

C[skip] = ¢s. (identity function)
Cller;ez2] = Clez] o Cler] (function composition)
Clv:=a] =[v+—]oAfa] (functional update)
C[if b then c; else c2] = C[[cﬂ][Bm LJ C[[CQ]]LBM (lattice join)

Clwhile b do c] = U (L)
n>0

where
L(f) ={(e,0) | (0, F) € B[]} U
{(07 U,) | (‘77 T) € BIIb]]v (07 02) € C[[C]]v (‘727‘7/) € f}

It turns out many of these functions have names you might recognize!

Advanced Programming Languages
L Fixed Point Theory

Deeper Mathematical Connections

C[skip] = ¢x (identity function)
Clei;ca] = Clez] o Cle1] (function composition)
Clv:=a] = [v—]o Afa] (functional update)
C[if b then c; else c2] = C[[CI]HBM L C[[cz]]LB[[b]] (lattice join)
C[while b do c] = fiz(I') (least fixed point)
where
L(f) ={(o,0) | (0, F) € B[b]} U
{(0,0") | (0.T) € B[, (7, 02) € C[e], (02,0") € f}

It turns out many of these functions have names you might recognize!

Advanced Programming Languages
L Fixed Point Theory

Introduction to Fixed Points

Definition (fixed point): A fixed point of a function f: A — A is any value
x € A satisfying f(z) = x.

Exercise: What is a fixed point of f(z) = z2?

Advanced Programming Languages

L Fixed Point Theory

Introduction to Fixed Points

Definition (fixed point): A fixed point of a function f: A — A is any value
x € A satisfying f(z) = x.

Exercise: What is a fixed point of f(x) = z2?
Answer: z =0and z =1

Advanced Programming Languages
L Fixed Point Theory

Introduction to Fixed Points

Definition (fixed point): A fixed point of a function f: A — A is any value
x € A satisfying f(z) = x.

Exercise: What is a fixed point of f(z) = z??
Answer: z =0and z =1

Exercise: What is a fixed point of g(z) =z + 17

Advanced Programming Languages

L Fixed Point Theory

Introduction to Fixed Points

Definition (fixed point): A fixed point of a function f: A — A is any value
x € A satisfying f(z) = z.

Exercise: What is a fixed point of f(x) = z2?
Answer: z =0and z =1

Exercise: What is a fixed point of g(z) =z + 17
Answer: g has no fixed points.

Takeaway: Functions can have one fixed point, many fixed points, or none.

Advanced Programming Languages
L Fixed Point Theory

Introduction to Fixed Points

Definition (fixed point): A fixed point of a function f: A — A is any value
x € A satisfying f(z) = x.

Exercise: What is a fixed point of f(z) = z??
Answer: z =0and z =1

Exercise: What is a fixed point of h(S) = {2? | 2 € S}?

Advanced Programming Languages

L Fixed Point Theory

Introduction to Fixed Points

Definition (fixed point): A fixed point of a function f: A — A is any value
z € A satisfying f(z) = x.

Exercise: What is a fixed point of f(x) = z2?
Answer: z =0and z =1

Exercise: What is a fixed point of h(S) = {z* | z € S}?
Answer: {}, {0}, {1}, and {0,1} are all fixed points.

Advanced Programming Languages
L Fixed Point Theory

Introduction to Fixed Points

Definition (least fixed point): A least fixed point of a function f: A — Ais a
fixed point = € A such that all fixed points y € A satisfy x < y.

Exercise: What is the least fixed point of f(z) = z*?

Advanced Programming Languages
L Fixed Point Theory

Introduction to Fixed Points

Definition (least fixed point): A least fixed point of a function f: A — A is a
fixed point z € A such that all fixed points y € A satisfy z < y.

Exercise: What is the Jeast fixed point of f(z) = 2?7
Answer: 0

In General: All functions have at most one least fixed point.

Advanced Programming Languages

L Fixed Point Theory

Introduction to Fixed Points

Definition (least fixed point): A least fixed point of a function f: A — A is a
fixed point & € A such that all fixed points y € A satisfy z < y.

Exercise: What is the least fixed point of f(z) = 2?7
Answer: 0

Exercise: What is the least fixed point of h(S) = {z* | z € S}?

What does “least” even mean when domain A consists of sets, not numbers?

Advanced Programming Languages

L Fixed Point Theory

Introduction to Fixed Points

Definition (least fixed point): A least fixed point of a function f: A — Aisa
fixed point © € A such that all fixed points y € A satisfy x < y.

Exercise: What is the least fixed point of f(x) = z%?
Answer: 0

Exercise: What is the least fixed point of h(S) = {z* | z € S}?

What does “least” even mean when domain A consists of sets, not numbers?

In general, < can be any specified relation over domain A. In the case of sets,
we typially use C.

Advanced Programming Languages

L Fixed Point Theory

Introduction to Fixed Points

Definition (least fixed point): A least fixed point of a function f: A — A is a
fixed point z € A such that all fixed points y € A satisfy C y.

Exercise: What is the least fixed point of f(z) = 2?7
Answer: 0

Exercise: What is the least fixed point of h(S) = {z* | z € S}?
Answer: {} is the least fixed point of h.

Advanced Programming Languages
L Fixed Point Theory

Fixed Point Theory

L(f) ={(o,0) | (0, F) € B[b]} U
{(0,0") | (0.T) € B[b], (0,02) € C[c], (02,0") € [}

Does I' have a least fixed point? If so, what is it?

Advanced Programming Languages
L Fixed Point Theory

Fixed Point Theory

L(f) ={(o,0) | (0, F) € B[]} U
{(07 Cl'l) | (UvT) € Bﬂbﬂ7 (Uv 02) € CIIC]], (0270/) € f}

Does I' have a least fixed point? If so, what is it?

First, what is I''s type (domain and range)?

Advanced Programming Languages
L Fixed Point Theory

Fixed Point Theory

L(f) ={(o,0) | (0, F) € B[b]} U
{(07 Ul) | (UvT) € B[[bﬂ7 (07 02) € C[[C]], (027‘7/) € f}

DoesI': (¥ — X) — (X — X) have a least fixed point? If so, what is it?

Advanced Programming Languages
L Fixed Point Theory

Fixed Point Theory

I(f) =A(o,0) | (o0, F) € B[]} U
{(Gv U/) | (GvT) € Bﬂbﬂv (Uv 02) € CIIC]]v (0—270—,) € f}

DoesI': (¥ — X) — (¥ — X) have a least fixed point? If so, what is it?
Amazing fact: fiz(I') = U,,5, " (L) = C[while b do]

Why?

Advanced Programming Languages
L Fixed Point Theory

Fixed Point Theory

I'(f) ={(o,0) | (0, F) € B[]} U
{(07 U/) | (JvT) € B[[b]]7 (Uv ‘72) € ClIC]], (0-2’0',) € f}

Yol

Intuition #1: Un>0 I'™(L) includes all (infinity) of the input-output pairs in the
state diagram above. What does I" (Un>0 I‘"(J_)) compute?

It adds the “next generation” of input-output pairs to the set, but there's no
more to add. So it returns the same set. Therefore it's a fixed point.

Advanced Programming Languages
L Fixed Point Theory

Fixed Point Theory

I'(f) ={(o,0) | (0, F) € B[]} U
{(07 U/) | (JvT) € B[[b]]v (U’ 02) € C[[C]]v (0'2,0',) € f}

Intuition #2: Any strict subset of S C |J,,», " (L) cannot be a fixed point
because I'(.S) would add more input-output pairs.

Intuitive conclusion: |J,,~, "™ (L) is the least fixed point of T".

(Warning: This is not a proof, just guiding intuition.)

Advanced Programming Languages

L Fixed Point Theory

Knaster-Tarski Fixed-point Theorem

Theorem: Knaster-Tarski Fixed-point Theorem

Let A be any complete partial order with bottom L, and let f: A — A be any
continuous function. The least fixed point of f is | |, f*(L).

Partial Order

A partial order is a set A on which there is a binary relation C that is:
m reflexive: Va € A,a C a
m transitive: Va,b,c€ A,aCbCc=—alc
m antisymmetric: Va,b € A,aCbCa=a=b

Advanced Programming Languages
L Fixed Point Theory

Knaster-Tarski Fixed-point Theorem

w-chain

An w-chain of a partial order (A, C) is an infinite sequence ap C a1 C - - -.

CPO Completeness

A partial order (A, C) is complete if every w-chain has a least upper bound.

Monotonicity

A function f: A — A is monotonic if a C b = f(a) C f(b) (Va,b € A).

Continuity

A function f is continuous if it is monotonic and for every w-chain
aoCa C---

Ll fa)=f | e

i>0 i>0

Advanced Programming Languages
L Fixed Point Theory

Knaster-Tarski Fixed-point Theorem

Theorem: Knaster-Tarski Fixed-point Theorem

Let A be any complete partial order with bottom L, and let f : A — A be any
continuous function. The least fixed point of f is l—liZO fL).

Turns out X — X is a complete partial order with bottom 1, and I" is a
continuous function over that CPO. (See online notes for complete proof.)

Therefore, Knaster-Tarski proves that C[while b do] is its least fixed point.
Why do we care? Proving things about code boils down to proving things about
loops. Proving things about infinite subsets is hard, but proving things about

least fixed points is greatly facilitated by a powerful tool: fixed-point induction.

. which we will learn about next time!

	Varieties of Formal Semantics
	Denotational Semantics
	Fixed Point Theory

